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ABSTRACT

A JPEG image is double-compressed if it underwent JPEG compression twice, each time with a different
quantization matrix but with the same 8 × 8 grid. Some popular steganographic algorithms (Jsteg, F5,
OutGuess) naturally produce such double-compressed stego images. Because double-compression may sig-
nificantly change the statistics of DCT coefficients, it negatively influences the accuracy of some steganalysis
methods developed under the assumption that the stego image was only single-compressed. This paper
presents methods for detection of double-compression in JPEGs and for estimation of the primary quan-
tization matrix, which is lost during recompression. The proposed methods are essential for construction
of accurate targeted and blind steganalysis methods for JPEG images, especially those based on calibra-
tion. Both methods rely on support vector machine classifiers with feature vectors formed by histograms of
low-frequency DCT coefficients.

1. MOTIVATION

In this paper, we consider a JPEG image double-compressed if it was compressed twice, each time with a
different quantization matrix. The quantization matrix used in the first compression is called the primary
quantization matrix, the quantization matrix used in subsequent (second) compression is called the secondary
quantization matrix. Since the JPEG image file does not keep information about the compression history,
only the latest (secondary) quantization matrix is stored within the file and the primary quantization matrix
is lost.

Detection of double-compression is important in steganalysis as well as in forensics because the fact that
an image was double-compressed indicates that it was manipulated. By determining double-compression
history in smaller regions, we may discover traces of malicious manipulation. For example, when pasting an
object into a decompressed JPEG and resaving with a different JPEG quality factor, the pasted object may
exhibit different repetitive JPEG compression artifacts than the rest of the image.

Some steganographic algorithms (e.g., F521 and OutGuess18) decompress the cover image to the spatial
domain and then the image is compressed again during embedding with a user supplied or a default quality
factor. Unless the quantization matrices match, the resulting stego image will be double-compressed. Thus,
steganalytic methods also benefit from knowledge of stego image compression history. This is especially true
for methods that use calibration5 to estimate the statistics of the cover image. It is absolutely essential
to adjust the calibration to mimic what happened during embedding. To do so, we need to accurately
detect double-compressed images and estimate their primary quantization matrix, otherwise the steganalytic
methods may give completely misleading results.5

In this paper, we address two problems: the detection of double-compression in JPEG images and the
estimation of primary quantization matrix. Even though the first problem can be understood as a sub-
problem of the second one, we consider them separately. This allows us to achieve more accurate double-
compressed detection.

This paper is organized as follows. In Section 2, we review the basics of JPEG compression relevant for
this paper and define double-compression together with its effects on DCT coefficients. Previous approaches
to the problem of double-compression detection and primary quantization steps estimation are described in
Section 3. Section 4 presents our solutions to both problems. Experimental results are described in Section 5.
Finally, Section 6 concludes the paper.
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2. EFFECTS OF DOUBLE-COMPRESSION

Here, we introduce notation used in this paper by reviewing certain facts about JPEG compression12 that
are relevant for recovering the compression history of JPEG images. Then, we describe effects of double-
compression on quantized DCT coefficients.

2.1. Basics of JPEG compression

JPEG compression starts by grouping pixels into disjoint 8 × 8 blocks Brs, r, s = 0, . . . , 7, followed by the
Discrete Cosine Transformation (DCT) applied independently to each block B

dij =

7
∑

r,s=0

w(r)w(s)

4
cos

π

16
r(2i + 1) cos

π

16
s(2j + 1)Brs,

where w(0) = 1√
2
, and w(r > 0) = 1. The next step implements the lossy part of JPEG compression, where

coefficients dij are divided by quantization steps from the quantization matrix Qij and rounded to integers

Dij =

[

dij

Qij

]

, i, j ∈ {0, . . . , 7}, (1)

where [·] denotes rounding. We denote the i, j-th DCT coefficient in the k-th block as Dk
ij , k ∈ {1, . . . .l},

where l is the number of all 8 × 8 blocks in the image. The pair (i, j) ∈ {0, . . . , 7} × {0, . . . , 7} is called the
spatial frequency (or mode) of the DCT coefficient. The quantized coefficients Dk

ij in each 8 × 8 block are
ordered along the zig-zag path, encoded, and losslessly compressed.

Decompression works in the reverse order. Blocks of quantized DCT coefficients are recovered from the
JPEG file and then multiplied by quantization steps, d̂ij = Qij · Dij . The resulting values are transformed
using the Inverse Discrete Cosine Transformation (IDCT) and rounded to integers in the range [0, 255] (for
8 bit images). The decompressed block B̂ is

B̂ij = trunc ([IDCT(Qij · Dij)]) , i, j ∈ {0, . . . , 7}. (2)

The reference implementation of JPEG compression provided by Independent JPEG Group† recommends
a set of matrices indexed by a quality factor from the set {1, 2, . . . , 100}. We refer to these matrices as standard

matrices.

2.2. Effect of double-compression on DCT histograms

We call a JPEG image double-compressed if it underwent JPEG compression twice with the same align-
ment of 8 × 8 blocks, but each time with a different quantization matrix. This definition is motivated by
the embedding mechanism of steganographic techniques that produce such images. Technically, an image
compressed twice, each time with a different alignment of the blocks is also “double-compressed”, but it
would not be recognized as such according to the definition in this paper. The quantization matrix Q1 used
during the first compression is called the primary quantization matrix. The quantization matrix Q2 used
in subsequent JPEG compression is called the secondary quantization matrix. Additionally, we say that a
specific DCT coefficient Dij was double-compressed if and only if Q1

ij 6= Q2
ij . Omitting the truncation in (2),

the double compressed DCT coefficient Dij is

Dij =

[[

dij

Q1
ij

]

·
Q1

ij

Q2
ij

]

. (3)

From (3), we can see that the values of double-compressed DCT coefficients depend on the combination
of quantization steps Q1

ij and Q2
ij . The effects of double-compression on the DCT coefficients Dij for a fixed

mode i, j are easily apparent in histograms

†ftp://ftp.simtel.net/pub/simtelnet/msdos/graphics/jpegsr6.zip
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Figure 1. Effect of double-compression on histograms of absolute values of DCT coefficients. The seconadary
quantization coefficient is in all four cases the same Q2

ij = 4, only the primary quantization coefficient Q1

ij varies.

hij(m) =

l
∑

k=0

δ
(∣

∣Dk
ij

∣

∣ − m · Q2
ij

)

, (4)

where k ∈ {1, . . . .l} indexes the 8 × 8 block and δ is the indicator function, δ(x) = 1 if x = 0 and δ(x) = 0
when x 6= 0. We recognize two distinct artifacts of double-compression on the shape of the histogram hij(m).

A zero occurs if there exists an integer u > 0 so that Q1
ij = u · Q2

ij (the primary quantization is coarser

than the secondary quantization). In this case, Dij ≈ u ·
[

dij

Q1

ij

]

gives a restriction on the values of Dij , which

can now only attain values from the set {0, u, 2u, 3u, . . .}. Thus, hij(m) = 0 for m ∈ N \ {0, u, 2u, 3u, . . .}.
Formally,

hij(m)

{

> 0 m ∈ {0, k, 2k, 3k, . . .}

= 0 m mod u 6= 0.



Figure 1(b) shows an example of a histogram exhibiting zeros at m ∈ {1, 3, 5, 7, . . .} (Q1
ij = 8 and Q2

ij = 4).

A double peak occurs when there exist integers u, v ≥ 0 so that uQ1
ij = 1

2

(

(v − 1)Q2
ij + vQ2

ij

)

(the

multiple
[

dij

Q1

ij

]

·Q1
ij falls in the middle of two multiples of Q2

ij and no other multiple of Q2
ij is closer). In this

case, the multiple
[

dij

Q1

ij

]

·Q1
ij contributes approximately the same to both (v−1)Q2

ij and vQ2
ij . Figures 1(c,d)

show examples of double-peaks occurring at multiples v = 2, 5, 8, . . .. A more detailed description of the
impact of double-compression on the DCT histogram can be found in.6, 16, 17

We now point out an important case called divisors, where there is no effect of double-compression of
the value of the DCT coefficient despite the fact that the quantization steps are different. If there exists
an integer u > 0 so that Q2

ij = u · Q1
ij (the complementary case to zeros, when the primary quantization is

finer than the secondary quantization), then the shape of the histogram is almost identical to the histogram
of single-compressed DCT coefficients quantized by Q2

ij . In this case, the quantization step Q1
ij cannot be

detected and the DCT coefficient is not technically double-compressed.

While in a single-compressed JPEG image the histogram hij(m) (Figure 1(a)) is well-modeled with
a generalized Gaussian distribution,11 histograms of double-compressed JPEG images do not follow this
distribution. Since different primary quantization steps affect the shape of hij(m) differently, it is possible
to detect them.

3. PRIOR ART

The first publication on detection of double-compression is6‡. The authors recognized that it is impossible
to restore all quantization steps Q1

ij , since most DCT coefficients at higher frequencies are zeros and the
available statistics is not sufficient for a reliable estimate. Instead, they focused on low frequencies (i, j) ∈
{(0, 1), (1, 1), (1, 0)} and proposed three approaches. Two were based on the idea of matching the histograms
hij(m) to histograms obtained by simulated double-compression, where the raw image was estimated by
calibration.4, 5 The third approach utilized a collection of neural networks to detect patterns caused by
different combinations of quantization steps Q1

ij and Q2
ij (Figure 1). The collection of neural networks

consisted of individual networks constructed for each value of the secondary quantization step (SQS) of
interest, Q2

ij ∈ {1, . . . , 9} and detected the primary quantization steps (PQS) Q1
ij in the range [2, 9], for

Q2
ij ∈ {2, . . . , 9}, and in the range [1, 9] for Q2

ij = 1. All neural networks used the same input feature vector

x = {hij(2), hij(3), . . . , hij(15)}. (5)

Interestingly, the authors did not use the histogram values for m = {0, 1} in the feature vector. By empirical
comparisons, the neural network approach performed the best. The reported accuracy on cover JPEG
images was better than 99% for estimation of low frequency quantization steps with frequencies (i, j) ∈
{(0, 1), (1, 1), (1, 0)}, and better than 95% for quantization steps with frequencies (i, j) ∈ {(2, 0), (2, 1), (1, 2),
(0, 2)}.

A different approach proposed in16, 17 focused only on detection of double-compression instead of es-
timation of primary quantization steps. Similarly, the proposed solution was based on the histograms of
DCT coefficients hij(m). The authors showed that double-compression artifacts are periodic manifesting as
peaks in the Fourier transform of hij(m). The detection accuracy (double-compressed image detected as
double-compressed) of their method was estimated on 100 cover images and was usually 100% with 0% false
alarm rate (single-compressed image detected as double-compressed). Unfortunately, we were not able to
obtain implementation of this approach in order to compare fairly it with our solution on the same database
of images.

An interesting method for recovering the compression history of images was recently proposed in.7 It
is based on the claim that the distribution of the first digit of DCT coefficients in digital images of natural
scenes follows the generalized Benford distribution

p(x) = N · log

(

1 +
1

1 + xq

)

,

‡The problem of detection of previous (single) JPEG compression from bitmap images was also investigated in.3



where q is a free parameter and N is a normalization constant. After double-compression, the distribution of
the first digit no longer follows the generalized Benford distribution. This fact was utilized to estimate the
quantization matrix of (previously single-compressed) JPEG images available in some lossless image format,
such as TIFF or PNG. The authors also suggested to form features from the histogram of the first digit of
DCT coefficients (further called the Benford feature set) and train an SVM classifier to detect the primary
quantization steps Q1

ij . We investigate this approach in more detail in Section 5, where we compare it to the
proposed method.

4. THE PROPOSED METHODS

All previously proposed methods targeted cover images only. For applications in steganalysis, however,
it is important to recover compression history from stego images, whose statistics may be disturbed by
embedding. The multi-classifier proposed in14 consists of two separate classifiers and a double-compression
detector serving as a pre-classifier. If the double-compression detector decides that an image has been
double-compressed, it is sent to the multi-classifier targeted for double-compressed images that can only
detect F5 and OutGuess and does not classify to other stego methods recognized by the multi-classifier for
single-compressed JPEG images. Thus, the performance of the blind steganalyzer is greatly influenced by
double-compression. The multi-classifier calls for a double-compression detector with a low probability of
false positives, which means low probability of detecting a single-compressed image as double-compressed.

Double-compression detection can be understood as a sub-problem of the primary quantization step
estimation. However, estimation of quantization steps is more difficult than detection of double-compression.
To illustrate this, realize that the statistics available for double-compression detection can be extracted from
all DCT coefficients, while estimating a primary quantization step can only use data from a given DCT
mode.

Besides the double-compression detector, a good primary quality factor estimator (PQF) is also needed.
Calibration of double-compressed images14 must mimic the processing history of the image with the correct
primary quantization matrix. The failure to accommodate the effects of double-compression may produce
very inaccurate steganalysis results.5

The superior performance of the neural network approach reported in6 steered our attention towards the
use of tools of pattern recognition with features formed by histograms hij(m). Because of the problem with
insufficient statistics for high-frequency DCT coefficients, we limit the set of DCT frequencies used by both
the DC detector and the PQF estimator to the set

L = {(1, 0), (2, 0), (3, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2), (0, 3)} . (6)

Before continuing with detailed description of the proposed solutions, we note that by modeling the
distribution of single-compressed DCT coefficients (e.g., using generalized Gaussian), from Eq. (3) it is
certainly possible to derive a parametric distribution of double-compressed DCT coefficients for a fixed DCT
mode. Thus, we could estimate Q1

ij together with the nuisance parameters of the generalized Gaussian using
maximum likelihood estimation. This approach, however, does not take into account the effects of embedding
changes on the statistics of DCT coefficients, which can be quite complex and consequently hard to model
(if possible at all in blind steganalysis setting). Since the stego images are our primer concern in this paper,
we did not pursue this interesting idea further.

In the rest of this section, we first describe the double-compression detector and then the primary quan-
tization matrix estimator.

4.1. Double-compression detector

The double-compression detector (DC detector) is an algorithm classifying images into two classes—single-
compressed images and double-compressed images. We implemented it using a soft-margin Support Vector
Machine2 (C−SVM) with the Gaussian kernel K(x, y) = exp(−γ‖x−y‖2). The feature vector is derived from
histograms hij(m), m ∈ {0, . . . , 15} (4) of absolute values of DCT coefficients Dk

ij in the inspected JPEG
image. The histograms in the feature vector are calculated for the low-frequency DCT modes (6) because



SQS Detectable PQS #SVMs

4 S4 = {3, 4, 5, 6, 7, 8} 15
5 S5 = {2, 3, 4, 5, 6, 7, 8, 9, 10} 36
6 S6 = {4, 5, 6, 7, 8, 9, 10, 11, 12} 36
7 S7 = {2, 3, 4, 5, 6, 7, 8, 9, 10} 36
8 S8 = {3, 5, 6, 7, 8, 9, 10, 11, 12} 36

Table 1. Primary quantization steps (PQS) detectable by the multi-classifier for a given secondary quantization step
(SQS). The last column (#SVMs) shows the number of binary Support Vector Machines in the multi-classifier.

the statistics at higher frequency modes is not sufficient for accurate detection for most secondary quality
factors. The feature vector x can be formally written as

x =

{

1

Cij

(hij(0), hij(1), . . . , hij(15))

∣

∣

∣

∣

(i, j) ∈ L

}

,

where Cij are normalization constants
(

Cij =
∑15

m=0 hij(m)
)

. The dimension of the feature vector x is

16 × |L| = 144.

Even though the proposed approach is applicable to JPEG images with any secondary quality factor, we
only created the double-compression detector for two secondary quality factors 75 and 80 (the defaults of
F5 and OutGuess) by training a special C-SVM for each secondary quality factor (SQF). We opted for this
design with separate classifiers over the design with one large classifier, because it offers higher accuracy and
faster training.

4.2. Primary quality factor estimator

Because we cannot estimate the whole primary quantization matrix for most quality factors due to insufficient
data for high spatial frequencies in the JPEG file, we divided the primary quality factor estimator (PQF
estimator) into two parts. The first part detects selected primary quantization steps for low-frequency AC
modes L, the second part finds the closest standard quantization matrix (as defined in Section 2) in the
maximum likelihood sense.

4.2.1. Detector of primary quantization steps

The detector of the primary quantization steps is implemented as a collection of SVM-based multi-classifiers
FQ2

ij
indexed by the value of the secondary quantization step Q2

ij . The standard quantization matrices for

quality factors 75 and 80 only have 5 different quantization steps {4, 5, 6, 7, 8} for modes (i, j) ∈ L. Thus, we
will need to construct 5 multi-classifiers. Each multi-classifier FQ2

ij
classifies into nQ2

ij
classes, where nQ2

ij

is the number of all possible values of the primary quantization step when the secondary quantization step
is Q2

ij . Theoretically, nQ2

ij
= 255 since the quantization step can be represented by an 8-bit number and it

cannot be zero. In practice, we narrow the number of detected primary quantization steps to steps from 34
quantization matrices with quality factors from

Q34 = {63, 64, . . . , 93, 94, 96, 98} .

This set was determined by our database of available JPEG images. The quantization steps detected for
each secondary quantization step are shown in Table 1. The number of SVMs is

(n
Q2

ij

2

)

because we need one

SVM for each pair of classes.

The feature vector x for the multi-classifier FQ2

ij
is again formed by the histogram of absolute values of

the first 16 multiples of Q2
ij of all DCT coefficients |Dk

ij | for all blocks k = 1, . . . , l

x =
1

C
(hij(0), hij(1), . . . , hij(15)), (7)



where C =
∑15

m=0 hij(m) is a normalization constant. The multi-classifier FQ2

ij
is a collection of binary

classifiers, where the outcome of the whole classifier is determined by voting (the “max-wins” scheme10). All
binary classifiers are soft-margin Support Vector Machines (C-SVM) with Gaussian kernel.

Note that the feature vector cannot detect the cases when Q1
ij is a divisor of Q2

ij , when Q1
ij = 1, or when

Q1
ij = Q2

ij because the normalized histograms are almost identical in this case. We classify all three cases

into one common class Q1
ij = Q2

ij . Even though this is a fundamental limitation of the detector, it does not
present problem for subsequent steganalysis, since the histograms of double-compressed DCT coefficients are
almost the same.

4.2.2. Matching the closest standard quantization matrix

Denoting the estimated and the true primary quantization steps as Q̂1
ij and Q1

ij , respectively, the closest
standard quantization matrix is obtained as

Q̂ = arg max
Q∈T

∏

i,j∈L
P (Q̂1

ij |Qij , Q
2
ij),

where T is the set of all standard quantization matrices. Since the number of quality factors is finite and
the calculation of the likelihoods is fast, we can find the maximum by exhaustive search over all Q ∈ T .
The conditional probabilities P (Q̂1

ij |Qij , Q
2
ij) are the probabilities that the classifier detects the primary

quantization step Q̂1
ij when the correct primary quantization step is Qij and the secondary quantization step

is Q2
ij . We estimate these probabilities empirically on images from the training set.

5. EXPERIMENTAL RESULTS

Before presenting the results of the experiments, we describe the training and testing set used throughout
the experiment.

The training set was prepared from 3500 raw images. Double-compressed images were created by Out-
Guess and F5 with message lengths 100%, 50%, and 25% of their embedding capacity. We selected these two
steganographic algorithms because their implementations produce double-compressed images during embed-

ding. The double-compressed images had 34 different primary quality factors Q34 = {63, 64, . . . , 93, 94, 96, 98}
and two secondary quality factors 75 and 80, the defaults of OutGuess and F5. Single-compressed images
with quality factors 75 and 80 were embedded by the following algorithms: F5, Model Based Steganography
without19 (MBS1) and with20 deblocking (MBS2), JP Hide&Seek,1 OutGuess, and Steghide.8 The pay-
loads were the same as for the double-compressed images except for MBS2, where the payload was 30% of
the capacity of MBS1. Examples of cover images in the training set had the same combinations of quality
factors.

The testing set was created in exactly the same manner from a disjoint set of 2506 images. Consequently,
the total number of images with different compression history in the database was |Q34| × 2 × 7 × 6006 +
17 × 6006 ≈ 3, 000, 000.

5.1. Double-compression detector

The classifiers in the double-compression detector were trained on 10000 examples of single-compressed
and 10000 examples of double-compressed images. Images in the training set were selected randomly with
uniform distribution of steganographic algorithms, message lengths, and primary quality factors in the case
of double-compressed images. We did not use images whose histograms of modes from L did not exhibit
double-compression artifacts (the cases when SQS were divisors of the PQS). These were images with SQF
75 and PQF 74, 75, 96, 98 and images with SQF 80 and PQF 80, 96, 98. The hyper-parameters of the C-
SVMs (Gaussian kernel width γ and penalty C of incorrectly classified training samples) were determined
by grid-search combined with 5-fold cross-validation9 on the multiplicative grid

(C, γ) ∈
{

(2i, 2j)|i ∈ {0, . . . , 19}, j ∈ {−7, . . . , 5}
}

.
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(a) F5, secondary quality factor 75
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(b) F5, secondary quality factor 80
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(c) OutGuess, secondary quality factor 75
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(d) OutGuess, secondary quality factor 80
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(e) Cover, secondary quality factor 75
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(f) Cover, secondary quality factor 80

Figure 2. Accuracy of the double-compression detector for secondary quality factors 75 and 80 on double-compressed
cover images and images embedded with F5 and OutGuess algorithms. The x axis is the primary quality factor.



Quality factor 75 80

F5 100% 90.09% 92.87%
F5 50% 95.50% 95.67%
F5 25% 96.77% 96.69%
JP Hide&Seek 100% 95.99% 99.12%
JP Hide&Seek 50% 97.34% 98.82%
JP Hide&Seek 25% 97.37% 98.19%
MBS1 100% 93.25% 98.37%
MBS1 50% 96.43% 98.28%
MBS1 30% 96.73% 98.18%
MBS2 30% 97.05% 98.23%
OutGuess 100% 95.42% 97.29%
OutGuess 50% 97.25% 98.10%
OutGuess 25% 97.20% 97.84%
Steghide 100% 97.30% 98.19%
Steghide 50% 97.75% 97.95%
Steghide 25% 97.59% 97.94%
Cover 97.22% 97.35%

Table 2. Detection accuracy of double-compression detector on single-compressed JPEG images embedded by various
steganographic algorithms with different payloads.

Figure 2 shows the accuracy of the double-compression detector on double-compressed images from the
testing set (cover images and images embedded with F5 and OutGuess algorithms). The accuracy of the
detector is generally above 95% and decreases for higher primary quality factors (92 and above). This decrease
is to be expected because the double-compression artifacts in histograms of DCT coefficients are becoming
more subtle. Moreover, increasingly more modes start sufferring from the “divisor” problem described in
Section 4. Also notice that with higher embedding rate, the classification accuracy also decreases. This is
especially true for images fully embedded with F5. This loss of accuracy is most likely due to the fact that
F5 considerably changes the shape of the histogram because of the the shrinkage.

Notice that images with PQF 74 and SQF 75 were not recognized by the double-compression detector
as double-compressed. This is because all quantization steps for modes from L are identical. A similar
situation occurs for images with PQF 96 and 98 regarding their SQF. Since all quantization steps for modes
from L are equal to 1, the histograms again do not exhibit traces of double-compression. Because the DCT
coefficients are negligibly influenced by double-compression, we do not consider these two cases as a failure
of the double-compression detector.

The overall accuracy on single-compressed JPEG images, shown in Table 2, is generally above 96% for all
stego algorithms with the exception of fully embedded F5 images. The accuracy gap of about 6% on images
fully embedded by F5 is due to the modification of the DCT histogram by embedding, as already discussed
above. Notice that for images embedded with F5 with shorter message length, the detection accuracy is
comparable to other algorithms. This improvement in accuracy is attributed to the decreased number of
embedding changes due to matrix embedding.

We next compared the proposed approach (that we call Multiple-counting features) to the double-
compression detector that uses the Benford feature set (Section 3) by training two separate C-SVM classifiers—
one employing the multiple-counting features and the other employing Benford features. The training set
of both classifiers contained 3400 examples of single-compressed and 3400 examples of double-compressed
images, all with (secondary) quality factor 75. We excluded images with primary quality factor 74, 96, and
98 from training and testing sets because DCT coefficients with spatial frequencies in L are not technically
double-compressed, as we explained above.

The classifiers were compared using the minimum total error under equal priors, PE = 0.5(PFA + PMD),
where PFA is the probability of a single-compressed image being recognized as double-compressed and PMD

is the opposite. Errors were calculated over all images from our database with SQF 75, PQF 74, 96, and 98



excluded. The error, PE , of the classifier employing multiple-counting features was 2.12% without any bias,
while for the classifier employing Benford features PE = 53.67% with a bias towards detecting images as
double-compressed. The results indicate that on our database, Benford features cannot be used for detection
of double-compression, as the performance of the classifier utilizing them is essentially equivalent to random
guessing.

5.2. Primary quantization step detector

The binary C−SVMs in the multi-classifiers FQ2

ij
for estimation of the primary quantization steps were

trained on images classified by the DC-detector as double-compressed. The training set of each C-SVM
contained 20000 examples—10000 examples from each class with a given combination of primary Q1

ij and

secondary Q2
ij quantization steps. As in the case of the DC-detector, the hyper-parameters of C-SVMs were

determined by grid-search over the multiplicative grid

(C, γ) ∈
{

(2i, 2j)|i ∈ {4, . . . , 18}, i ∈ {−8, . . . , 6}
}

,

where we evaluated each point by a 5-fold cross-validation. The search was performed independently for
each C-SVM, which is rather costly, but it ensures the best results.

We compared the accuracy of the proposed primary quantization step detector to the Neural Network
(NN) approach6 on our database of testing images. The proposed detector performed better, especially on
stego images. This is not surprising because our estimator was also trained on stego images and because SVM
classifiers generally perform better than Neural Network classifiers (unless Neural Networks are carefully
tuned for a given problem). The rare cases, where the Neural Network estimator performed better all
corresponded to the divisor cases, which have negligible influence on steganalysis.

5.3. Primary quality factor estimator

The maximum likelihood estimation of the standard quantization matrix requires the knowledge of the
conditional probabilities P (Q̂1

ij |Q
1
ij , Q

2
ij) describing the accuracy of the primary quantization step detectors

FQ2

ij
for a given primary quantization step Q1

ij . We calculated these probabilities on the images from the

training set.

The accuracy of the estimator as function of the primary quality factor calculated on images from the
testing set is shown in Figure 3. We can see that the estimator is robust with respect to steganographic
modifications. The exception are images fully embedded by F5, which can be attributed to the shrinkage
effect.

The accuracy exhibits some sharp drops all caused by the same mechanism (with the exception of images
embedded by OutGuess with primary quality factor 75 and secondary quality factor 80). The primary
quantization step estimators were constructed in such a way, that the divisor cases, when the primary
quantization step Q1

ij is a divisor of the secondary quantization step Q2
ij , are detected by default as Q2

ij . Let
us now assume that Q and Q′ are two primary quantization matrices for which

Qij 6= Q′
ij ⇒ Qij |Q

2
ij and Q′

ij |Q
2
ij , for (i, j) ∈ L.

Let us further assume that for instance
∏

i,j∈L P (Q̂1
ij |Qij , Q

2
ij) >

∏

i,j∈L P (Q̂1
ij |Q

′
ij , Q

2
ij). If we are analyzing

an image with primary quantization matrix Q′ and all quantization steps are detected correctly, the ML
estimator will incorrectly output Q instead of Q′ because Q has a larger likelihood. Even though this is a
flaw of the estimator that cannot be easily overcome, it does not impact subsequent steganalysis, because
the histograms of of the double-compressed DCT coefficients of the mode (i, j) are in both cases (quantized
either by Qij or Q

′

ij) the same (the divisor effect).

We illustrate this phenomenon on an example of images with the primary quality factor 88 and the
secondary quality factor 75. Most of the time, the primary quality factor is estimated as 89. We denote
the quantization matrices corresponding to quality factors 89, 88, and 75 as Q(89), Q(88), and Q(75),
respectively. By examining the quantization steps of Q(89) and Q(88) for frequencies (i, j) ∈ L, we observe
that Q(88) and Q(89) only differ when (i, j) = (0, 1), in which case Q1

01(89) = 3, Q1
01(88) = 2, and Q2

01(75) =
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(a) F5, secondary quality factor 75
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(b) F5, secondary quality factor 80
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(c) OutGuess, secondary quality factor 75

0

20

40

60

100

OutGuess 100% OutGuess 50% OutGuess 25%

D
et

ec
ti
o
n

A
cc

u
ra

cy

7
0

7
1 7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

80

8
1 8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1 9
2

9
3

9
4

9
6

9
8

(d) OutGuess, secondary quality factor 80
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(e) Cover, secondary quality factor 75

0

20

40

60

100

Cover

D
et

ec
ti
o
n

A
cc

u
ra

cy

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1 7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

80

8
1 8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1 9
2

9
3

9
4

9
6

9
8

(f) Cover, secondary quality factor 80

Figure 3. Accuracy of the primary quality factor estimator for secondary quality factors 75 and 80 on double-
compressed cover images and images embedded with F5 and OutGuess algorithms. The x axis is the true primary
quality factor.



6. If all primary quantization steps are correctly detected (Q̂1
01 is detected as 6), then the estimator of

the primary quality factor will prefer the quality factor 89 over 88 because the conditional probability
P (Q̂1

01 = 6|Q1
01 = 3, Q2

01 = 3) is larger than P (Q̂1
01 = 6|Q1

01 = 2, Q2
01 = 3) and all other involved probabilities

are the same.

As for the case of the drop in the accuracy on images embedded by OutGuess with the primary quality
factor 85 and the secondary quality factor 75, we strongly believe that it is due to the effect of embedding
changes. We found out that most of the time, the primary quality factor was estimated as 84 instead of 85.
The difference between the quantization matrices of these quality factors in L is for frequency (0, 1), where
Q01(84) = 4 and Q01(85) = 3. Because Q01(75) = 6, this is not the case of the divisors discussed above.
Figure 3(c) shows that the accuracy of the estimation improves as the length of the embedded message
decreases, which supports our hypothesis about the influence of embedding.

6. CONCLUSION

The methods presented in this paper were developed primarily for blind steganalysis of JPEG images. They
were designed to accurately detect double-compressed JPEG images and estimate their primary quantization
tables not only for double-compressed cover images but also for double-compressed images with stego content.

We described one method for detection of double-compressed JPEG images that uses support vector
machine classifiers with features derived from the first order statistics of individual DCT modes of low-
frequency DCT coefficients. We also presented a Maximum Likelihood estimator of the primary quality
factor in double-compressed JPEG images. This tool is essential for proper calibration of double-compressed
images in both targeted5and blind steganalysis techniques.13, 15

The accuracy of the double-compression detector and the primary quality factor estimator was evaluated
empirically on a testing database containing 1, 200, 000 single- and double-compressed images with combina-
tions of 34 primary quality factors and 2 secondary quality factors (the default factors of F5 and OutGuess).
Generally, the accuracy of both methods is better than 90% and the methods are robust against embedding
operations. Even though there exist combinations of the primary and secondary quality factors, where the
accuracy is low, their influence on subsequent steganalysis is negligible because those cases correspond to
exactly the situations when the artifacts of double-compression are not present.
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