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In this paper, a generalized class of estimators for the estimation of population median are proposed under simple random
sampling without replacement (SRSWOR) through robust measures of the auxiliary variable. Three robust measures, decile mean,
Hodges-Lehmann estimator, and trimean of an auxiliary variable, are used. Mathematical properties of the proposed estimators
such as bias, mean squared error (MSE), and minimum MSE are derived up to first order of approximation. We considered
various real-life datasets and a simulation study to check the potentiality of the proposed estimators over the competitors.
Robustness is also examined through a real dataset. Based on the fascinating results, the researchers are encouraged to use the

proposed estimators for population median under SRSWOR.

1. Introduction

Extensive work has been done on the estimation of the
population mean, proportion, variance, regression coeffi-
cient, and so forth; but very little attention has been made to
propose the efficient estimators of the median. In many
situations, researchers are often interested in dealing with
variables such as income, expenditure, taxes, consumption,
and production; and the latter variables have highly skewed
distributions. In such situations, the median is considerably
a more appropriate measure of location than the mean. The
problem of estimation of median under simple random
sampling scheme has been discussed by Gross [1], Sedransk
and Meyer [2], and Smith and Sedransk [3]. Kuk and Mak
[4] were the first authors to investigate the estimation of the
median using auxiliary information. After Kuk and Mak’s
[4] estimator, Singh et al. [5], Aladag and Cingi [6], Solanki
and Singh [7], Shabbir and Gupta [8], Baig et al. [9], and
Shabbir et al. [10] have developed different estimators for
estimating finite population median based on the known

conventional measures of the auxiliary variable under dif-
ferent sampling schemes. A brief explanation of Kuk and
Mak’s [4] estimator is as described as follows.

Let Yand X be the study and the auxiliary variables
selected from a finite population © ={0,,0,,0;,...,
Oy} of size “N” under simple random sampling without
replacement (SRSWOR) subject to the constraint n< N.
Further let Y;andX;, i= (1,2,...,N)&y;andx;, i =
(1,2,...,n) be the values of the i th units of the population
and sample, respectively. Let My and My be the population
median of the study and auxiliary variables with the
probability density functions given by fy (My)
and fyx(My), respectively. We further assume that
fy(My)and fyx (M) are positive.

Suppose that y )<y <yE <--- <y are the y
values of sample units in ascending order; furthermore, let s
be the integer such that Y <My <Y ,,) and p = s/n are
the proportion of Y values in the sample which are less than
or equal to My. Kuk and Mak [4] considered a two-way
classification (p;;) as given in Table 1.
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TaBLE 1: Matrix of proportions.
Y<My Y >My Total
X <My bPu P2 P
X>My P Pn P2
Total J 28 pa. 1

Suppose that My and M are the sample estimators of
Myand My; then the correlation coefficient between
(My,My) is P(ﬁy,&x)(or)Pf (or)p = 4p,; — 1 ranging from
-1 to +1 as p,; increases from 0 to 0.5, where p;; is the
proportion of units in the population with
X <My andY < My. Gross [1] proved that My, is consistent
and asymptotically normally distributed with mean M and
variance

My =(1-f)(an) ' [fy (My)]% ey

where f = (n/N) is the sampling fraction.

Efficiency of the ratio, product, and regression type
estimators are ambiguous in the presence of the extreme
values/outlier(s) in the dataset. In our present study, the
problem under consideration is to estimate the median for
finite population and suggest some generalized classes of
estimators by utilizing known robust measures of an aux-
iliary variable under SRSWOR. The novelty of this work is as
follows:

(i) Robust measures (i.e., decile mean, Hodg-
es-Lehmann estimator, and trimean) of an auxiliary
variable are utilized for the first time to investigate
the progressive estimation of the population median

(ii) A variety of estimators can be generated through the
proposed generalized estimator

(iii) Robustness study is examined to check the per-
formance of the proposed generalized estimator in
the presence of outlier

The following relative error terms and notations are used
to obtain the mathematical properties such as bias, mean
squared error (MSE), and minimum MSE of various esti-
mators: e, = ((My — My)IMy),e; = ((My — My)/My)
such that E(ey) = E(e;) = 0.

E(e2) = ACy
E(e}) = AChyx. (2)
E(ese;) = AChyx = PCaryCixs
where

1
Cyy = ————— be the population coefficient of variation of Y,
MO My fy (My)

1
Cpx = —————— be the population coefficient of variation of X,
MY My fx (Mx)

1/1 1 . . .
=1 (; - N)be the finite population correction (f.p.c)factor.
(3)
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The rest of the article is organized in the following way.
Section 2 gives comprehensive details of existing estimators
for the population median. Section 3 proposes generalized
classes of estimators for estimating population median
using robust measures of an auxiliary variable. Bias, mean
squared error (MSE), and minimum MSE of generalized
classes of estimators are derived up to the first degree of
approximation in the same section. Four real-life datasets
and a simulation study are performed in Section 4 to check
the potential of the new estimators as compared to the
existing ones. Robustness of the proposed estimators is
evaluated by carrying out a real-life dataset in Section 5.
Section 6 contains the concluding remarks and some
recommendations.

2. Existing Median Estimators

The major drawback of all the suggested estimators for
estimating population median is that they are based on the
usual conventional measures of an auxiliary variable. In this
section, we discuss the usual and well-known estimators for
estimating population median under SRSWOR as suggested
by different authors.

Kuk and Mak [4] suggested a ratio-type estimator by
assuming the known median of the X variable.

My = MY<AA4X> (4)
X

The expression for mean square error of M estimator is
given as

MSE(Mp) = AMy(Chyy + Chrx = 2Cuyx). (5)

The exponential ratio-type estimator for estimating

median is given as
MX;MX) (6)

Mgy = My ex _
EX Y p<MX+MX

The MSE of My up to the first degree of approximation
is given by

_ 1
MSE(Mpy ) = AM@(C?MY + chdx - CMYX>. (7)

Singh [11] developed an unbiased difference estimator
which is given by

Mp, = My +d(My - My), (8)

where d is an unknown constant whose value needs to be
determined.

Minimum MSE of M, up to the first degree of ap-
proximation is as follows:

MSE(Mp)_. =AMy Cyy(1-p%). (9)

min

Remark 1. The MSE of M, is always smaller than the MSE
of My, Myand Mgy if p>0, (Cyrx — pCarx)* >0and (0.5
Curx — PCux)* >0, respectively.
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Rao [12] and Gupta et al. [13], respectively, suggested
three difference types of estimators for estimating median as

Mp, = d\My +d,(My - My),

_ ~ ~ M

Mp, ={d,My +d,(My - MX)}<M—X>, (10)
X

MX _MX>

Mp; = {dSMY + dé(MX - MX)}<M Y
X X

where d,,d,,d;,d,,ds, andd, are unknown constants.

The minimum MSE of Mp, at optimum values of

dl(opt) = (1/(1 +AC?\4Y(1 _Pz))) anddz(opt) = (My/Mx)

((PCry/Crix) (L +ACE (1 = p?))) is given by

G (1-4)

MSE(MDI )min - W(I_PZ)

(11)

The minimum MSE of Mp, at optimum values of
d3(0pt) = (1/(1 = AC%x + ACE,y (1= p%))) andd4(0pt) =
(My/Mx) (1 +d; oy (PCriy/Cpry) — 2) is given by

2 2 2

MSE(,3),,, = [ L2 A=) ]

(1-AChx) +ACiy(1-p%)
(12)

The minimum MSE of Mp, at optimum values of
ds(opy = ((1 = (AC3x/5))/1 + ACy (1 = p?)) and dig (o) =

(My/Mx){(1/2) + dsop (pCry/Carx) — 1)} s given by

MSE(3),, = 6

Shabbir and Gupta [8] suggested a generalized difference
type estimator for the estimation of median as

Mg = [d,My +dg(My - My)]

<aMX +b>al “za(MX_MX)
[\ —=——=] exp — ,
aMy +b a{(y—l)MX+MX}+2b

(14)

where d; and dg are unknown constants whose values need
to be determined, aandb are the known population pa-
rameters, and «,, @, and y are the scalar quantities.

MSE( Mg )

n

2
MY

G (1) ~ (UNChyy ~ Py Cian(1 )

MGy (1 =) ~ (U6ONCliy ~ N Cy Chux(1 - ") (13)
(1-AChux) +AC3y (1-47) '

Remark 2. By substitution of the scalar quantities as
a, =b=0,a, =y =a =1, equation (14) becomes

_ _ _ M
Mg = [d,My +dg(My - My)] [exp(TX— 1)] (15)
Mx
The minimum MSE of Mg; at optimum values of
dyopy = (1= (112)AC3 )/ (1 +AC}y (1-p%))and

dg(opyy = (My/Myx)[1 +d;(op0{(PCory/Crax) = 2}] is given
by

(16)

min

3. Proposed Generalized Estimator

One eminent disadvantage of existing estimators/class of
estimators is that they are typically based on conventional
measures. Efficiency of the estimators is uncertain in the
occurrence of the extreme values in the dataset. In this
section, we define a generalized class of estimators for the
estimation of population median using robust measures of
an auxiliary variable with the linear combination of non-
conventional measures: quartile deviation, midrange,

_ yMy +0\"
ria = (Gativs) ol

142 (1- )

interquartile range, and quartile average. We included three
robust measures: decile mean suggested by Rana et al. [14],
Hodges-Lehmann estimator suggested by Hettmansperger
and McKean [15], and the trimean suggested by Wang et al.
[16]. For more details of these robust measures, see the
works of Irfan et al. [17, 18].

A generalized estimator for the estimation of population
median is

MX_M)() " m(V/Mx+5>a4 :| (17)
My + My NyMy +6 ’



where m, and m, are suitably chosen constants, and «; (i =
3and4) takes on the values 1,-1,2,-2 for designing new
estimators. Note that y and § may be any constant values or
functions of the known robust measures as well as non-
conventional measures associated with X variable.

Remark 3. Robust measures related to X are the following:

Trimean: T); = (Q; +2Q, + Q;)/4

Hodges-Lehmann:
H, = Median((xj +x,)/2), 1<j<k<N

Decile mean: Dy, = (¥, D;/9)

Remark 4. The nonconventional measures (i.e., interquartile
range, midrange, quartile average, and quartile deviation) of
an auxiliary variable can be defined as follows:

Interquartile range: Qz = Q; — Q,
Midrange: My = ((x 3 + x(x))/2)
Quartile average: Q, = (Q; + Q,)/2
Quartile deviation: Qp, = ((Q; — Q,)/2)

Remark 5. By putting different values of &; (i = 3and 4) in
equation (17), we get the following families of estimators:

(i) Put a; = 1and oy = 2; proposed family of estima-
tors reduces to

o _ yMy + 6 My - My
w5 (o))}
oL (M4 8Y
Ny, +06 '

(ii) Put a3 = —land a, = —1; proposed family of esti-
mators reduces to

_ M, + 6 M, -M
i@ Y[{ml(V’MX + 8)6XP(MX + Mx>}
yMy + 98
+{m2(‘/’MX + 5)}]

(iii) Put a3 = —land &y = —2; proposed family of esti-
mators reduces to

iy = o 201 = )|
yMy +6 My + My

()

(18)

(19)

(20)
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(iv) Put a3 = 2and a, = 2; proposed family of estima-
tors reduces to

~ My +0\ M, -M
Tid) = My|: ml(%) eXp(XiAX>
YyMx + My + My

G

(v) Put a; = —2and o, = —1; proposed family of esti-
mators reduces to

2 ~
15, - M[ m(W@) p<MM)
yMy + 6 My + My

EE!

(21)

(22)

Remark 6. When we put robust measures of auxiliary
variable with the linear combination of median, quartile
deviation, midrange, interquartile range, and quartile av-
erage of an auxiliary variable in equation (17), we obtain
different series of estimators such as Tf,,T{ ),
T {14y Ti(q)and T7 ;). Some members of the class of estimator
T7 4 are presented in Table 2. Placing the same values of y
anq d in T?( d),T?( d),Tﬁd) and T;@( Qy We obtain a number of
estimators.

Remark 7. Putting appropriate constants or known con-
ventional parameters of the auxiliary variable in place of y
and ¢ in equation (17), we can get many optimal estimators.
Conventional parameters associated with auxiliary variable
X are variance, standard deviation, coefficient of variation,
coefficient of skewness, coefficient of kurtosis, coeflicient of
correlation, and so forth.

3.1. Bias, MSE, and Minimum MSE of T; 4. The suggested
generalized class of estimators T}, in terms of e;ande, is
expressed as follows:

vMye, \®
Ti(d) :My(l +30)|:{m1<1 +WX+16)

{5009 bl ) )

(23)

After some simplification of equation (23), we have
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("0 + X @) 170 + X" a@) ) @i} + { (I + X 0) 1 - X)) dxe (YO + X @) /(0 + X)) 'wi] Ay = P L 4l O ulel
H((Ya + X I0) 1 + X WD) T} + { (KW + X0 1 - X)) e (M + X 90) /(M + X 0) ) wil] Ay = P L 1 arel &lo}
(Y + X)) 18 + XN ) Gt + { (S + X0) 15 = X)) dxe (V% + X)) 10V + X)) '] Ay = P01 01 "q 74
(L + X W) 1L+ X)) s + { (I + X0 1 = X)) dxo (VL + XV a) 1OV L + X)) 'wil A = P8 6 wp tel
(YT + X TH) /(YA + X TH)) @) + (v + X)) /W - X)) dxe (Y + YW TH) /(P + YW H) ) 'wi] A = P8 8 W 5
(= + X)) (CTH + X)) G + {0+ X0 1 = X)) dxe (TH + X)) 1(TH + X)) w4y = P4 L H iy
(O + XWH) /D + XWTH)) Ttk + { (K + X0 1 = X)) dxo (0 + X THD) /(0 + X)) 'wl] A = V3 9 o) H
{((TH + X 0) ((TH + XY 0)) Gt + { (K + X)) 15 = X)) dxo (TH + XY 0) 1(TH + X YD) i Ay = P8 S H o)
H((H + X D) /CTH + XN - 1)) s + {0+ X)) 15 = X)) dxe (TH + XV ) 1(TH + X L)) w4 = Vi ¥ g i
(L + YW THD) /YL + X TH) ) G} + { (I + X0 /W = X)) dxe (VL + X TH) 1%L+ X)) w] A = P8 ¢ "y H
(VL + XD 1OV + X)) Gt + L (I + X0 /5 = X)) dxe (VL + X)) 10V L+ X)) 'wa] A = P z "y 074
(L + XIWY0) /L + XIWYD) ) s + { (I + X)) 1 = X)) dxo (VL + XY 0) (VL + XY 0) ) uad] Ay = P, I "y o)
[{((@ + Xrh) /(9 + X k) ) Gush + (X + XI0) /(X = X)) dxa (@ + Xparh) /(9 + X k) ) 'wa] Ay = P 1, sorewmsy : 9 h

P11 10 sIpqUaW dWOG 17 ATAV],
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1 2
m1<1 + e 05 +Eoc3 (o — 1)(961)2>exp(—621+ 62) N
Ti(d) = My(]. + 60)

(24)
mz(l —dejay + %oc4 (ag+1) (961)2)
where 9 = (yMy/(yMx + 9)).

Subtracting My from both sides of equation (24), we get
2 2 2 2
e, 3e e] az(a;—1)9e 1
Ty — My = My[ml(l —71+?1+0c3961 —a 9L+ (% 3 )9y + ey =220l + a39e0e1)

1
+ m2<1 - e, 5% (ag+1)9%€] + ey - oc4SeOel> - 1].

(25)
The bias of the proposed estimators, T} ), is defined as Taking expectations on both sides of equation (25), we
Bias ( Ti(d)) = ( Tion - MY). (26) get the bias of generalized class of estimators T ;)
ACx (3 1
ml(l + ZMX (4_1 — a9+ ay(a; — 1)92> + /\pCMYCMX<oc39 - E))
2, 2
+m2(1 LY (ag + 1)9°AC

> - “49/\PCMYCMX) -1
The MSE of the proposed estimators, T} ), is defined as

MSE(T; () = E(Ti) ~ My)’

Squaring both sides of equation (25), we have
(28)

2 e, 3é? e oy (a;—1)9%? 1 2
(Ti(d) _MY) = M%[""f‘ll ‘51+?1+ asde; —“3951+73( } > )9 e +e —Eeoe1 + a3 9eye;
2 oy (ay +1)%ef ’
+m541— ey t e a,depe; + +1
2 2 2 2
e e e] os(az—1)9%
+ 2m1m2(1 - 51+ ?1+ as9e, — 0c39?1+ % e 5e0er + a39eye,
(29)
ay(a, +1)9%
| 1-9e a4 + — 5 te- a,deye,
2 2 2 2
e7 oy(ay;—1)9%e 1
- 2m<l - 51+ ?1+ a3 e, — a3951+ % + e = ey + oc3SeOel>

o, (o, +1)9%?
—2”’12(1—9@10644-M

5 + e, — a,deqe, )]
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Taking expectations on both sides of equation (29), we
get the MSE of proposed estimators up to the first order of
approximation as

MSE( Ty(g)) = My [1+m{A, +myA, + 2m myA; - 2m, A, - 2my A,
(30)

A, =[1+MChyy + 9°Cy (205 + &) = 40,9pC oy xCopy }],

where

1+ MChyy + Chrx (1 + 2059 — 239 = 20,9) = 2pCy Cprx (1 - 2039)} ],

Ay = 1+A<IC§VIY—pCMYCMX(ZS(oc4—oc3)+1)—C§\4X<¢x3a492—8+ SR 3 2043(043—1)192)]»],

2
Cux
2

1
A =14 Sy (0, 4+ 1)PACh - oc49/1pCMYCMX}.

Partially differentiating equation (30) with respect to
m, andm, and equating them to zero, we get the optimal
values of m, andm, as follows:

(ot = (A4, - AsAs)
1(opt) — 2\ °
i (A1A2 - A3)
(32)
_ (A4 - A3A))

mz( t) = .
(A4, - 4))
Placing these optimal values in equation (30), we ob-
tained the minimum MSE as given by
(A, A7 + A AS - 24,A,A;)
(A1A2 - Ai)

MSE( T; (), = My [1-

min

(33)

4. Application

In this section, comparison of the T}, estimators with other
existing estimators under study is given by using real-life
application and simulated datasets.

4.1. Real-Life Application. We evaluated the performance of
proposed class of estimators as compared to other com-
peting estimators in terms of the MSE. For this purpose, we
selected four real-life datasets:

Population 1: source: Singh [11].

Y = number of fish caught in the year 1995
X =number of fish caught by the marine recreation
fishermen in the previous year 1994.

[
[
|
A, = {1 #2pCy1y o (2,9 —%) +A—<Z— 0,9+ a (a; - 1)92)},
{

(31)

Population 2: source: Koyuncu and Kadilar [19].

Y = number of teacher’s staff
X = number of enrolled students

Population 3: source: Singh [11].

Y = number of fish caught in the year 1995
X =number of fish caught by the marine recreation
fishermen in the previous year 1993.

Population 4: source: Murthy [20].

Y = number of households
X = areain square miles

Table 3 presents the detailed descriptions of each of the
abovementioned populations.

We calculated the MSE and minimum MSE of all the
estimators, that is, My, Myy, Mp, My, Mpy, Mps, Mg,
T3y Ty Titay Tilgy and T3, for populations 1-4. Ex-
pressions for the MSE of all the existing and proposed es-
timators are given in Sections 2 and 3 in detail. All empirical
results are summarized in Tables 4-9 and the important
deductions are as follows:

(i) Mg performs better than all existing estimators,
that is, Mg, My, Mp, My, Mp,y, My,

(ii) All the proposed estimators, that is, T§ ), 7,
Ti‘g(> d),T?( 2 and T?( ay have minimum MSE as com-
pared to all existing estimators

(iii) A deep insight of columns of T7; provides the least
MSE among all other classes of proposed estimators

4.2. Simulation Study. A Monte Carlo simulation study is
conducted to assess the performance of the proposed
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TaBLE 3: Data statistics of four different populations.

Values Population 1 Population 2 Population 3 Population 4
N 69 923 69 128

n 17 180 17 45
My 2068 171 2068 686
My 2011 4123 2307 4.715
fy (My) 0.00014 0.002676 0.00014 0.00092
fX (My) 0.00014 0.00009409 0.00014 0.1154
p 0.151 0.855 0.314 0.468
B 2.60 3.94 2.67 0.89
Baxo) 7.61 18.72 7.61 0.40
My 19019.5 89530 17030 8.270
Qp 1968 4141.5 1975 2.309
Qs 2956 5870.5 3002 5.316
Qr 3936 8283 3936 4.618
T 4043 7726 3777 5.385
H; 3004 5502 2935 5.045
Dy, 3853.4 7348.3 3615.2 5.378

TaBLE 4: MSE and minimum MSE of the existing estimators.

Estimators Population 1 Population 2 Population 3 Population 4
]\7IR 988372.76 58.627 746752.56 5361.578
1\7IEX 627420.21 53.068 524362.05 3377.321
]\7ID 552636.13 42.128 508766.02 3323.944
]\7ID1 489395.24 42.067 454675.78 3300.661
A7ID2 480458.29 42.067 447982.61 3300.375
]\7ID3 471131.76 41.964 439763.44 3289.539
MSG 402459.28 41.352 384146.79 3243.201

TABLE 5: Minimum MSE of estimators T?( &)

Estimators Population 1 Population 2 Population 3 Population 4
T?(d) 369076.3 40.289 359823.2 3234.103
?(d) 368888.5 40.287 359714.2 3221.120
T?(d) 369072.8 40.289 359826.2 3235.205
4S(d) 368974.8 40.288 359772.6 3231.655
?(d) 369019.2 40.289 359793.7 3232.035
?(d) 369067.0 40.290 359831.9 3230.939
T?(d) 368879.0 40.287 359709.6 3219.404
Tse(d) 369062.5 40.389 359820.4 3235.729
T?@ 369024.6 40.289 359800.8 3233.736
?o(d) 368886.9 40.287 359713.2 3221.085
Tle1 @ 369172.1 40.290 359883.2 3261.507
Tlez(d) 368978.7 40.288 359778.2 3233.329

TABLE 6: Minimum MSE of estimators T?’( &)

Estimators Population 1 Population 2 Population 3 Population 4
T?(d) 354935.7 40.653 358584.1 3216.740
T?(d) 354803.4 40.652 358509.7 3205.636
?(d) 354933.2 40.653 358586.2 3218.205
f(d) 354864.2 40.653 358549.6 3214.608
?(d) 354895.5 40.653 358564.0 3214.955
T?(d) 354929.1 40.654 358590.1 3213.988
?(d) 354797.1 40.654 358506.1 3204.203
Tﬁ(d) 354926.0 40.654 358582.2 3218.168
g(d) 354899.2 40.653 358568.8 3216.419
T 354802.3 40.652 358509.0 3205.607
?1 @ 355003.2 40.654 358625.2 3242.254

TY, @ 354866.2 40.653 358553.4 3216.064
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TABLE 7: Minimum MSE of estimators Tf?d).

Estimators Population 1 Population 2 Population 3 Population 4
Tfp(d) 232289.5 39.237 283982.2 3142.874
Tf(d) 232013.6 39.235 283834.3 3117.669
Tﬁd) 232284.3 39.238 284177.8 3146.160
Tf(d) 232140.4 39.236 283913.2 3138.074
ng) 232205.6 39.237 283942.2 3138.857
T6®(d) 232275.8 39.238 283948.6 3136.674
T;X’(d) 232000.6 39.235 283827.3 3114.381
t?(d) 232269.2 39.237 283978.4 3146.077
T9®(d) 232213.5 39.237 283951.7 3142.153
ﬁ)(d) 232011.2 39.235 283833.0 3117.602
Tﬁ @ 232430.3 39.238 284063.7 3198.588
sz(d) 232146.1 39.236 283921.2 3141.355

TaBLE 8: Minimum MSE of estimators T?( &)

Estimators Population 1 Population 2 Population 3 Population 4
T?(d) 206469.7 37.512 256261.4 3140.691
?(d) 206038.1 37.507 206023.5 3102.652
T?(d) 206987.6 37.513 256619.5 3145.516
;@(d) 206236.4 37.509 256151.0 3133.585
T?(d) 206338.5 37.511 256197.0 3134.749
?(d) 206448.2 37.514 256280.4 3131.500
T;B(d) 206017.7 37.514 256012.2 3097.565
?(d) 206438.0 37.513 256255.3 3145.396
?(d) 206350.8 37.511 256212.4 3139.628
T?O(d) 206034.4 37.506 256021.3 3102.549
T?l(d) 206689.6 37.515 256392.5 3217.482
T?z(d) 206245.4 37.510 256163.2 3138.450

TABLE 9: Minimum MSE of estimators Ti@( &)

Estimators Population 1 Population 2 Population 3 Population 4
T?(d) 216068.8 36.883 254850.7 3116.231
?(d) 215737.3 36.879 254667.0 3086.071
(;D(d) 216062.6 36.884 255093.8 3120.166
4©(d) 215889.6 36.882 254765.5 3110.485
(;D(d) 215968.0 36.883 254801.0 3111.423
T?(d) 216052.3 36.885 254865.4 3108.809
T?(d) 215721.6 36.879 254658.2 3082.140
T?(d) 216044.5 36.884 254846.0 3120.068
S’(d) 215977.5 36.883 254812.9 3115.368
T?o(d) 215734.4 36.879 254665.3 3085.991
T?l @ 216238.0 36.886 254952.0 3183.047
T?z(d) 215896.5 36.882 254774.9 3114.413

generalized estimators through a real population. We  number of teachers as study variable and number of enrolled
consider a real-life application of primary and secondary students as auxiliary variable (source: [19]). The following
schools for 923 districts of Turkey in 2007, considering  are some important measures of the dataset:
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Y = 436.4344,
X = 11440.498,
Pyx = 0.855,
Qp = 4141.5,
Q, = 5870.5, (34)
Ty = 7726,
Mp, = 89530,
H; = 5502,
D, = 7348.3,
Qg = 8283.

The following steps are made to carry out the simulation
study:

Step 1: select a SRSWOR of size n from the population
of size N

Step 2: use sample data from step 1 to find the MSE of
all the existing and proposed estimators

Step 3: perform 20,000 iterations to conduct step 1 and
step 2

Step 4: get 20,000 values for MSE of all existing and
proposed estimators

Mathematical Problems in Engineering

Step 5: take the average of 20,000 values obtained in
step 4 to get the simulated MSE of each estimator

The following is revealed from Table 10:

(i) Mg performs better than all existing estimators,
that is, M g, Mgy, My, My, My, M s

(ii)) Minimum MSE of all the proposed estimators is the
least as compared to all the existing estimators
under study

(iii) As sample size increases, there is a decrease in the
minimum MSE of all the proposed estimators

It is concluded that our generalized estimator im-
peccably performs the best in the presence of extreme
value(s).

5. Robustness of T

In this section, robustness is examined to check the perfor-
mance of the proposed generalized estimator as compared to
other existing estimators under study. If the estimator performs
efficiently in the presence of the extreme values, the estimator is
called a robust estimator. For this purpose, we consider a real-
life application taken from Punjab development statistics (PDS)
for the year of 2012 [21]. For the deep study regarding ro-
bustness, different sample sizes are taken (n = 6,9 and 12). The
following are the important statistics of the data:

Y = teaching staft in govt middle schools for boys and girls in 36 districts,

X = number of enrolled students in govt middle schools for boys and girls in 36 districts,

N =36,
M, = 2033,
My = 54559,

fy (My) = 0.0004219,
fx(My) =0.0000141,

p = 0.8888,
T, = 58995,
M = 86569,
Qp = 17600.5,
Q, = 60775.5,
Qg = 35201,
H, = 61491.5,
D, = 58502.9.

Scatter plot confirms the presence of the extreme
value in the dataset. Scatter plot can be seen in Figure 1.
Therefore, we can access the robustness of the generalized
estimator for this dataset. Numerical results based on the
robustness study are reported in Table 11. It is revealed
from Table 11 that the minimum MSE of all the proposed

(35)

estimators is the least as compared to all the existing
estimators under study. Moreover, as the sample size
increases, the minimum MSE of all the proposed esti-
mators decreases. Therefore, it is concluded that our
proposed estimator performs impeccably in the presence
of the extreme value(s).
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TaBLE 10: The MSE and minimum MSE of the existing and proposed estimators based on simulation study.

Sample size

Estimators
n=180 n =200 n =230
My 58.936 51.433 42.951
My 53.386 46.773 38.902
My 41.995 36.778 30.654
Mp, 41.934 36.731 30.621
Mp, 41.933 36.730 30.621
Mp, 42.145 36.893 30.734
MGpp 41.207 36.176 30.237
TS 40.258 35.466 29.763
S 40.276 35.486 29.769
TS 40.258 35.457 29.744
TS 40.229 35.483 29.766
% 40.299 35.477 29.789
TS 40.227 35.429 29.744
. 40.263 35.453 29.763
2@ 40.287 35.487 29.712
TS 40.296 35.451 29.789
@D 40.289 35.455 29.776
@ 40.278 35.486 29.741
S 40.253 35.450 29.750
®d) 40.232 35.753 29.951
2@ 40.278 35.796 29.911
2 40.289 35.741 29.938
o 40.256 35.711 29.987
2 40.284 35.789 29.963
T2 40.269 35.735 29.945
2 40.287 35.746 29.987
) 40.235 35.745 29.966
TS 40.253 35.789 29.988
@D 40.258 35.759 29.970
PP 40.278 35.711 29.983
@ 40.235 35.736 29.955
o 39.168 34.639 29.180
2 39.163 34.688 29177
TS, 39.147 34.640 29.145
) 39.158 34.667 29.144
2 39.149 34.684 29.189
& d) 39.136 34.622 29.167
LA 39.196 34.637 29.149
o) 39.147 34.699 29.156
o) 39.155 34.680 29.148
A 39.189 34.644 29.155
T8 39.138 34.655 29.147
TS 39.149 34.628 29.156
T 37.411 33.291 28.251
TS 37.415 33.284 28.298
% 37.478 33.236 28.278
2 37.469 33.259 28.263
. 37.455 33.247 28.241
2 37.436 33.289 28.258
2 37.489 33.213 28.266
2@ 37.473 33.258 28.254
2 37.425 33.236 28.219
@D 37.458 33.233 28.258
%@ 37.479 33.249 28.247
T% 37.469 33.258 28.259
*a 36.799 32.818 27.912
TS 36.794 32.810 27.916
I 36.809 32.808 27.910
% 36.832 32.803 27.909
© 36.808 32.813 27.907
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TaBLE 10: Continued.

Sample size

Estimators
n =180 n =200 n =230
Tf(d) 36.780 32.803 27.922
T‘;’(d) 36.809 32.812 27.907
f(d) 36.805 32.822 27.916
Tg’(d) 36.789 32.805 27.919
?O(d) 36.802 32.801 27.907
?1<d) 36.813 32.817 27.919
T?z(d) 36.799 32.811 27.909

Scatter plot of Y (Teaching staff) vs X (Students)
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FIGURE 1: Scatter plot of teaching staff versus students.

TaBLE 11: The MSE and minimum MSE of the existing and proposed estimators based on the robustness study.

. Sample size
Estimators

n==6 n=9 n=12
My 50949.190 30569.51 20379.68
My 623884.21 37430.53 24953.68
Mp, 40971.25 24582.75 16388.50
Mp, 40569.09 24437.40 16323.77
Mp, 40544.28 24432.13 16322.22
Mp, 39753.88 24142.77 16192.57
MGpp 34666.67 22304.16 15373.79
TS 27237.86 19454.23 14065.72
TS 27236.56 19520.46 14065.67
%@ 27237.85 19454.19 14065.71
2@ 27237.93 19454.01 14065.73
% 27237.90 19454.12 14065.72
9 27237.45 19453.92 14065.65
@ 27237.59 19507.05 14065.67
5@ 27237.84 19454.15 14065.71
S@ 27237.90 19454.10 14065.72
o) 27237.56 19515.17 14065.66
@) 27240.26 19454.23 14066.13
) 27237.93 19454.11 14065.73
S 30863.31 20815.27 14683.88
2@ 30863.14 20853.54 14683.85
2 30863.31 20815.25 14683.88
® 30863.35 20815.15 14683.89
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TasLE 11: Continued.
. Sample size
Estimators
n==6 n=9 n=12
Tsf(d) 30863.34 20815.21 14683.89
T?(d) 30863.08 20815.10 14683.84
Sf(d) 30863.16 20845.79 14683.86
T?(d) 30863.30 20815.23 14683.88
g’(d) 30863.34 20815.20 14683.89
T?o(d) 30863.14 20850.48 14683.85
% @ 30864.70 20815.28 14684.12
T%(d) 30863.35 20815.20 14683.89
T1®(d) 21617.19 17310.35 13083.88
Tz%d) 21616.83 17392.15 13083.82
TS, 21617.18 17310.30 13083.88
Tﬁd) 21617.28 17310.08 13083.90
T5®(d) 21617.24 17310.22 13083.89
Tf(d> 21616.70 17309.97 13083.79
T7®(d> 21616.87 17375.58 13083.82
Tt;@(d) 21617.17 17310.25 13083.88
T9®(d) 21617.24 17310.18 13083.89
Tl%(d) 21616.14 17385.61 13083.82
1®1(d) 21620.11 17310.35 13084.40
Ti@z(d) 21617.28 17310.20 13083.90
?(d) 8921.61 12290.31 10740.24
2w 8920.88 12461.16 10740.10
?(d) 8921.58 12290.22 10740.23
Tf(d) 8921.79 12289.76 10740.27
?(d) 8921.71 12290.04 10740.26
?(d) 8920.61 12289.52 10740.05
T 8920.95 12426.58 10740.12
?(d) 8921.56 12290.12 10740.23
T?(d) 8921.71 12289.97 10740.26
?O(d) 8920.87 12447.52 10740.10
?1(d) 8927.54 12290.32 10741.34
T 8921.78 12290.00 10740.27
T 299491 9992.48 9678.24
T?(d) 2994.29 10135.55 9678.13
T?(d) 2994.88 9992.40 9678.23
f(d) 2995.05 9992.02 9678.26
TS w 2994.99 9992.26 9678.25
?(d) 2994.06 9992.82 9678.08
TS 2994.36 10106.56 9678.14
?(d) 2994.87 9992.32 9678.23
g(d) 2994.98 9992.19 9678.25
T%(d) 2994.28 10124.12 9678.12
° 2999.87 9992.48 9679.15
2w 2995.05 9992.22 9678.26

6. Concluding Remarks and Recommendations

We proposed the generalized classes of estimators for
estimating population median under simple random
sampling using robust measures of an auxiliary variable.
Bias, mean squared error, and minimum mean squared
error of the proposed generalized classes are derived up to
the first degree of approximation. Four real-life datasets
are used to check the numerical performance of the new
estimators. A simulation study through a real dataset is

also conducted to assess the potential of suggested classes
of estimators. Robustness is also examined through a real
dataset. On the basis of numerical findings, it is concluded
that the new generalized classes can generate optimum
estimators. Therefore, use of the proposed generalized
class is recommended for future applications.

The possible extensions of this work are to estimate
the following: (1) finite population median under other
sampling designs like stratified random sampling, double
sampling, rank set sampling, and so forth; (2) other
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unknown finite population parameters including mean,
variance, and proportions; and (3) population median in
the presence of nonsampling errors.
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