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	is article considers the estimation of the unknown numerical parameters and the density of the base measure in a Poisson-
Dirichlet process prior with groupedmonotone missing data.	e numerical parameters are estimated by the method of maximum
likelihood estimates and the density function is estimated by kernel method. A set of simulations was conducted, which shows that
the estimates perform well.

1. Introduction

As a young but fast-growing 
eld of statistics, Bayesian non-
parametrics (abbreviated as BNP below) focuses on Bayesian
solutions of nonparametric and other in
nite-dimensional
statistical models. Compared with frequentist statistics and
classical Bayesian statistics, BNP provides highly �exible and
robust models for in
nite-dimensional parameter spaces.
	e most extensively investigated priors in BNP include the
famous Dirichlet process prior [1] and Polya tree process
prior [2–5] which have played fundamental roles in the
development of Bayesian nonparametrics.

Dirichlet processes are also referred to as one-parameter
Poisson-Dirichlet processes by Kingman [6]. As the 
rst and
foremost generalization of Dirichlet processes, two-param-
eter Poisson-Dirichlet processes (abbreviated as Poisson-
Dirichlet process below) were 
rst discussed by Pitman and
Yor [7] and from then have made huge success in Bayesian
nonparametric modeling in language, images, ecology, biol-
ogy, genomics, and so on. Remarkable examples include
Goldwater et al. [8] who used Poisson-Dirichlet process as an
adaptor to justify the appearance of type frequencies in formal
analyses of natural language and improved the performance
of an earlier model for unsupervised learning of morphology,
Sudderth and Jordan [9] whomodeled the object frequencies

and segment sizes by Poisson-Dirichlet processes and devel-
oped a statistical framework for the simultaneous, unsuper-
vised segmentation and discovery of visual object categories
from image databases, Favaro et al. [10] who used a Poisson-
Dirichlet model to deal with the issue of prediction within
species sampling problems, andHoshino [11] who studied the
microdata disclosure risk assessment with Pitman’s sampling
formula, clari
ed some of its theoretical implications, and
compared various models based on the Akaike Information
Criterion by applying them to real data sets. For more
references related to the application of Poisson-Dirichlet
process in the area of language learning, one can be referred to
Johnson et al. [12],Wood and Teh [13], andWallach et al. [14].

While the exact Bayesian methods take the assumption
that prior distributions are completely speci
ed, empirical
Bayesian methods deal with the situations where prior distri-
butions are atmost partially speci
ed and thus need to be esti-
mated. Empirical Bayesianmethods for parametric and semi-
parametricmodels have been investigated in a huge volumeof
literature. However, the study of empirical Bayesian methods
in the framework of Bayesian nonparametrics is quite limited.
A recently published paper is that by Yang and Wu [15] who
studied the problem of estimation of the priors with mono-
tonically missing data when the prior is a Dirichlet process.
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In this paper, we aim at estimating the unknown numer-
ical parameters and the density of the base measure with
independent and identically distributed (i.i.d.) groups of
observations with a Poisson-Dirichlet process prior. Because
the Dirichlet process prior is a special case of the Poisson-
Dirichlet process prior, we in fact have extended the method-
ologies of Yang andWu [15] to a biggermodel.	e estimation
of the unknown parameters is carried out in two di�erent
methods, the maximum likelihood method and a naive
method proposed by Carlton [16], of which performances are
compared by a simulation study.

Because there are two numerical parameters in Poisson-
Dirichlet process priors, the maximum likelihood estimates
(MLE) for the unknown parameters are discussed under
three di�erent settings (see the next section for the de
nition
of the parameters � and � and the density function): (i)
the discount parameter � is unknown but the concentration
parameter � is known; (ii) the concentration parameter �
is unknown but the discount parameter � is known; and
(iii) both � and � are unknown. Favaro et al. [10] gave the
empirical Bayes estimates when both � and � were unknown
on complete data without missing.	e comparisons between
the estimates of Favaro et al. [10] and ours are presented with
the same sample size in terms of bias, standard deviations
(SD), and mean squared errors (MSEs).

	e remainder of this paper is structured as follows. In
Section 2, we review the basic model and the de
nition of
the Poisson-Dirichlet processes priors. Data structure and
model assumptions are also described in this section. In
Section 3, the MLEs of the prior parameters are discussed
in detail under three di�erent aforementioned situations. A
naive estimate for the discount parameter � is also discussed.
Section 4 discusses the estimates of base distribution density
by kernel method. Section 5 presents a small simulation
study to show the performance of the estimates discussed in
Section 3.

2. The Data and Model

	e data are observed in � time periods and accordingly
organized in groups � = 1, 2, . . . , �, with � representing the
calendar time point the individuals in this group begin to
be observed. Each group � contains �� individuals. Denote
by (�, �) the �th individual in group � which is represented
by a random vector ��� with ���� being the 	th coordinate
of individual (�, �). 	e observations are presented by 
-
dimensional (
 ≤ �) vectors for which the coordinates are
observed sequentially in time, so that the observations are
subject to monotone missing. A clearer picture of the data
structure is exhibited in Table 1.

Hence, the observed data up to time � are monotone
missing; that is, the components of an individual (�, �) are
ordered in such a way that if an observation of a variable����
for individual (�, �) is missing, then so are the observations
of all subsequent variables ����, � ≥ 	 (if any) for the
same individual. Clearly, Table 1 indicates that variables for
individuals in the 
rst �−
+1 groups are completely observed

and only the 
rst � − � + 1 components are observable for
individuals in group � = � − 
 + 2, . . . , �.

Data structured as in Table 1 is frequently encountered
in real world. A typical example is loss data for claims used
for the purpose of loss reserving in the industry of non-life
insurance (see, e.g., [15, 17, 18]). Assume that the evaluation
time of loss reserving is accident year �; each claim made at
accident year � (� ≤ �)will be paid at the end of the subsequent
 years a�er the claim (the 
rst is the one paid at the end of the
year the claim is made) so that the payments of an individual(�, �) correspond to a 
-vector (���1, . . . , ����, . . . , ����). 	en
observing at the end of the evaluation year �, the payments
for a claim in accident year � have been paid only with 	s such
that 	 ≤ � − � + 1; that is, the observable payments of claim(�, �) are just the subvector Xo

�� = (���1, ���2, . . . , ���,�−�+1),
where the superscript “o”means “observable.”Other example
data of this structure can also be found in Marini et al. [19]
who discussed the maximum likelihood estimation in panel
studies for the 
rst time, Hao and Krishnamoorthy [20] who
considered testing and estimation problems, and Raats et al.
[21] who discussed the estimation and testing formultivariate
regression model, among a large number of others, with
monotone missing data.

Before presenting the probabilistic characteristics of the
data under a BNP framework in Assumption 2, we recall the
de
nition of Poisson-Dirichlet processes in terms of stick-
breaking. Let (�, �) be a pair of real numbers satisfying � ∈[0, 1) and � > −�, which is always respected and hence will
not be mentioned everywhere.

De�nition 1. (1) Let (��)�≥1 be a sequence of mutually
independent random variables with �� ∼ Beta(1 − �, � + ��)
and �̃1 = �1 and �̃� = ��∏�−1�=1 (1 − ��), � ≥ 2, so that∑∞�=1 �̃� = 1.	en the ranked sequence p = (�1, �2, . . .) (i.e.,�1 ≥ �2 ≥ ⋅ ⋅ ⋅ ) of p̃ = (�̃1, �̃2, . . .) is said to be Poisson-
Dirichlet distributed, writing p ∼ PD(�, �), where � and � are
called discount and concentration parameter, respectively.(2) Let (��)�≥1 be a sequence of random variables inde-
pendent and identically distributed as a probabilitymeasure�
(called base distribution below), taking values in ameasurable
space (X,B), and p = (��)�≥1 ∼ PD(�, �). 	en the random
probability measure

� = ∞∑
�=1
����� (⋅) (1)

on (X,B) is referred to as a Poisson-Dirichlet process
(indexed by B) with parameters �, � and base distribution�(⋅) or, in symbol, writing � ∼ PD(�; �, �).

Clearly, for given p and (��)�≥1, one has a realization of
the Poisson-Dirichlet process� that is a discrete distribution
with mass �� at ��, � = 1, 2, . . . in the domain X. Pitman
and Yor [7] discussed in detail Poisson-Dirichlet processes
in which a number of well-known properties of Dirichlet
processes were generalized. Carlton [16] gave methods to
estimate the parameters (�, �)with completely observed data.
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Table 1: Data structure.

Groups 1 2 ⋅ ⋅ ⋅ � − � + 1 ⋅ ⋅ ⋅ 
 − 1 

1

�111 �112 ⋅ ⋅ ⋅ �11(�−�+1) ⋅ ⋅ ⋅ �11(�−1) �11��121 �122 ⋅ ⋅ ⋅ �12(�−�+1) ⋅ ⋅ ⋅ �12(�−1) �12�... ... ⋅ ⋅ ⋅ ... ⋅ ⋅ ⋅ ... ...�1�11 �1�12 ⋅ ⋅ ⋅ �1�1(�−�+1) ⋅ ⋅ ⋅ �1�1(�−1) �1�1�
2

�211 �212 ⋅ ⋅ ⋅ �21(�−�+1) ⋅ ⋅ ⋅ �21(�−1) �21��221 �222 ⋅ ⋅ ⋅ �22(�−�+1) ⋅ ⋅ ⋅ �22(�−1) �22�... ... ⋅ ⋅ ⋅ ... ⋅ ⋅ ⋅ ... ...�2�21 �2�22 ⋅ ⋅ ⋅ �2�2(�−�+1) ⋅ ⋅ ⋅ �2�2(�−1) �2�2�... ... ... ⋅ ⋅ ⋅ ... ⋅ ⋅ ⋅ ... ...
� − 
 + 1

�(�−�+1)11 �(�−�+1)12 ⋅ ⋅ ⋅ �(�−�+1)1(�−�+1) ⋅ ⋅ ⋅ �(�−�+1)1(�−1) �(�−�+1)1��(�−�+1)21 �(�−�+1)22 ⋅ ⋅ ⋅ �(�−�+1)2(�−�+1) ⋅ ⋅ ⋅ �(�−�+1)2(�−1) �(�−�+1)2�... ... ⋅ ⋅ ⋅ ... ⋅ ⋅ ⋅ ... ...�(�−�+1)�(�−�+1)1 �(�−�+1)�(�−�+1)2 ⋅ ⋅ ⋅ �(�−�+1)�(�−�+1)(�−�+1) ⋅ ⋅ ⋅ �(�−�+1)�(�−�+1)(�−1) �(�−�+1)�(�−�+1)�
� − 
 + 2

�(�−�+2)11 �(�−�+2)12 ⋅ ⋅ ⋅ �(�−�+2)1(�−�+1) ⋅ ⋅ ⋅ �(�−�+2)1(�−1)�(�−�+2)21 �(�−�+2)22 ⋅ ⋅ ⋅ �(�−�+2)2(�−�+1) ⋅ ⋅ ⋅ �(�−�+2)2(�−1)... ... ⋅ ⋅ ⋅ ... ⋅ ⋅ ⋅ ...�(�−�+2)�(�−�+2)1 �(�−�+2)�(�−�+2)2 ⋅ ⋅ ⋅ �(�−�+2)�(�−�+2)(�−�+1) ⋅ ⋅ ⋅ �(�−�+2)�(�−�+2)(�−1)... ... ... ⋅ ⋅ ⋅ ...
�

��11 ��12 ⋅ ⋅ ⋅ ��1(�−�+1)��21 ��22 ⋅ ⋅ ⋅ ��2(�−�+1)... ... ⋅ ⋅ ⋅ ...����1 ����2 ⋅ ⋅ ⋅ ����(�−�+1)... ... ...
� − 1

�(�−1)11 �(�−1)12�(�−1)21 �(�−1)22... ...�(�−1)��−11 �(�−1)��−12
�

��11��21...����1

Assumption 2.

(a) For every � = 1, 2, . . . , �, the data (X�1,X�2, . . . ,X���)
have a Poisson-Dirichlet structure: P� ∼ PD(�; �, �)
and, given P�, the data X�1,X�2, . . . ,X��� i.i.d.∼ P�.

(b) 	e random elements (X�1,X�2, . . . ,X��� ;P�) aremutu-
ally independent over � = 1, . . . , �.

(c) 	e probability measure � has a continuous density
function, denoted also by �(x), with respect to the 
-
dimensional Lebesgue measure on R

�.

	e intuition behind the assumption is as what follows.
In many situations, the data are recorded chronologically
so that the 
rst subscript of ���� re�ects the calendar time
when the data vector begins to be recorded and the third

subscript represents the calendar time that component is
recorded; hence the dependence between the data beginning
at a same calendar time and independent over calendar
times is reasonable. 	is structure is the typical case of loss
reserving in general insurance with individual data (see, e.g.,
Huang et al. [17, 18]).

Given the above data structure and model assumption,
the objective of this paper is to estimate the unknown
parameters � and � and the density �(x) of the base measure.

3. Estimation of Parameters (�, �)
	e unknown parameters (�, �) of the distribution of a
Poisson-Dirichlet process can generally be estimated by
means of maximum likelihood as shown in Section 3.2. To do
it under the data structure of Table 1, we 
rst introduce some
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necessary preliminary results for Poisson-Dirichlet processes
in Section 3.1

3.1. Preliminaries. In the following, write X
�
�� = (���1,���2, . . . , ����), 	 = 1, 2, . . . , 
, for the 
rst 	 components of

X�� and P
�
� and ��, respectively, for the marginal distributions

of P� and � on the 
rst 	-dimensional subspace R
� of R�.

	e following lemma shows that if the observations X�1,
X�2, . . . ,X��� have a Poisson-Dirichlet structure, then so are
their subvectors.

Lemma3. If the observationsX�1,X�2, . . . ,X��� | P� i.i.d.∼ P� and

P� ∼ ��(�; �, �), then, for every 	 = 1, 2, . . . , 
, given P
�
� , the

partial observations X
�
�1,X��2, . . . ,X���� i.i.d.∼ P

�
� and P

�
� ∼ ��(��;�, �).

Proof. 	e assertion that P
�
� ∼ PD(��; �, �) follows imme-

diately from the de
nition of PD(�; �, �). For any B
�-

measurable set ���, � = 1, 2, . . . , ��, we have
Pr (X��1 ∈ ��1, . . . ,X���� ∈ ���� | P�� )

=  [Pr (X��1 ∈ ��1, . . . ,X���� ∈ ���� | P�) | P�� ]
=  [ ��∏

�=1
�� (��� ×R

�−�) | P��] =
��∏
�=1

P
�
� (���) .

(2)

It indicates the desired result X
�
�1,X��2, . . . ,X���� | P�� i.i.d.∼ P

�
� .

	e next lemma shows that, with a Poisson-Dirichlet
process structure, observations of any two individuals are
identical with probability of 1 if and only if so are their corre-
sponding components. 	is provides an easy and convenient
way to judge whether any two observations are the same only
by their any (e.g., the 
rst) component.

Lemma 4. For any &, ' ∈ {1, 2, . . . , ��}, the equality���1 = ��1
implies that X

�
�� = X

�
� for all 	 = 1, 2, . . . , 
 almost surely.

Proof. We verify the case 	 = 2 and the proof applies for any	 > 2. By the de
nition of Poisson-Dirichlet process, we take
P� = ∑∞�=1 ����� with an i.i.d. sequence {��}�≥1 drawn from �.
Because � is continuous, then we have Pr(�� = �� for some�, 	 ∈ {1, 2, . . .}) = 0. 	erefore,

Pr (X1 = X2) =  [Pr (X1 = X2 | P�)]
=  [∞∑
�=1

Pr (X1 = X2 = �� | P�)]

=  [∞∑
�=1
�2(�)] .

(3)

Corollary 3 of Pitman and Yor [7] implies that

Pr (X1 = X2) =  [727 ] =  [7] = 1 − �1 + � , (4)

where 7 ∼ Beta(1 − �, � + �). On the other hand, because
Lemma 3 implies that �11 and �21 are two observations
from a PD structure with the parameters � and � and�1('1) = ∫ �('1, '2, . . . , '�)d'2 ⋅ ⋅ ⋅ d'�, similar discussion as
above implies that Pr(�11 = �21) = (1−�)/(1+�).	erefore,

Pr (X1 = X2 | �11 = �21) = Pr (X1 = X2)
Pr (�11 = �21) = 1. (5)

	e proof is thus completed.

3.2. Maximum Likelihood Estimation of the Unknown Param-
eters (�, �). For � = 1, 2, . . . , �, let :� be the number of
distinct observations among the �� individuals of the �th
group. Each distinct observation represents a species or

cluster in biological perspective [7]. Let <�� be the number of

those clusters, each of which appears 	 times in group �. For
example, if <�� = 3 for some 	 ∈ {1, 2, . . . , ��}, then there are

total 3 di�erent species, each of which appears just 	 times in
group �. Clearly,(1) there might exist many 	 ∈ {1, 2, ⋅ ⋅ ⋅ , ��} with <�� = 0,(2) generally, <�� ≥ 0 for 	 = 1, 2, . . . , �,

:� =
��∑
�=1
<��,

��∑
�=1
	<�� = ��.

(6)

Write

A
� = (<�1, <�2, . . . , <���) , � = 1, 2, . . . , �. (7)

Similar to Carlton [16] who usedA� to estimate the unknown
parameters by maximum likelihood method when individu-
als are completely observed, we here discuss theMLE of (�, �)
in terms of the random variables A�, � = 1, 2, . . . , �. Under
Assumption 2, the log-likelihood function for (�, �) given the
observations A� = a� in all the � groups is

ℓ (�, �) = �∑
�=1

log Pr (A� = a
�)

= �∑
�=1

log@(A�) − �∑
�=1

��−1∑
�=1

log (� + �)

+ �∑
�=1

��−1∑
�=1

log (� + ��)

+ �∑
�=1

��∑
�=2
A��
�−1∑
�=1

log (� − �) ,

(8)

where@(A�) = ��!/∏���=1(	!)���(A��)! is irrelevant to the param-

eter (�, �).



Mathematical Problems in Engineering 5

	e estimation is analyzed in three di�erent situations as
what has been done in Carlton [16]:

(i) � is unknown and � is known.
(ii) � is known and � is unknown.
(iii) Both � and � are unknown.

Remark 5. In the following, we assume that :� ̸= 1 and :� ̸=�� for some � = 1, 2, . . . , �. Note that, in group �,:� = 1means
that all observations are the same and :� = �� means that
all the observations are di�erent from one another. 	us, if:� = 1 or :� = �� for all � = 1, 2, . . . , �, the MLE will be
attained at the boundary of the parameter spaces. However,
the joint events {:� = ��, � = 1, 2, . . . , �} and {:� = 1, � =1, 2, . . . , �} will become increasingly unlikely as � = ∑��=1 ��
tends to in
nity; see Chapter 3 of Carlton [16].

3.2.1. Estimate � with Known �. In this case, note that

ℓ� (�, �) fl Dℓ (�, �)D� = �∑
�=1

��−1∑
�=1

�� + �� −
�∑
�=1

��∑
�=2
A��
�−1∑
�=1

1� − � (9)

is a decreasing function of � and ℓ�(�, �) → −∞ as � → 1.
	e equality ℓ�(�, �) = 0 has a unique solution if ℓ�(0, �) ≥ 0,
as stated in the theorem below.

�eorem 6. �eMLE �̂(�) of � is unique and

�̂ (�) > 0 if � < ∑��=1:� (:� − 1)2∑��=1 ∑���=2 A�� (ln (	 − 1) + I) ,
�̂ (�) = 0 otherwise,

(10)

where I is Euler’s constant.

Proof. Note that

ℓ� (0, �) = 1�
�∑
�=1

��−1∑
�=1
� − �∑
�=1

��∑
�=2
A��
�−1∑
�=1

1�
= 12�

�∑
�=1
:� (:� − 1)

− �∑
�=1

��∑
�=2
A�� (ln (	 − 1) + I) .

(11)

	e proof is thus completed.

3.2.2. Estimate � with Known �. If � = 0, then the Poisson-
Dirichlet process reduces to a Dirichlet process, for which
the estimation problem of � can be referred to Yang and Wu
[15]. We thus consider only the case of � ∈ (0, 1). By the log-
likelihood function ℓ(�, �) given in (8), we have

ℓ� (�, �) fl Dℓ (�, �)D� = − �∑
�=1

��−1∑
�=1

1� + � +
�∑
�=1

��−1∑
�=1

1� + �� . (12)

A condition under which the MLE is unique is presented in
the following theorem.

�eorem 7. Set ���� = max{:1, :2, . . . , :�} and ���� =
min{:1, :2, . . . , :�}. �en the solution to the equationℓ�(�, �) = 0 is unique if ���� − 2���� ≤ 0.
Proof. For given� ∈ (0, 1), notice that the variable for ℓ�(�, �)
is only �; we write

J (�) = ℓ� (�, �)
= �∑
�=1
[
[
��−1∑
�=1

( 1� + �� − 1� + �) −
��−1∑
�=��

1� + �]]
. (13)

Further recall that:� > 1 for � = 1, 2, . . . , �; it follows that
J (�) = �� + �

+ �∑
�=1
[
[
��−1∑
�=2

1� + �� −
��−1∑
�=1

1� + � −
��−1∑
�=��

1� + �]]
,

(14)

and consequently J(�) → ∞ as � → −� for the second
term is limited in the upper equation. With some algebraic
transformation to (13), we obtain

J (�) = �∑
�=1
[
[
(1 − �) ��−1∑

�=1

�(� + ��) (� + �) −
��−1∑
�=��

1� + �]]
, (15)

which implies that, for su�ciently large �,
J (�) ≤ �∑

�=1
[(:�)2 (1 − �) − (�� − :� − 1) �/2�2 ] < 0. (16)

	en, by the continuity of J(�), the Intermediate Value
	eorem implies that Q ∈ (−�,∞) such that J(Q) = 0.

For the uniqueness, it su�ces to show that J(�) < 0
whenever J�(�) ≥ 0. By (13), we have
J� (�) = �∑

�=1
[��−1∑
�=1

1
(� + �)2 −

��−1∑
�=1

1
(� + ��)2]

= �∑
�=1
[
[
(� − 1) ��−1∑

�=1

� (�� + � + 2�)
(� + �)2 (� + ��)2 +

��−1∑
�=��

1
(� + �)2]]

,
(17)

which implies that

J� (�) < �∑
�=1
[
[
��−1∑
�=1

� (� − 1)
(� + �)2 (� + ��) +

��−1∑
�=��

1
(� + �)2]]

. (18)

By the de
nition of �max and �min,

J� (�) < �∑
�=1
[
[

1� + :� − 1
��−1∑
�=1

2� (� − 1)(� + �) (� + ��)

+ 1� + :�
��−1∑
�=��

1(� + �)]]
< 2� + �max − 1

⋅ �∑
�=1

��−1∑
�=1

� (� − 1)(� + �) (� + ��) + 1� + �min

�∑
�=1

��−1∑
�=��

1(� + �) .

(19)
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	e inequality is obtained when J�(�) ≥ 0:
�∑
�=1

��−1∑
�=1

� (� − 1)(� + �) (� + ��) < � + �max − 12 (� + �min)
�∑
�=1

��−1∑
�=��

1(� + �) . (20)

With (15) and (20), we have

J (�) < (� − 1) + �max − 2�min2 (� + �min)
�∑
�=1

��−1∑
�=��

1(� + �) . (21)

When �max − 2�min ≤ 0, J(�) < 0. Particularly, there is a
unique solution when � = 1 for �max = �min = �1.

	e solution to ℓ�(�, �) = 0 is theMLE of � andwe denote
it by �̂mle. When � = 1, by Pitman and Yor [7], the PD(�, �)
distributions are mutually absolutely continuous when � ∈(0, 1) is 
xed and � is varying; hence �̂mle is not a consistent

estimator. Some simulation results of �̂mle are reported in
Section 5 when � > 1; theoretically � can be∞.

3.2.3. Estimate Both � and �. As discussed above, the MLEs
for � and � when both are unknown can be obtained by
solving the equations ℓ�(�, �) = ℓ�(�, �) = 0. To guarantee

the existence of the MLEs for � and �, we need (�̂, �̂) ofℓ�(�, �) = ℓ�(�, �) = 0 to be such that

detR(�, �) = ℓ��ℓ�� − ℓ2�� > 0, (22)

whereR(�, �) fl ( ℓ�� ℓ	�ℓ�	 ℓ		 ) is the Hessian matrix; that is,

ℓ�� fl Dℓ�D� = − �∑
�=1

��−1∑
�=1

�2
(� + ��)2 −

�∑
�=1

��∑
�=2
A��
�−1∑
�=1

1
(� − �)2 ,

ℓ�� fl Dℓ�D� = − �∑
�=1

��−1∑
�=1

�
(� + ��)2 =

Dℓ�D� š ℓ��,

ℓ�� fl Dℓ�D� = �∑
�=1

��−1∑
�=1

1
(� + �)2 −

�∑
�=1

��−1∑
�=1

1
(� + ��)2 .

(23)

3.2.4. Remarks. While we have so far proved the existence of
MLEs under the three di�erent cases, analytical expressions
of the estimates under none of the cases are given and, thus,
the MLEs can only be obtained with numerical methods, for
example, the Newton-Raphson iteration method or dichotomy
method.

In addition, by Carlton [16], a naive estimate of � in terms
of merely the observations in group � is �̂� = log:�/log ��,
which is consistent as �� tends to∞. Now with the � groups
of data, we can estimate � by

�̃ = 1�
�∑
�=1
�̂� = 1�

�∑
�=1

log:�
log ��

or �̂� = ∑��=1 log:�∑ log �� = �∑
�=1

log:�
log �� ⋅

log ��∑��=1 log ��
= �∑
�=1
S� ⋅ log:�log �� ,

(24)

where S� = log ��/∑��=1 log ��. It is then straightforward from
Lemma 5.2 in Carlton [16] that both �̃ and �̂� are strongly
consistent with the true value of � as max1≤�≤��� →∞.

4. The Estimation of Base Distribution

In this section, we estimate the base distribution � of
PD(�; �, �) under the monotone missing data structure. In
Section 4.1, we pick up a set of i.i.d. observations from � and
then estimate the density of � by kernel estimation method.
With the i.i.d. observations, we can estimate the base density� by multivariate kernel density method that is similar to the
one used by Yang and Wu [15] who studied the multivariate
density estimation in a Dirichlet process prior under the
same missing mechanism and showed that their estimate is
superior to Titterington andMill [22] under asymptoticmean
integrated squared errors (AMISE) criterion (note that the
classical versions of [22] for complete data can be found in,
e.g., [23, 24]).

4.1. Deduce i.i.d. Observations from �. Denote by Z�1,
Z�2, . . . ,Z�,�� the distinct observations of X�1,X�2, . . . ,X�,�� .
	e following theorem shows that, given:�, Z�1,Z�2, . . . ,Z�,��
are independent and identically �('1, '2, . . . , '�)-distributed—
note that, by Lemmas 3 and 4, under the structure of this
model, for every group �, though the data are partly missing,
the value of :� can be easily worked out.

�eorem 8. Suppose that �('1, '2, . . . , '�) is continuous; then,
given :�, the distinct observations Z�1, Z�2, . . . ,Z�,�� are i.i.d.
with distribution �('1, '2, . . . , '�).
Proof. 	e proof can be found in	eorem 2.5 in Korwar and
Hollander [25].

By 	eorem 8, there are :� i.i.d. observations in group �
and hence the number of i.i.d. observations in the whole �
groups is : = ∑��=1:�. Note that the observed part of the :
i.i.d. observations, namely,

{(V��1, V��2, . . . , V��,(�−�)∧�) : � = 1, 2, . . . , :�} , (25)

is still with a monotone missing structure. For every 	 =1, 2, . . . , 
, write Z��� = (V��1, V��2, . . . , V���) for the subvector
of the 
rst 	 components of Z�� from individual (�, �), � =1, 2, . . . , :�, and

Y� = {Z��� : 1 ≤ \ ≤ :�, 1 ≤ � ≤ � − 	 + 1} (26)

for the maximal set of the subvectors Z
�
��, � = 1, 2 . . . , :�,� = 1, 2, . . . , �, which are completely observed. Obviously, Y�

is made of all the observations with no missing components
and Y1 is the set of the 
rst components of all Z�� in the �
groups. Similarly, de
ne

Ỹ� = {Z��� : 1 ≤ \ ≤ :�, 1 ≤ � ≤ � − 	} . (27)

Obviously, Ỹ� ⊂ Y�, for all 	.
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4.2. Kernel Density Estimation. 	ere are two methods to
estimate the joint density � of the random vector Z��,
proposed byYang andWu [15] andTitterington andMill [22],
respectively. 	ey are described below.

(1) Yang and Wu’s Method. Let {S�, 	 = 1, 2, . . . , 
} be
a sequence of consistent kernel functions—a terminology
used in Yang and Wu [15] to indicate that S� are density

functions on space R
� satisfying S�−1('1, '2, . . . , '�−1) =∫S�('1, '2, . . . , '�−1, '�)d'� for 	 = 2, . . . , 
. 	en, under the

monotone missing data structure, �� can be estimated in two
di�erent ways: (i) using the consistent property of kernelS�+1
and the data Y�+1 and (ii) using the ordinary kernel density

estimation with data Y� \ Ỹ�. Formally, the two estimates
(denoted by �̂�1 and �̂�2, resp.) are given by

�̂�1 ('1, '2, . . . , '�) = ∫ 1
ℎ�+1�+1∑�−��=1 :�

�−�∑
�=1

��∑
�=1
S�+1 ('1 − V��1ℎ�+1 , . . . , '�+1 − V��(�+1)ℎ�+1 ) d'�+1

= 1
ℎ��+1∑�−��=1 :�

�−�∑
�=1

��∑
�=1
S� ('1 − V��1ℎ�+1 , '2 − V��2ℎ�+1 , . . . , '� − V���ℎ�+1 ) ,

�̂�2 ('1, . . . , '�) = 1
ℎ��:�−�+1

��−�+1∑
�=1

S� ('1 − V(�−�+1)�1ℎ� , . . . , '� − V(�−�+1)��ℎ� ) .

(28)

	erefore, the density �('1, '2, . . . , '�) for 	 = 1, 2, . . . , 
−1 can
be estimated by

�̂ ('1, '2, . . . , '�)
= ∑�−��=1 :��̂�1 ('1, . . . , '�) + :�−�+1�̂�2 ('1, . . . , '�)

∑�−�+1�=1 :� . (29)

And �('1, '2, . . . , '�) can be estimated by �̂�2('1, '2, . . . , '�).
Furthermore, the consistence of S� also indicates that
�̂ ('� | '1, '2, . . . , '�−1) = �̂ ('1, '2, . . . , '�)

∫ �̂ ('1, '2, . . . , '�) d'�
for 	 = 2, 3, . . . , 
.

(30)

By a decomposition of the joint density � as products
of a series of conditional densities, that is, �('1, '2, . . . , '�) =�('1)∏��=1�('� | '1, '2, . . . , '�−1), one can estimate the density� by

�̂� ('1, '2, . . . , '�) = �̂ ('1) �∏
�=2
�̂ ('� | '1, '2, . . . , '�−1) , (31)

where the superscript “\” indicates that the estimate is
obtained by the monotone missing data structure and �̂('1)
and �̂('� | '1, '2, . . . , '�−1) are, respectively, proper estimates
for �('1) and �('� | '1, '2, . . . , '�−1).
(2) Titterington andMill’s Method. For a vectorX = (Xo,Xm),
Titterington and Mill [22] used ∫:(⋅ | (xo, xm), h)ê(xm |
xo)dxm instead of the usual kernel:(⋅ | xo) when estimating
the density of Xo, where Xo and Xm are, respectively, the

observed part and missing part of X and ê(xm | xo) is a
probability density function to estimate true e(xm | xo).

With the above idea, data Y�, and group (�−	+2), another
estimate for �� is given by

�̂ ('1, '2, . . . , '�)
= ∑�−�+1�=1 :��̂�3 ('1, '2, . . . , '�) + :�−�+2�̂�4 ('1, '2, . . . , '�)

∑�−�+2�=1 :� , (32)

where

�̂�3 ('1, '2, . . . , '�) = 1
ℎ��∑�−�+1�=1 :�

⋅ �−�+1∑
�=1

��∑
�=1
S� ('1 − V��1ℎ� , '2 − V��2ℎ� , . . . , '� − V���ℎ� ) ,

�̂�4 ('1, '2, . . . , '�) = 1
ℎ��+1:�−�+2

⋅ ��−�+2∑
�=1

∫S�+1 ('1 − V(�−�+2)�1ℎ�+1 , . . . ,
'�+1 − f(�−�+2)�(�+1)ℎ�+1 ) ê� (f(�−�+2)�(�+1) | f(�−�+2)�1,
f(�−�+2)�2, . . . , f(�−�+2)��) df(�−�+2)�(�+1).

(33)

We should note that ê�('�+1 | '1, '2, . . . , '�) is an appropriate
estimate of the density of V(�−�+2)�(�+1) given (V(�−�+2)�1,V(�−�+2)�2, . . . , V(�−�+2)��).
5. Simulation

In this section, we report a small numerical simulation
regarding the performance of the estimates of� and � given in
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Table 2: Performance of estimates for � with � = 10.
Size �̂ Bias SD MSE

0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

Level 1
�̂mle 0.091 0.001 0.078 0.043 0.014 0.036 0.010 0.000 0.007�̂� 0.530 0.507 0.150 0.021 0.004 0.036 0.282 0.257 0.024

Level 2
�̂
mle

0.040 0.008 −0.001 0.005 0.005 0.018 0.002 0.000 0.000�̂� 0.518 0.391 0.104 0.002 0.003 0.024 0.269 0.153 0.011

Level 3
�̂mle 0.042 0.009 −0.001 0.006 0.005 0.004 0.002 0.000 0.090�̂� 0.525 0.397 0.276 0.003 0.002 0.003 0.276 0.157 0.331

Section 3.	e simulation was proceeded under the following
settings:

(i) � = 10 and because the estimates depend only on the
observations of :�s which can be determined by the

rst component, we set 
 = 1 for convenience.

(ii) 	e standard normal distribution @(0, 1) was taken
as the base measure �.

(iii) 	e sizes of individuals (�1, �2, . . . , �10) took three
levels of values:

level 1: �1 = 50, �2 = 51, . . . , �9 = 58, �10 = 59,
level 2: �1 = 500, �2 = 510, . . . , �9 = 580, �10 = 590,
level 3: �1 = 100, �2 = 200, . . . , �9 = 900, �10 = 1000.

	e procedure of the simulation under those settings is
simply described as follows.

Algorithm 9.

Step 1. Generate the data ��1, ��2, . . . , ���� for every group� = 1, 2, . . . , � by means of a generalized Polya urn model as
follows:

(i) ��1 | �, �, � ∼ �(⋅) = @(0, 1).
(ii) ���, 	 = 2, 3, . . . , ��, is generated by the prediction

rule

��(�+1) | ��1, . . . , ���, �, �, �
∼ � + �:��� + 	 � (⋅) + 1� + 	

���∑
�=1
(\� − �) ���
 (⋅) ,

(34)

where V�� is the �th distinct value among ��1, . . . , ���,\� = #{i : ��� = V��, 1 ≤ i ≤ 	} is the number of
occurrences of V��, and :�� is the number of distinct
values of��1, . . . , ���.

Step 2. Compute the values of :� and A�� from the data

generated in Step 1.

Step 3. Compute the estimates of �, � with Newton-Raphson
method.

	e simulation compared the estimates �̂mle and �̂� of �
for known � in which we set � = 10 and � took three values:
0.1, 0.3, and 0.5; the casewhere� > 0.5 can simply be obtained

Table 3: Performance of the estimate of � with � = 0.5.
Sample size

�
0.1 1 5 10

Bias

Level 1 −0.018 0.067 0.107 0.047

Level 2 0.019 0.052 0.022 0.081

Level 3 0.012 0.012 0.114 0.032

SD

Level 1 0.230 0.429 0.971 1.653

Level 2 0.210 0.369 0.746 1.105

Level 3 0.202 0.369 0.779 1.187

MSE

Level 1 0.053 0.189 0.954 2.821

Level 2 0.044 0.138 0.556 1.228

Level 3 0.041 0.137 0.620 1.410

by replacing � with 1 − �. For each combination of the
parameters, the simulation was proceeded 1000 replications.
	e performances of the two estimates are shown in Table 2,
from which it is clearly shown that the simulated biases of�̂mle are all smaller than those of �̂�. Although the simulated
standard deviations of �̂� are stable and smaller in three levels
under three di�erent values, theMSEs of �̂mle are smaller than
those of �̂�. 	at is, �̂mle performs better than �̂� under the
MSE criterion.

Next, the simulation studied the performance of the
estimates of � with � = 0.5 at four true values: � = 0.1, 1, 5,
and 10. 	e simulation was also proceeded 1000 replications
for each combination of the parameters. 	e simulation
results are summarized in Table 3, from which we can see
that the estimates �̂mle generally performed better with the
increasing of the sample size.

Finally, we considered theMLEs for � and �when neither
of the parameters is known.	e true values of the parameters
and the performance of the estimates of the 1000 replications
are shown in Table 4. 	e simulation used the Newton-
Raphson iteration method.

Favaro et al. [10] adopted an empirical Bayes procedure

for estimating (�, �), writing (�̂, �̂)�, when the data is not
divided into groups. 	ey investigated the issue of pre-
diction within species sampling problems and applications

to genomics based on the estimates (�̂, �̂)� when both
parameters are unknown. Favaro et al. [10] also studied the
asymptotic behavior of the number of new species condition-
ally on the observed sample and derived asymptotic highest
posterior density intervals for the estimates of their interest.

	e comparisons of simulation results between (�̂, �̂)� and
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Table 4: Performance of the estimates for (�, �) under level 1.
(�, �) (�̂, �̂) Bias SD MSEs

(0.1, 10)
(�̂, �̂)mle (0.064, −1.209) (0.095, 2.098) (0.013, 5.864)(�̂, �̂)� (0.153, −3.762) (0.380, 3.644) (0.038, 27.429)

(0.2, 4)
(�̂, �̂)mle (0.171, −1.621) (0.100, 1.193) (0.039, 4.052)(�̂, �̂)� (0.207, −2.200) (0.106, 1.757) (0.054, 7.925)

(0.25, 6)
(�̂, �̂)mle (0.049, −0.663) (0.109, 2.080) (0.014, 4.765)(�̂, �̂)� (0.105, −1.637) (0.118, 3.457) (0.025, 14.626)

(0.3, 7)
(�̂, �̂) (0.011, −0.094) (0.100, 2.234) (0.010, 5.001)(�̂, �̂)� (0.039, −0.121) (0.0.117, 4.852) (0.015, 23.557)

(0.4, 8)
(�̂, �̂)mle (−0.009, 0.429) (0.095, 2.867) (0.009, 8.405)(�̂, �̂)� (−0.020, 1.083) (0.103, 5.242) (0.011, 28.653)

(0.5, 5)
(�̂, �̂)mle (−0.001, 0.263) (0.077, 2.160) (0.006, 4.734)(�̂, �̂)� (−0.008, 1.434) (0.084, 4.528) (0.007, 22.562)

theMLEs which are under the multigroups data structure are
presented in Table 4 with the total size of individuals in the
perspective of bias, SD, and MSEs. From Table 4, we can see

that theMSE of �̂ is very small and theMSE of �̂ is a bit bigger.
Apparently, the simulation shows that theMLEs generally are

better than (�̂, �̂)� of single group data under the critera of
bias, SD, and MSEs.

6. Conclusion

In this paper, we studied the estimates of the unknown
parameters as well as the density of the base measure in
Poisson-Dirichlet process priors under monotonically miss-
ing data. 	e parameters are estimated by the method of
MLEs and a set of simulations shows that the estimates
perform well.
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