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Abstract. In this paper, a technique is presented for assess-

ing the predictive uncertainty of rainfall-runoff and hydraulic

forecasts. The technique conditions forecast uncertainty on

the forecasted value itself, based on retrospective Quantile

Regression of hindcasted water level forecasts and forecast

errors. To test the robustness of the method, a number of ret-

rospective forecasts for different catchments across England

and Wales having different size and hydrological characteris-

tics have been used to derive in a probabilistic sense the rela-

tion between simulated values of water levels and matching

errors. From this study, we can conclude that using Quantile

Regression for estimating forecast errors conditional on the

forecasted water levels provides a relatively simple, efficient

and robust means for estimation of predictive uncertainty.

1 Introduction

Real-time flood forecasting, warning and response systems

(often referred to simply as “flood warning systems”) aim

to give property owners, floodplain residents and responsible

authorities time to respond to a flood threat before a criti-

cal threshold is exceeded, thus allowing for mitigation of ad-

verse consequences. As such, they constitute a non-structural

flood risk management measure. Extending the forecasting

lead time allows for time allocation for mitigating actions.

A reliable assessment of certainty of predicted events in a
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real-time context safeguards operational users from issuing

false alarms and institutional decision-makers from calling

for unwarranted action. Real-time flood forecasting systems

are currently operational in many parts of the world, in-

cluding England and Wales where the National Flood Fore-

casting System (NFFS) is used by the Environment Agency

(Werner et al., 2009).

Following the 2007 summer floods in England and Wales,

the Pitt Review (Pitt, 2008) recommended that “The Met

Office and the Environment Agency should issue warnings

against a lower threshold of probability to increase prepara-

tion lead times for emergency responders”. This implies that

the Environment Agency shifts its flood forecasting opera-

tions from a deterministic to a probabilistic approach.

While flood warning systems have the potential to sig-

nificantly reduce flood risk, uncertainty in water level fore-

casts may cause imperfect flood warning system perfor-

mance. This uncertainty has multiple causes including uncer-

tain future boundary conditions of precipitation, evaporation

and temperature from numerical weather prediction mod-

els, imperfect model schematisations, incorrect parameter

estimates and unknown initial states or imperfect estimates

thereof. A large body of research over the past decades has

attempted to reduce these individual sources of uncertainty.

This research includes reduction, characterisation, assess-

ment and modeling of parametric uncertainty, determinis-

tic state updating or data assimilation (Moore, 2007; Serban

and Askew, 1991), error correction (Broersen and Weerts,

2005; Shamseldin and O’Connor, 2001), ensemble data as-

similation (Clark et al., 2008; Seo et al., 2009; Weerts et al.,

2010b), and various probabilistic post-processing techniques
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for deterministic forecasts (Krzysztofowicz and Maranzano,

2004; Reggiani and Weerts, 2008; Seo et al., 2006) and

for multimodel and/or NWP ensemble prediction based fore-

casts (Raferty et al., 2003; Reggiani et al., 2009; Sloughter et

al., 2007; Todini, 2008; Wood and Schaake, 2008).

While this research has led to considerable progress in re-

ducing uncertainties related to these sources, there will al-

ways be a residual uncertainty that cannot be fully elim-

inated. Although this uncertainty in flood forecasting is

widely recognised, many if not most of the existing flood

warning systems are based on deterministic forecasts, imply-

ing a certain, accurate prediction of water levels. In con-

trast, probability forecasts explicitly estimate predictive un-

certainty about future flows or water levels.

For a number of reasons, the move from deterministic

forecasting to probability forecasting constitutes an improve-

ment to flood warning systems. First of all, hydrological

forecasts are inherently uncertain. Deterministic forecasting

does not acknowledge inherent uncertainties either in a quali-

tative or quantitative manner, whereas probabilistic forecasts

explicitly show the certitude of a prediction. Communicating

that level of certitude then allows for the decision to be made

by a decision maker rather than a decision being implicitly

taken by forecasters. Probability forecasts can then be used

to take a risk-based decision, where the consequences of pos-

sible outcomes can be weighted by their probability of oc-

currence function (Raiffa and Schlaifer, 2000; Todini, 2007).

Also, depending on these consequences, decision makers can

set a threshold of probability against which to decide, thus

choosing an appropriate balance between false alarms and

missed floods.

Montanari and Brath (2004) report three approaches for

estimating predictive uncertainty. The first option is that the

model used for forecasting may be structured as a probabil-

ity model that generates probability distributions. A second

option is to estimate predictive uncertainty by analysing the

statistical properties of the forecast error series (that is, the

difference between the prediction and the observation). The

third option is to use simulation and re-sampling techniques,

thus applying Monte Carlo analyses. When choosing an ap-

proach to be implemented in an operational, real-time flood

forecasting system, computational efficiency and data avail-

ability need to be taken into account.

The present paper proposes the use of “Quantile Re-

gression” (Koenker, 2005; Koenker and Basset, 1978) as a

method to estimate predictive uncertainty. Quantile Regres-

sion as applied in this study is an example of the second op-

tion mentioned above. The here developed Quantile Regres-

sion approach aims to assess the relationship between the hy-

drological forecast and the associated forecast error. In con-

trast with “classical” regression methods, Quantile Regres-

sion does not optimise on the mean of the dependent variable

(the forecast error) but rather on the quantiles (e.g. the me-

dian). By thus estimating quantiles, an estimate of the full

probability distribution of the forecast error may be achieved.

This probability distribution may serve as an estimate for pre-

dictive hydrological uncertainty. Other geophysical applica-

tions of Quantile Regression can be found in meteorology

(Bremnes, 2004), wind forecasting (Bremnes, 2006; Juban

et al., 2007; Nielsen et al., 2006) and the prediction of ozone

concentrations (Baur et al., 2004; Sousa et al., 2009).

The applicability of Quantile Regression is demonstrated

by applying it on a number of catchments in England and

Wales. The catchments vary in size and in dominant hy-

drological processes. A stand-alone version of the National

Flood Forecasting System (NFFS, Werner et al., 2004, 2009)

was adapted to serve as a prototype of the probabilistic fore-

casting system.

This paper first describes the theory of Quantile Regres-

sion and its application to flood forecasting. Subsequently,

the application to the NFFS catchments is described. This is

followed by the results and discussion section showing veri-

fication metrics. The paper ends with conclusions.

2 Material and methods

2.1 Uncertainty estimation of water level forecasts using

quantile regression

With increasing lead time, many sources of uncertainty im-

pact the accuracy of forecasts, with different uncertainty

components dominating at different lead times. In an op-

erational setting, forward modelling of all these uncertain-

ties can be infeasible because it requires many data (e.g.

meteorological ensemble forecasts) or many model runs

(e.g. Beven, 2006).

The stochastic approach used in this study estimates ef-

fective uncertainty due to all uncertainty sources. The ap-

proach is implemented as a post-processor on a deterministic

forecast. We estimate the probability distribution of the fore-

cast error at different lead times, by conditioning the fore-

cast error on the predicted value itself. Once this distribution

is known, it can be efficiently imposed on forecast values

as a post-processor. We estimate the relationship between

the probability distribution of the errors and the forecasted

values at a given lead time by means of Quantile Regres-

sion. Quantile Regression is a method for estimating condi-

tional quantiles (Koenker, 2005; Koenker and Basset, 1978;

Koenker and Hallock, 2001). This requires conditioning of

the Quantile Regression relationships on a calibration dataset

of forecast values and associated errors at the lead time of

interest. To keep the methodology as objective and parsi-

monious as possible, the degrees of freedom of the Quantile

Regression relationships are kept to a minimum by pursuing

a linear regression for each quantile of interest. In order to do

justify a linear relationship, the heteroscedasticity of the error

process, typically associated with rainfall-runoff or hydraulic

models, needs to be taken into account. This is done by mak-

ing the training population of forecast values and associated
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errors Gaussian, prior to linear Quantile Regression. In the

Gaussian domain, we may assume that the forecast – error

relationship may be estimated as a linear function. For each

lead time of interest, a different set of Quantile Regression

relationships needs to be derived. This is because the magni-

tude of the effective forecast error increases with lead time.

Below, the method to derive the Quantile Regressions is for-

mulated in detail. The method can be used when a suffi-

ciently large sample of hindcasted water levels or flows and

concurrent observed values is available.

2.1.1 Transformation of forecast errors from the

original domain to the Gaussian domain

Let us denote the process of flow or water levels with a cer-

tain lead time as follows:

s (t) = ŝ (t)+e(t) (1)

where s is the real process of river flow or water levels at

time t , ŝ is the forecasted value and e is the error estimate, all

at a certain time t and with a certain lead time (not explicitly

denoted here). In practice, we approximate the process s by

collecting a population of observations and s by simulation

or hindcasting with the lead time of interest, at concurrent

time stamps. These estimates can be provided by (a combi-

nation of) hydrological and hydraulic models. Let us assume

that the error may be estimated by means of a probabilistic

error model based on the following functional form:

e(t) = f
[

ŝ (t)
]

(2)

Once this relation is found, it allows a user to apply the error

model in any case, without any additional data requirements

besides the estimate of the process ŝ. This is convenient in

a real-time operational context, where the availability of ad-

ditional data besides ŝ to estimate uncertainty is not trivial.

Now let us assume that the error structure is both ergodic

and stationary (i.e. no significant changes in the hydrological

or hydraulic processes or measurements have taken place).

There is no warrant however, that the error structure is ho-

moscedastic. In fact, residual time series of rainfall-runoff

models are known to be heteroscedastic and non-linear in

nature. In order derive an objective and reliable probabilistic

relation as given in Eq. (2), a transformation of the regressor

and the concurrent associated errors to the Gaussian domain

is applied through the normal quantile transform (NQT). The

NQT (van der Waerden, 1952, 1953a, b) is a non-parametric

method to map a variable, having any distribution, to a Gaus-

sian distribution and has been described for hydrological ap-

plications by Kelly and Krzysztofowicz (1997). Applica-

tions of the NQT in error estimation have been performed

by Krzysztofowicz and Maranzano (2004) and by Montanari

and Brath (2004). In effect, the plotting positions of the cu-

mulative distribution function of the available samples are as-

sociated with their counterparts in the Gaussian domain. The

samples in the Gaussian domain can be discretely described

by the inverse, Q−1 of the normal distribution

F (sN ) = Q−1F (s) (3)

or for individual samples

sNQT(t) = Q−1(Pr[s ≤ s (t)]) (4)

where sNQT is the Gaussian-transformed discharge or water

level. Equation (4) describes the NQT of s. The same can be

done for the error series, which results in a discrete popula-

tion of errors in the Gaussian domain here denoted as eNQT.

To apply the inverse of the NQT, i.e. to convert any value in

between the sampled points of sNQT or eNQT to associated

values s and e, we use linear interpolation for points within

the domain covered by the populations. If values are sought

outside this domain linear extrapolation is applied on a num-

ber of points in the tails of the distribution. Equation (1) can

now be applied in the normal domain,

sNQT(t) = ŝNQT(t)+eNQT(t) (5)

where the subscript “NQT” refers to variables that have been

transformed into the Gaussian domain.

2.1.2 Quantile regression in the Gaussian domain

If one assumes that the residuals of a relation between errors

and forecasted values (such as defined in Eq. (2).) are Gaus-

sian, an estimate of the sample mean of the relation can be

defined as the solution to the problem of minimizing a sum

of squared residuals. This approach has been followed by

Montanari and Brath (2004) who consequently estimate the

variance of the relation to estimate effective uncertainty. If

Gaussianity of the residuals of Eq. (2) cannot be assumed,

one can turn to the estimation of the sample median and

other quantiles instead. The latter approach has been cho-

sen in this study by using Quantile Regression, which does

not make any assumptions about the nature of the residuals

of the forecast – error relationship. The Quantile Regression

methodology is further explained below based on the Gaus-

sian samples of eNQT and sNQT.

The sample median (as opposed to the sample mean) can

be estimated by minimizing the sum of absolute residuals (as

opposed to squared residuals). Minimizing a sum of asym-

metrically weighted absolute residuals (by giving different

weights to positive and negative residuals) can yield other (in

fact, any) quantiles besides the median (for more details, see

Koenker and Hallock, 2001). Applying this to the sampled

values of sNQT and eNQT at a certain lead time of interest, this

can be formulated as

min

n
∑

t=1

ρτ

[

eNQT,τ (t)− êNQT,τ

(

t,ŝNQT(t)
)

]

(6)

with êNQT,τ the estimate of the Gaussian-transformed error

at a certain quantile interval τ and ρτ the weighting function
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that pushes êNQT,τ to its associated quantile location. In case

τ = 0.5 this would yield the unconditional median. Other val-

ues of τ can be used to determine other quantiles.

We assume that estimates of the conditional quantiles in

the Gaussian domain can be described by the linear equation

êNQT,τ (t) = aτ ŝNQT(t)+bτ (7)

where aτ and bτ are the regression constants, valid for the

lead time of interest. After substitution of Eq. (7) into Eq. (6),

aτ and bτ can be found efficiently by linear programming

(Koenker, 2005; Koenker and Hallock, 2001).

2.1.3 Imposing the error models in operational

forecasts

To describe the distribution of errors, conditional on the fore-

casted values, Quantile Regression programming functions

within the R-package quantreg (Koenker, 2010) were used.

To transform quantile estimates from the Gaussian domain

to the untransformed (original) domain, linear interpolation

has been used to connect the combinations of NQT trans-

formed simulated values ŝNQT and estimated error quantiles

êNQT,τ in the Gaussian domain, to their counterparts in the

untransformed domain, using the following relationship:

ŝτ (t) = ŝ (t)+NQT−1
[

aτ ŝNQT(t)+bτ

]

(8)

This yields calibrated discrete quantile relationships in the

untransformed domain, which can be imposed on any fore-

casted value by means of linear interpolation or, if fore-

casted values are found outside the domain of the calibration

dataset, with linear extrapolation.

The quantile error models can be derived at several lead

times. The derived error models can consequently be applied

in an operational context. An experimental module setup

for imposing the error models in the standalone version of

NFFS has been developed in the statistical computing lan-

guage R (R Development Core Team, 2010). This R based

module can be executed from within Delft-FEWS (Weerts et

al., 2010a).

2.2 Case study descriptions

Figure 1 shows the locations of the case study areas relative

to the coast line of England and Wales. The catchment in

the North is the Upper Calder, the middle part is the Upper

Severn with multiple interconnected catchments and the two

catchments South are used in the Ravensbourne case study.

2.2.1 North East Region, Upper Calder, Todmorden

(147 km2)

The Upper Calder catchment drains an area of 147 km2 to

the river gauging station at Mytholmroyd, just upstream of

Caldene Bridge. It is underlain by Carboniferous rocks of

Millstone Grit and Coal Measures, with the former pre-

dominating in the high moorland areas. The river and its
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Fig. 1. Overview of the locations of the case study areas relative

to the coastline of England and Wales. At the top the catchment

of the Upper Calder, in the middle the Upper Severn with multiple

interconnected catchments and at the bottom the two Ravensbourne

catchments.

tributaries flow through steep and relatively narrow valleys.

About 18% of the area (i.e. 26 km2) drains to reservoirs.

Typically these are reservoirs for direct water supply, re-

leasing only compensation flows unless spilling at times of

flood. The natural flow regime has also been modified by

various channel improvements and flood defences, includ-

ing schemes at Todmorden and Mytholmroyd. Upper Calder

with forecast location Todmorden is part of the NFFS North-

East Region (England, Environment Agency, NorthEast).

The Upper Calder is a fast responding catchment and is mod-

elled with a PDM rainfall runoff model (Moore, 2007). The

PDM model is forced by the input created by a snow model.

2.2.2 Midlands Region, Upper Severn, various locations

and basin sizes (150–1000 km2)

The River Severn rises in the Cambrian mountains at Plyn-

limon at a height of 741 m AOD and flows in northeasterly

direction through Llanidloes, Newtown and Welshpool be-

fore meeting the Vyrnwy tributary upstream of Shrewsbury.

The valley is wide and flat in this confluence area, with a

considerable extent of floodplain.

The river then flows through Montford to Shrewsbury, and

is joined at Montford Bridge by the River Perry which flows

from the Oswestry area to the North. The lowest point in the

Upper Severn catchment is defined by Midlands Region as

the gauge at Welshbridge in Shrewsbury. There are also sig-

nificant areas of floodplain in the reach from Shrawardine,

upstream from Montford, to Welshbridge. Average annual
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rainfall can exceed 2500 mm in the Cambrian mountains in

the upper reaches of the Severn, and in Snowdonia National

Park, in the upper reaches of the Vyrnwy catchment. The

catchment area to Welshbridge is approximately 2284 km2

including 778 km2 for the Vyrnwy catchment to the flow

gauge at Llanymynech. The main reservoirs in the Upper

Severn catchment are Lake Vyrnwy in the upper reaches

of the Vyrnwy, and the Clywedog Reservoir in the upper

reaches of the Severn. There are no significant flow control

structures downstream of Welshbridge in the remainder of

the Upper Severn catchment. The Upper Severn catchment

is represented in NFFS by a combination of MCRM rainfall-

runoff models (Bailey and Dobson, 1981; Wallingford Water,

1994) and DODO routing models (Wallingford Water, 1994).

2.2.3 Thames Region, Ravensbourne, two locations (32

and 68 km2)

The River Ravensbourne and tributaries drain highly ur-

banised areas from the south of London towards Lewisham

before joining the Thames at Deptford Creek. The to-

tal Ravensbourne catchment area equals approximately

180 km2. The more slowly responding rural part of the

Ravensbourne South Branch catchment makes up around

55 km2, which does not contribute significantly to flood

events and is therefore generally discarded from analyses of

flood hydrology (as verified by historic calibration data over

many events).

The remaining 125 km2 is highly urbanised and has a very

rapid response to rainfall and, due to the large proportion of

paved surfaces, there is very little hydrological memory (an-

tecedent storage). As a result, hydrographs throughout the

catchment often rise steeply from baseflow to threshold lev-

els in around 30 min (sometimes even less), and fall again

almost as rapidly at the upstream locations, whilst locations

lower in the catchment take slightly longer to recede (due

to later arrival of upstream contributions). The NFFS inte-

grated catchment model for Ravensbourne (Thames Region)

comprises 16 TCM models (Greenfield, 1984; Wilby et al.,

1994) providing inputs to an ISIS hydrodynamic model.

2.3 Data used in the case studies

For both the calibration and validation only operationally

available data are used. The data available from the archive

consist of RTS data (observed level data, rain gauge data,

air temperature and catchment average rainfall data), Radar

Actuals, Radar Forecast, and Numerical Weather Prediction

data (all three from UK Met Office) and is available from

2006 onwards. The operational forecasts of river discharges

and water levels benefit from the availability of (near) real-

time observations. These are propagated into the model by

means of data assimilation, prior to forecasting.
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QR error models at Welshbridge LT = 12 hr
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QR error models at Welshbridge LT = 24 hr
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QR error models at Welshbridge LT = 36 hr
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Fig. 2. Transformed forecast errors versus transformed forecasted

water levels (both in Gaussian domain) together with the derived

Quantile Regressions for the different confidence levels.

The data was split in a calibration data set (2006 and 2007)

and a validation data set (2008 and 2009). Both the cali-

bration and validation datasets contain several major flood

events. Unfortunately, this is not the case for the validation

data set for the Thames region as, here, only few events were

observed in 2008 and 2009.

3 Results and discussion

3.1 Derivation of forecast error models

The Quantile Regression methodology to describe the pre-

dictive uncertainty as described in Sect. 2 has been applied

to water levels at several forecast locations in the National

Flood Forecasting System (NFFS). In the calibration phase,

the forecast error models are derived. Figure 2 shows an ex-

ample of the calibration for the Upper Severn forecast loca-

tion Welshbridge (2077) in the Gaussian domain. Figure 3

shows the example of the derived forecast error model in the

untransformed domain. The effect of the NQT−1 on the de-

rived 50% and 90% quantiles is evident: the fitted Quan-

tile Regression relationships change from linear to nonlinear

under influence of the back-transformation, while describing

the heteroscedastic behaviour of the forecast errors in water

levels as function of predicted water level. When fitting the

different quantiles during calibration, sometimes the quan-

tiles were found to cross at low water levels. This is an arte-

fact of the fitting procedure and this problem has been over-

come by using a fixed error model below certain water lev-

els in the Gaussian domain as is visible in Fig. 2. This fixed

www.hydrol-earth-syst-sci.net/15/255/2011/ Hydrol. Earth Syst. Sci., 15, 255–265, 2011
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Fig. 3. Forecast errors versus forecasted water levels together with

the derived Quantile Regressions for the different confidence levels.

error model is hardly visible after the NQT−1 (see Fig. 3), be-

cause it describes only a small portion of the full flow regime

domain.

The effect of fitting the quantiles on forecast values – in-

stead of on forecast errors – was also investigated. We found

(not shown) that the regressions based on forecast errors pro-

duced more reliable results, while the regression based on

forecast values resulted in more unreliable results (especially

in the high water level domain).

The advantage of doing the Quantile Regression in the

Gaussian domain is that no subjective assumptions on the

regression have to be made, which limits the number of pa-

rameters to be fitted – 2 per quantile, see Eq. (7). Other ap-

proaches may be even more parsimonious than the approach

taken here, such as for instance the Model Conditional Pro-

cessor (MCP, Todini, 2008), which requires the estimation

of 1 parameter in order to determine the full density of the

predictive uncertainty. This method, however, assumes that

the residuals of the forecast – error relationship are normally

distributed. Making this assumption is not necessary using

the approach described here.

After deriving these distributions for all forecast locations

and at all lead times used in the case studies, they can sub-

sequently be used in NFFS in real-time or hindcast mode.

For all case studies, the 5%, 25%, 50%, 75%, 95% quantiles

were derived and used for validation.

3.2 Validation of forecast error models

Below, the application of Quantile Regression to provide a

probabilistic forecast is presented for the three case studies,
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Fig. 4. Validation of Quantile Regression method for water level

forecasts at Todmorden for the January 2008 events for 2, 6, 12, and

24 h leadtimes. The dark grey area represents the 50% confidence

interval and the light grey area represents the 90% confidence inter-

val, the black dashed line the 50% estimate, and the black dots the

observations.

representing a wide variety of hydrological conditions and

catchment sizes.

3.2.1 North East Region, Upper Calder

Figure 4 shows the validation of the Quantile Regression

method for the January 2008 events for 4 leadtimes (2, 6, 12

and 24 h). Most of the time, the observations fall within the

90% predictive confidence interval. It is also clear that the

uncertainty increases with leadtimes as was to be expected.

One can also see that the uncertainty increases and decreases

depending on the forecasted water level and lead time. In

Fig. 4, it is also visible that some observed values lie outside

the confidence interval. For a 90% confidence interval, and

for each forecasted water level, this should happen in only

10% of all cases. Because the sample size at high forecasted

and observed water level in both the calibration and valida-

tion phase is small (only few major and minor events, see for

example Fig. 2) it is very difficult to make strong statements

about the performance of the Quantile Regression method at

higher water levels. Unfortunately, this is the area of main

interest.

Figure 5 shows the validation results for the January 2009

events. The forecasted water levels for January 2009 for

longer leadtimes are not as good as in January 2008 (as

can be seen by the 50% estimate). There are several events

forecasted that did not occur especially at longer leadtimes.
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Fig. 5. Validation of Quantile Regression method for water level

forecasts at Todmorden for the January 2009 events for 2, 6, 12 and

24 h leadtimes. The dark grey area represents the 50% confidence

interval and the light grey area represents the 90% confidence inter-

val, the black dashed line the 50% estimate, and the black dots the

observations.

Table 1. Percentage of observations within respective predictive

confidence intervals for period January 2008–July 2009 for forecast

location Todmorden (North East Region).

Location id predictive 2 h 4 h 6 h 12 h 18 h 24 h

& name confidence

interval

TODMDN1 25%–75% 61.8 65.5 66.4 48.0 41.5 39.9

Todmorden 5%–95% 89.2 90.2 90.6 89.7 90.1 90.4

The reason for this is not yet clear. The wider confidence

bounds at the peak values also indicate that this behaviour, to

some degree, was present in the calibration data set. How-

ever, it is also possible that it is related to changes over time

(i.e. between calibration and validation periods) in numerical

weather prediction products used for the forecast.

Both Figs. 4 and 5 show that the Quantile Regression

method tested here can not correct “bad” forecasts. Gen-

erally, the confidence intervals are accurately estimated even

though they were only estimated from a hindcast covering a

short period (2006–2007). The Quantile Regression method

closely resembles the confidence interval wherein one ex-

pects the observation. The performance is further illustrated

by Table 1 which shows the percentage of the observations

within the confidence intervals at various lead times.
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Fig. 6. Validation of Quantile Regression method for water level

forecasts at Welshbridge (2077) for the November 2009 events for

12, 24, 36 and 48 h leadtimes. The dark grey area represents the

50% confidence interval and the light grey area represents the 90%

confidence interval, the black dashed line the 50% estimate, and the

black dots the observations.

3.2.2 Midlands Region, Upper Severn

The case study on the Upper Severn using Quantile Regres-

sion is focused on several locations (see Figs. 1 and 7). These

locations consist of both upstream (modelled with MCRM)

and downstream (modelled using DODO) forecast locations

and were chosen to show how Quantile Regression can be

used to derive predictive confidence intervals in an end-to-

end forecasting system. Figure 6 shows the validation for

the flood events of November 2009 at Welshbridge (2077) at

12, 24, 36 and 48 h lead time. This figure shows how Quan-

tile Regression can give estimates of the confidence intervals

during flood events. Validation results for the other locations

are given in Fig. 7 as Quantile-Quantile (Q-Q) plots. Most

Q-Q plots follow the 1:1 line closely. Figure 7 also shows

poor performance at Caersws and to some degree at Welsh-

pool. The reason for the poor performance at Caerws is the

combination of the relatively large bias in the simulation of

the DODO model for Caerws and the internal error correc-

tion procedure that is applied for this location. This internal

error correction procedure causes the forecast at Caerws to

jump, often one or two hours into the forecast, from the error

corrected foreast to the biased forecast. This happens more

often in the validation than in the calibration period, therefore

when switching the validation with the calibration period this

results in exactly the opposite figure (all lines above 1:1 line)

www.hydrol-earth-syst-sci.net/15/255/2011/ Hydrol. Earth Syst. Sci., 15, 255–265, 2011



262 A. H. Weerts et al.: Estimation of predictive hydrological uncertainty using quantile regression

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Predicted probability of non-exceedence

O
b
s
e
rv

e
d
 q

u
a

n
til

e

0.05 0.25 0.50 0.75 0.95

Vyrnw y w eir

(2003)

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Predicted probability of non-exceedence

O
b
s
e
rv

e
d
 q

u
a

n
til

e

0.05 0.25 0.50 0.75 0.95

Montford

(2005)

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Predicted probability of non-exceedence

O
b
s
e
rv

e
d
 q

u
a

n
til

e

0.05 0.25 0.50 0.75 0.95

Abermule

(2014)

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Predicted probability of non-exceedence

O
b
s
e
rv

e
d
 q

u
a

n
til

e

0.05 0.25 0.50 0.75 0.95

Yeaton

(2020)

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Predicted probability of non-exceedence

O
b
s
e
rv

e
d
 q

u
a

n
til

e

0.05 0.25 0.50 0.75 0.95

Rhos Y Phentref

(2025)

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Predicted probability of non-exceedence

O
b

s
e
rv

e
d
 q

u
a
n
til

e

0.05 0.25 0.50 0.75 0.95

Llanymymech
(2028)

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Predicted probability of non-exceedence

O
b

s
e
rv

e
d
 q

u
a
n
til

e

0.05 0.25 0.50 0.75 0.95

Llandlowel
(2038)

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Predicted probability of non-exceedence

O
b

s
e
rv

e
d
 q

u
a
n
til

e

0.05 0.25 0.50 0.75 0.95

Llanidloes
(2072)

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Predicted probability of non-exceedence

O
b

s
e
rv

e
d
 q

u
a
n
til

e

0.05 0.25 0.50 0.75 0.95

Caersws
(2074)

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Predicted probability of non-exceedence

O
b

s
e
rv

e
d
 q

u
a
n
til

e

0.05 0.25 0.50 0.75 0.95

Meiford
(2076)

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Predicted probability of non-exceedence

O
b
s
e
rv

e
d
 q

u
a
n
til

e

0.05 0.25 0.50 0.75 0.95

Welshbridge

(2077)

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Predicted probability of non-exceedence

O
b
s
e
rv

e
d
 q

u
a
n
til

e

0.05 0.25 0.50 0.75 0.95

Bryntail

(2109)

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Predicted probability of non-exceedence

O
b
s
e
rv

e
d
 q

u
a
n
til

e

0.05 0.25 0.50 0.75 0.95

Pont Robert

(2156)

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Predicted probability of non-exceedence

O
b
s
e
rv

e
d
 q

u
a
n
til

e

0.05 0.25 0.50 0.75 0.95

Lamerfyl

(2159)

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Predicted probability of non-exceedence

O
b
s
e
rv

e
d
 q

u
a
n
til

e

0.05 0.25 0.50 0.75 0.95

Crew Green

(2175)

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Predicted probability of non-exceedence

O
b
s

e
rv

e
d
 q

u
a
n
til

e

0.05 0.25 0.50 0.75 0.95

Buttington
(2176)

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Predicted probability of non-exceedence

O
b
s

e
rv

e
d
 q

u
a
n
til

e

0.05 0.25 0.50 0.75 0.95

Welshpool
(2638)

Lead-time =  3  hours

Lead-time =  6  hours
Lead-time =  12  hours

Lead-time =  24  hours
Lead-time =  36  hours

Lead-time =  48  hours

735
Figure 7. Reliability Q-Q plots (predicted non-exceedence probabilities versus the736
Fig. 7. Reliability Q-Q plots (predicted non-exceedence probabilities versus the fraction of observations that are lower than the corresponding

estimated value indicated by “observed quantiles”) for all Upper Severn locations for all lead times considered for the validation period (2008

and 2009). Bracketed numbers are unique station identifiers.

Table 2. Percentage of observations within respective predictive confidence intervals for period January 2008–July 2009 for forecast locations

Ravensbourne (Thames Region).

Location predictive 3 h 6 h 9 h 12 h 15 h 18 h 21 h 24 h

id & name confidence

interval

3470TH 25%–75% 56.4 51.1 44.4 41.2 42.5 42.5 42.8 56.4

Catford Hill 5%–95% 96.7 96.2 95.5 95.4 94.3 93.5 92.3 96.7

3489TH 25%–75% 65.1 58.7 56.2 55.4 55.7 55.1 55.0 65.1

Manor House Gardens 5%–95% 96.0 94.8 94.5 94.4 94 93.8 94.2 96

for Caerws (not shown). To improve the performance at

Caerws the DODO model and the error correction procedure

should be improved.

3.2.3 Thames Region, Ravensbourne

Figure 8 shows the validation results of the method for the

February 2009 event for Manor House Gardens (3489TH).

Most of the time the observations fall within the 90% confi-

dence interval. It is also clear that the uncertainty increases

with lead times as expected. One can also see that the uncer-

tainty increases and decreases depending on the forecasted

level. The performance is further illustrated by Table 2 which

shows the percentage of the observations within the confi-

dence intervals at various lead times. Table 2 shows that

for these two locations the derived forecast error models are

somewhat too wide (underconfident) as too many observa-

tions lie within the 50% and 90% confidence limits. How-

ever, this could be resulting from the fact that the period

2008–2009 was dissimilar to the calibration period 2006–

2007. In 2008 and 2009, there were relatively few small,

medium and major flood events for the whole of the Thames

region. This should be further tested with a longer record that

corresponds more closely with the calibration period.
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Fig. 8. Validation of Quantile Regression method for water level

forecasts at Manor House Gardens for the February 2009 event for

3, 6, 12 and 18 h lead times. The dark grey area represents the

50% confidence interval and the light grey area represents the 90%

confidence interval, the black dashed line the 50% estimate, and the

black dots the observations.

4 Conclusions

A method to provide predictive uncertainty estimates of wa-

ter level or flow forecasts is presented. The method aims to

characterise the distribution of the water level or flow fore-

cast error conditioned on the value of the predicted water

level or flow by means of Quantile Regression relationships

at quantiles of interest. The method does not consider the

independent sources of uncertainty but instead considers the

effective uncertainty of the forecast process only, which can

be a result of input or output uncertainty, model structural

uncertainty or parameter uncertainty. The quantile error re-

lationships are estimated in the Gaussian domain. To this

end, both the available forecast population and error popu-

lation are made Gaussian by means of a Normal Quantile

Transform. Several sets of Quantile Regression relationships

may be derived at specific lead times that are of interest to

the user. The Quantile Regression relationships can straight-

forwardly be implemented as a post-processor in a real-time,

operational forecasting system.

The method was tested by deriving Quantile Regression

relations for several lead times using a calibration hindcast

set and consequently predicting forecast errors of water lev-

els using an independent validation set in three case studies

in a stand alone version of the National Flood Forecasting

System of England and Wales. The three case studies across

England and Wales contain a variety of catchments (size and

behaviour) and hydrological models. From the results, we

can conclude that the Quantile Regression method to pro-

vide predictive uncertainty estimates of water level forecasts

is promising. We showed that the derived Quantile Regres-

sion relationships predict the error quantiles satisfactorily at

all lead times. Moreover, the developed method is simple to

apply, requires very few assumptions and is easy to under-

stand by both scientists and forecasters.

However, there are also some limitations. The method,

like all post-processing methods, requires a long (homoge-

neous) calibration and validation set. In the case studies,

only short calibration and validation sets were available, con-

taining only few extreme events. This compromised error

descriptions at higher predicted water levels, which could

only be made through extrapolation of the derived quan-

tile regressed relations. The case study containing a valida-

tion period without extreme events (e.g. Ravensbourne case

study) indicated that currently available data records may

cause problems with deriving and testing the method.

Furthermore, homogeneity of data sets can be an issue

(observed in particular in the Upper Calder case study).

Such inhomogeneities may be caused by a number of fac-

tors, such as (a) changes in the hydraulics/hydrology of the

river/catchment changes considerably (in fact, in this case

the hydrological/hydraulic model itself needs re-calibration)

and (b) changes in the forecasting system (e.g. by adaptation

of state updating procedures or models used) or (c) changes

in external data sources used to drive the forecasting sys-

tem (e.g. meteorological models or external observed bound-

ary conditions). Like any other statistical post-processing

method, the developed method requires recalibration if such

inhomogeneities occur.

If these limitations are considered by the user, the Quantile

Regression method can be straightforwardly employed in op-

erational forecasting because (a) the required data is always

available in the operational context and (b) the methodology

requires little computation time.
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