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Estimation of probability densities by empirical 
density functionst 
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(Received 17 March 1977) 

The empirical density function, a simple modification and improvement 
of the usual histogram, is defined and its properties are studied. An analysis 
is presented which enables the interval width to be chosen. The estimators 
are modified for the important practical case of bounded random variables. 
Finally, the problems of writing a programme to compute the functions are 
considered along with some Monte Carlo examples and a practical example 
from the National Uranium Resource Evaluation study conducted by the 
United States Energy Research and Development Administration. It is 
recommended that these techniques be introduced at all levels of statistical 
courses so that they will become more widely utilized. 

1. Introduction 
The first technique to be taught in an elementary statistics course is often the 

construction of histograms. On the surface, constructing histograms is easy, 
and students quickly understand why histograms should be constructed. For 
applications, displaying data in the form of histograms is a most important 
statistical activity. A well-constructed histogram often tells an experimenter 
things at a glance that would be almost impossible to ascertain were the data 
displayed in any other manner. Therefore, even though the elementary course 
quickly moves on to more ' interesting ' topics, it is important to carefully 
consider histograms and the display of data. 

Before constructing a histogram, three factors must be determined : (i) the 
number of classes, (ii) the width of each class, and (iii) the lower limit of the 
first class. None of these choices is easy, although certain rules of thumb have 
been developed. The question of the number of classes was considered by 
Sturges [l] who in 1926 proposed that 1 +logz (n) classes should be used for n 
observations. His analysis was based on the normal distribution, and frequently 
gives too few classes. Recently, Doane [2] considered these problems and 
devised an algorithm for constructing histograms that can be implemented 
on a computer. It is worthy of note that such an algorithm was not developed 
until late 1976. 

The object of this paper is to present and study empirical density functions, 
a histogram-like estimate of the underlying density function that is easy to 
understand and introduce. I t  is frequently observed that the convergence of 
empirical density functions to the density function is not good, but it is also 
most important to observe that they are superior to the usual histograms. 

This work was carried out under the auspices of the 
United States Energy Research and Development Administration under contract W-7405- 
ENG. 36. 
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Empirical density functions belong to a large class of non-parametric density 
estimators, a field surveyed by Wegman [3, 41. We restrict ourselves to 
empirical density functions (' naive estimators ') because (i) they are a simple 
modification of histograms and therefore easily introduced, and (ii) their con- 
vergence properties are equivalent to those of the larger class of estimators. 
We should point out that while our material could be naturally introduced after 
empirical distribution functions in any senior level course, it is rarely mentioned 
in such texts [5, 6, 71. 

We introduce our estimators, derive some simple properties, and then 
present an analysis which enables an interval width to be chosen. Next, the 
estimators are modified for the important case of bounded random variables, 
and the expected sample moments of the empirical density function are cal- 
culated. Finally, the problems of writing a programme to compute the functions 
are considered along with some Monte Carlo examples and a practical example. 

We hope this paper will also show that these estimators can be introduced 
and studied in both elementary and more advanced courses. We feel it is 
important that this be done. 

2. Empirical density functions 
Let XI, X,, . . ., X ,  be independent, identically distributed random variables 

The empirical with density function f ( x )  and distribution function F(x). 
distribution function is defined by 

# {Xg : xg 5 x }  
n F,(x) = 

where #A denotes the number of elements in the set A. 
of the binomial distribution [5], it is seen that 

By an easy application 

lim FJx) = F(x) 
-53  

with probability 1. 
relationship between F,(x) and F(x). 

fore, we consider the approximate derivative of F,,, 

In  fact, the Kolmogorov-Smirnov test [6] is based on the 

There- A natural estimator for f ( x )  is suggested by the fact dF(x)/dx = f ( x ) .  
J 

F,(x + A) - F,(x - A) 
2h gn(x) = 

where h > 0. This estimator is referred to as the naive estimator in some of the 
literature [3], but here we follow RCvCsz [8] and refer to g,(x) as the empirical 
density function. 

For an alternate derivation, consider a modification of the classical histogram 
[7] in which a rectangle of height 1 and width 2h is centred at each data point Xg. 
At any real number x, consider the contribution from all Xi:  

Y(x)= #{i: X f - h < x l X { + A }  

Clearly, since there are n rectangles, each of area 2h, 
m 
j Y(x) dx=2nh 

-03 
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Thus, Y(x)/2nA will be a normalized function. 
bution, 

Also, by the binomial distri- 

P(Y(x)=K)= (;) p k ( 1  -p)"-k 

where p = F(x +A) - F(x - A) is the probability of each Xf satisfying 
X f  -A < x I Xt + A  or x - A I Xi < x + A. The connection with g,(x) arises because 

Y(x) = n(F,(x + A) - F,(x - A))  

g,(x) = Y ( 4  /2nA 
so that 

As with the empirical distribution function, 

F(x +A)  - F(x -A) 
2A lim g,(x) =g(x) =- 

n+ m 

with probability one. 
take h=A,-+O. 
point which is taken up in the next section. 

From this result it is clear that as n+;o, we should 
It  is important to find the rate at which A, converges to 0, a 

3. Choice of h 

Rosenblatt [9] has shown that for a criterion of expected mean-square error, 
the best A = A, is a constant times n-l/5, assuming, however, the existence of three 
derivatives offat x. Parzen [lo] has also treated the problem in a similar way. 
We employ the Kolmogorov-Smirnov statistic to obtain bounds using only 
properties of f ' ( x ) .  

Now, 

F ( x  + A) - F ( x  - A) F( x + A) - F( x - A) 
2nA 2A l + l  

Then, to bound the first quantity on the right-hand side, 

Y(x)  ++A)-F(x-A)  F,(x-A)-F(x-A) I=- 2h I + l  
Let D,(a) satisfy the equation P IF,(x) -F(x)I > D,( 

Then 

Y(x) F(x+A)-F(x-A)  I=- 2h 

with probability at least 1 - a. To bound the second quantity 
side, note that 

on the right-hand 

F"(x,)( f A2) F ( x * A ) = F ( x ) + F ' ( x )  (*A)+-  -- 2 
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A 
4 = - If’(4 --fl(XZ) I 

If If’(x)I I C for all x, then 

(Small A makes the approximate derivative of F close to f but too small a value 
for A makes g,(x) very rough.) The A which minimizes &(A) is 

A ( 1 )  = (2D,( a) /C) l  12 

A (1  ) = (ZK( a)/c)1/2n-1/4 

and, if we let D,(or)=K(cy)n-1/2, the asymptotic form given in [6], then 

If lf’(x)-f(y)l  I Llx-y l ,  then 

The A which minimizes B2(A) is 

A (2 ) = ( D , ( ~ ) / Z L ) ~  ’3 

A@) = ( ~ ( 4 / 2 ~ ) 1 1 3 n - i / ~  

and the asymptotic form is 

I t  should be emphasized that the results derived here hold uniformly (for 
all x) with probability at least 1 - 01. The approach of Rosenblatt [9] yields 
an optimal A of O(n-ll5) which is between our answers of O(n-l/*) and O(n-l/G). 

4. Bounded random variables 
For many applications, it is known that a I X and/or XI b for given con- 

stants a and b. However, the data will often be such that g,(x) is positive for 
x < a  or b <x and it is therefore important to adjust g,(x) so that it is zero for 
x < a  or b < x. Later we illustrate how important this is in estimating f ( x )  by a 
Monte Carlo example. 

If we assume that a s  X and use A = A , > O ,  the x values of interest are 
a I x < a + A .  For these values of x, 

P( Y(x) = K) = F(x + A )  - F(a) = F(x + A )  

Rather than estimate f ( x )  by 

F(x  + A) F ( x  + A) - F(a) -- - 
2A 2X 

we use 
F ( x  + A) F ( x  + A) - F(a)  
x + X - a  x + A - a  
-= 
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The corresponding (modified) empirical density function is then 

For the general case of a I X and/or X _< b, the function g,*(x) is defined by 

‘(‘1 i f a s x < a + A  
n(x + h - a)’ 

yo if a + A < x < b - A  2nh ’ 

if b - h < x l b  
n(b + A - x)’ 

0, otherwise 

Notice that we still have the property that gn*(x)+f(x) for all x,  with probability 
one. This estimator does not not seem to have been given elsewhere, probably 
due to the emphasis on theoretical results. 

5. Expected moments 
Since an experimenter obtains information about the distribution by 

examining gn(x), it is of some interest to calculate the expected moments of 
gn(x). Let 

m 

mn‘= xngn(x) dx 
-m 

and 
p,’ = E(X”) 

where n 2 0. Now, if A = (x- A, x + A),  

1 
= - xn(F(x + A)  - F(x - A))  dx 2A --m 

1 0 0  w 

l W  O3 
= - j f ( t )  j xnIA(t) dx dt 

2h-, -03 

1 -  
2h(n + 1) --oo 

j f ( t ) ( ( t  + - ( t  - dt - -- 
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Using the binomial theorem, 

n- k even 
Therefore 

For n= 1,2,  

and 
A2 

3 E(m2’) = i[po’A2 + 3p2’] = - +p2‘ 

The expected variance, then, off,(x) is 
ha 

E(m2‘ - (ml‘)2) = ’?; + u2 

where o2 is the variance of the underlying distribution. 

6. Computing empirical density functions 
As is frequently the case, special problems arise when empirical density 

functions are actually being computed for real data. In  this section we consider 
these problems, and illustrate the technique by two Monte Carlo examples and 
one practical example. 

Since each Xi  has a rectangle 
centred at Xg which contributes to gn(x), then there are (no more than) 2n 
discontinuity points in gn(x). The 2n points are then ordered as Xl - A, Xl +A,  
X2-A, ..., X,+X. Then, between any two adjacent points, the height of 
g,(x) is constant and proportional to the number of Xt’s within a distance X from 
x. 

In  5 3 we 
found that 

X = (2K(  a) /C)l  /an-1/4 

where K(a) is a constant from the Kolmogorov-Smirnov statistic and C is an 
upper bound for If’(x) I. 

Suppose that the sample is X,, ..., X,. 

This property makes gn(x) easy to plot. 
The main problem, then, is to find a good first guess for h=Xn. 

For a value of C, we consider the normal density 

and by elementary calculus we obtain 

ImI 5 (d(2+J2)-- l  
If ar=0.05, then K(a)= 1.36 and 

A (1 1 = 3 *35 --1/4 



Estimation of probability densities by empirical density functions 133 

Of course, in practice one can let 

(1 ) = 3.35sn-1/4 

1 "  
n - l i Z l  

where s=- 2 ( ~ g - 2 ) ~  is the usual estimate of cr. However, using s 

to estimate u is very sensitive to outliers. We therefore use the quartile 
deviation 

qd= (50.75 -50.25)/2 

where 5, is a number such that 10001% of the data lie below. An elementary 
calculation with the normal density used above shows the average value of qd 
to be 0.676~.  Therefore we modify h ( l )  to 

= 4.96 qd n-1/4 

In  figure 1 ,  we illustrate our techniques with a sample of 15 normal random 
variables with mean 0 and variance 1.  These were generated by a standard 
random variable generator. and hence is a 
very uneven plot. Notice, however, that a small value of h allows one to look at 
the structure of the data itself in some detail. Figure 1 (b) uses h = h ( l )  and is a 
good estimate of the underlying density. Finally, figure 1 (c )  uses a large 
value of h and consequently has a very flat plot. 

In figure 2, we consider a Monte Carlo sample of 50 exponential random 
variables with density 

Figure 1 (u) has h smaller than 

exp (-x), x 2 0  

{ 0, x<o  
f (XI = 

Figure 2 ( a )  uses Note that the 
estimate suffers from the fact that g50(x) > 0 for x < 0. Ry using the estimator 
g,*(x) in 8 4, figure 2 (b) is produced and, as can be seen, gives a much better 
estimate of f ( x ) .  

Part of the National Uranium Resource Evaluation programme [ll], is an 
aerial radiometric reconnaissance in which gamma radiation intensities are 
measured by instruments on a low flying aircraft. The aircraft flies transects 
or map lines which are 50 to 100 miles long and approximately five miles apart. 
The problem arose of producing a graphical representation of the data for 
100 consecutive map lines in a region near the Texas gulf coast. 

An empirical density function was computed for each map line according 
to the above techniques and, to present the data in one picture, map lines are 
given on one axis while counts per second are given on the other. These 
100 empirical density functions appear in figure 3 as a three-dimensional plot. 

Since many properties are obscured by higher densities on earlier map lines, 
the information contained in figure 3 ( a )  is represented in figure 3 (b) ,  as a light- 
ness-darkness plot. Darker points correspond to points of higher density, and 
hence the representation is two-dimensional. 

without the information that P ( X r  0) = 1.  
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n 

-’I 5 -2.0 -1.5 -1.0 -0.5 0 0  0.5 1.0 1.5 2.0 

Figure 1 .  Empirical density functions for a sample of size 30 from a standard normal 
population. (a) A=0*625 <A(1). (b)  X@)=1*26. (c) A=2*0>h(’ ) .  
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Figure 2. Empirical density functions for a sample of size 50 from an exponential popu- 
lation with mean 1 .  (a) No use of X>O. (b) Use of X>O. (See Q 4.) 

7. Conclusion 
We have demonstrated the usefulness of density estimation, both at various 

levels of statistical courses and in practical situations. The utilization of 
density estimation in practice will not become widespread until it is commonly 
taught in courses. 

Of course, empirical density functions are only the simplest of a large class 
of density estimators. 

. 

The general estimator [12] has the form 

where w( ) is called the kernel. It is clearly possible to use smooth kernels 
such as normal densities, which allows very smooth estimates g,( - ). However, 
the convergence properties do not seem to depend on w( * ) [3], and we chose to 
work with the empirical density functions for this reason and because of their 
probabilistic simplicity. 
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Figure 3. Empirical density functions for gamma counts per second for 100 adjacent 

map lines. (a) Three-dimensional representation. (b)  Lightness-darkness rep- 
resen tation. 
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