
 Estimation of Project Size Using User Stories
Murad Ali, Zubair A Shaikh , Eaman Ali

{ali.murad, zubair.shaikh, k123421}@nu.edu.pk
National University of Computer & Emerging Sciences, FAST, Karachi, Pakistan.

Abstract—There exist no concrete models for project size

estimation in agile, contrary to traditional projects. In agile,

contrasting approaches like standard component estimation,

wideband-Delphi or expert consensus and function points

technique do not proof much workable for early estimation

of size, cost and duration due to uncertain initial

requirements. Estimation in agile projects is important

regardless of the immature nature of the requirements, on

which they work. Next is the translation of effort estimates to

project size or vice versa, which is equally important.

Technique researched in this paper follows the user stories,

which get us most possible accurate estimates. Number of

story points with a story matter as well for correct size of

story. There are certain specific metrics contained in a story

which help in identification of its size and reliability. These

factors, in weight age of story point are used to calculate

sizing of an agile project.
Index Terms—Estimation, Project Size, User Stories, Agile.

I. INTRODUCTION

Software projects, being one off in nature, contain an
element of uncertainty within themselves. This element
amplifies with the choice of development life cycle
adopted in their production. With the traditional waterfall
model, comes a basic assumption of clear and well settled
requirements, before the start of the project. This attitude
is not realistic as in the real world projects customer has a
very less, near to no idea of the product he wants. Usually
there is just a single flight of imagination which drives
huge enterprise projects from the kick start. This
tangibility needs to be translated in product and its
development stages, hence the emergence of agile
framework. Like any other SDLC projects, success of agile
projects depends on its realistic estimates, whether of
effort or project size. This estimation fluctuates drastically
cause of the varying nature of requirements. This paper
focuses on the challenge of discovering such metrics and
techniques which determine as close as possible estimate
of the project size, hence getting near to real project cost
and effort. User stories developing in the initial phases are
taken as input here and then are categorized based on their
complexity and effort required to implement them. This
categorization gives a fairer idea so as to which stories
should come in earlier iterations and which can be left for
quick sprints. After every iteration this categorization can
be revised, based on the experience achieved so far, so as
to calculate more accurate estimates of the remaining
stories and their efforts.

II. RELATED WORK

Agile methodology refers to an approach which caters for
the inevitable factor of unpredictability that comes in play

when developing relatively complex software as input of
stakeholders is taken at every increment.

Unlike the old and famous 'Waterfall model', which the
software industry has been following for several years,
agile methodology introduced by Dr. Royce provides an
'inspect and adapt' approach. Requirements are not clear in
this approach, and as the project is developed in multiple
phases, the team gets a chance to gather requirements on
the fly and steer the project in another direction if
necessary. Most of the time, teams spend so much time up
front in gathering requirements, that they are hesitant to
overthrow them as the needs of stakeholders evolve. Agile
gives a solution in the form of ‘User Stories’. These can be
considered as light weight requirements, which consist of
conversation (between the user & the team) and
confirmation. Conversations can happen at any time
during the project lifecycle, which also serves the purpose
of creating test confirmations (i.e. the acceptance criteria
that can be turned into tests).

Product Backlog: The product backlog is a collection of
user stories, themes and epics.

User Stories: The most paramount stories are on the
highest point of the item build-up booked to be actualized
first in the following few emphases. Those are granular
user stories, where every story will convey the
unmistakable quality to the item holder.

Themes: The item accumulation stacks are the topics.
Topics are accumulation of a few related user stories.
Those user stories must be further prepared before they are
prepared for execution.

Epics: At the bottom of the product backlog are the epics.
Epic as its name suggests is a gathering of a few to over
several of user stories that help us to understand the
backlog.

Accurate estimate of software size is an essential element
to calculate project cost and schedule. In general, size
estimates are based on KSLOC or SLOC, or as function
points. But this is not how this paper presents the expected
estimation technique. The technique explored here is based
on user stories, their complexity and time factor associated
with them, explained in the later sections. Several
approaches have been developed for accurately estimating
the project size. This is of paramount importance because
it influences cost, budgeting, resources and scheduling.
Some of these techniques include: Wideband Delphi,
Component, Estimating and Function Points etc.

International Conference on Recent Advances in Computer Systems (RACS 2015)

© 2016. The authors - Published by Atlantis Press 54

In Wideband Delphi technique, expert opinion is used to
estimate the size of the project, until a consensus has been
made. In component estimating, size of previous similar
components is used to estimate the size of the current
component, hence the software. Function point estimation
uses the correlation that greater functionality requires a
larger program. This method uses common functions of
software to produce a weighted count [1].

The focus of our paper is not on these techniques, as
requirements are not established at the beginning. User
stories have emerged as an important factor to estimate the
size of the project in Agile Software Development. In
another work [2], a survey was conducted and
questionnaires were sent to experts all over the world. It
was observed that the whole process of agile development
starting from User Stories to small increments was not
followed in the IT industry. Some steps were followed, but
only conditionally. Pair programming could not be
observed as the costs related to it were unacceptable. In an
article “User Stories: An Agile Introduction” [31] an
anonymous author states that there are two areas where
user stories affect the planning process on agile projects.
One of them is ‘Estimating’ where he states that
Developers are responsible for estimating the effort
required to implement the things which they will work on,
including stories. Although you may fear that developers
don't have the requisite estimating skills, and this is often
true at first, the fact is that it doesn't take long for people
to get pretty good at estimating when they know that
they're going to have to live up to those estimates.] Large
stories, sometimes called epics, would need to be broken
up into smaller stories to meet these criteria. In [3], a new
technique was established using user stories for project
estimation. A new terminology, Story Point, is introduced.
It is a unit to measure the size of a user Story or feature.
These points are relative in nature. A story that is assigned
2 points is considered to take twice the effort compared to
a story which is assigned a single point. In addition to this,
expert opinion may be taken, or estimates of an
experienced developer can also be taken into account.

Another term 'Velocity' is used, which is a measure of
team's rate of progress per iteration. The estimated velocity
may not be 100% accurate. There may be hidden factors
that trigger delay in the deployment of the software. In
[29], the idea of Story Point is further clarified. Story Point
is an abstract measure based on the size of functionality.
Some questions should be answered, for e.g. what is
involved in the story? , how big is the story relative to other
stories that the team has already developed? These story
points have to be re-estimated if the team finds significant
flaws in its understanding. [4] Explains how a study was
conducted aimed at finding out how teams have
incorporated agile techniques like scrum and XP, and have

improved upon them. According to the results, most teams
started giving accurate estimates after 3-4 sprints. But the
criteria upon which teams were estimating is not
explained. Silent grouping is another technique devised by

Jean Tabaka [5]. When discussing user stories, and having
meetings over them, sometimes developers and managers
engage into endless conversations. Silent Grouping
eliminates this and helps in processing large amounts of
information. There are mainly 4 levels. Preparation,
individual placement, group placement, and discussion. In
preparation phase, expectation levels are set. In individual
placement, each member of the team puts up a user story
on the board. Once all user stories are put up, we move on
to the next phase. In group placement, each team member
silently gives points to each user story. Once all members
have given points, user stories are prioritized. A discussion
is held to have all the team members on the same page and
project is continued. It has also been observed that there
can be a tendency to focus too early on the few user stories
where there is disagreement, consequently it takes longer
to put all the user stories on the board. Though, overall,
time is used efficiently, hence this method gives a better
cost scenario. Another terminology used in Agile
Development is T-Shirt sizing [6]. The concept is easy to
grasp. Just like T-Shirts come in different sizes such as
small, medium, large and XL, user stories can also be
categorized into further sections. Carrying out estimation
on these sub categories is more important than estimates of
absolute time or effort. The question is, each team will
have its own standard of small, medium and large stories,
then how to converge to a unanimous solution? For
example, team X will consider Medium story to be 50%
more complicated than a Small story, but team Y may
consider it to be 25% more complicated. If a team manages
to standardize this size estimation of a user story over a
considerable period of time, then the team has to determine
its velocity. I.e. how many large/medium/small stories has
a team completed in one iteration? Once it has been
calculated, the team can be in a better position to predict
that in how much time the other remaining iterations will
be delivered.

[28] Says that a user story shortly summarizes the
functional requests by customers. It has three
characteristics, defined by 3 C’s, card, conversation and
confirmation. Mike Cohn proposed an I.N.V.E.S.T
criteria, which determines whether the user story is
Independent, negotiable, has value for business, and is
estimable, small and testable. However in professional
practice, it was observed that these practices were ignored
at large. The USP value cannot be considered as a measure.
It is a number only meaningful to the team that have
assigned it. From team to team, this User Story Point will
vary. Agile teams measure velocity, defined by the
number of user story points completed per iteration over
time. When teams have historical data, they can use it in
estimation. However, not all teams cumulate or have
access to historical data and often rely on an estimate of
their upcoming velocity to perform their preliminary
project estimate. Also, teams assume that team
composition, chosen technology and development process
will not change which changes nevertheless.

55

Challenges about sizing Agile projects lies in the purpose
of the measurement outcome and in the moments at which
measurement should be done to fulfill this purpose,
namely:
• Benchmarking;
• Upfront project estimation and budgeting;
• Iteration planning and project re-estimation;
• Process improvement monitoring.
Also, the author has suggested a COSMIC method, which
can be accessed from www.cosmicon.com. Here, users are
sought to help and improve the method and the dataset.

[26] Emphasizes that user stories should not be confused
with ‘user requirements’. User stories are short, whilst user
requirements are much detailed. User stories help to bridge
the gap between the developer and customer. The author
has described the alliteration Card, Conversation, and
Confirmation, which defines the key elements of a user
story. Recommendations for developing good user stories
in accordance with the INVEST model and specifically
described how small stories increase throughput and
quality are provided. A set of patterns for splitting large
stories into small stories has also been described, so that
each resultant story can independently deliver value in
iteration. Also, guidelines for creating spikes as story like
backlog items for understanding and managing
development risk are given. In [25], a pre-project
perspective is taken where Function Points (FP) are
difficult, if not impossible to apply since they require a
thorough understanding of the requirements and hence
typically also initial analysis results such as the system
operations that need to be implemented in the upcoming
project. This information is usually only discovered within
the project and thus Function Points are not well suited
where merely a set of rudimentary requirements is
available. The author has proposed combining COCOMO
II with the relatively novel Use Case Points [Karner 1993]
approach that will allow deriving comparatively more
precise estimates based on the requirements of a project.
Moreover, they have analyzed the required minimum
information content of preliminary use case briefs and
sketched how Use Case Points can even be applied as a
pre-project estimation method. The problem highlighted in
[23] is while working with user stories. One major
problem, is that if you have like 300 activities to
implement and you then are going to discuss them all in
detail in the group, it takes a very long time. The
developers also noticed some problems when using user
stories. User stories have become fuzzier and a bit more
general. One problem is how to document and store these
user stories. Sometimes, the feeling is that you’re doing the
same things twice. Story points can increase the efficiency
of the team because if the whole team takes part in the
estimation all team members will have a better
understanding of the tasks that have to be carried out and
the amount of unnecessary work done will be reduced.

Literature shows that the more people that take part in the
estimation process, the better the estimate will be. Also,
the estimates will also be better if done by the same people

that will do the implementation later. However, including
the entire team in performing estimates may cause
increased project costs. This has not been considered in
this study. When working with user stories and, to some
extent, story points, the discussions are held at a non-
technical level. This makes it possible for non-technical
people to take part and to contribute.
According to an article, ‘Writing a Great User Story’ by
Agile Expert Ronica Roth [30], a user story represents a
small piece of business value that a team can deliver in an
iteration. While traditional requirements like use cases try
to be as detailed as possible, a user story is defined in 3
stages:

• The brief description of the need
• The conversations that happen during backlog
 grooming and iteration planning to solidify the
 details.
• The tests that confirm the story’s satisfactory
 completion.
Some mistakes are also highlighted in this article. These
include:

• Too formal or too much detail. Product owners with
good intentions often try to write extremely detailed user
stories. If a team sees a story at iteration planning that
looks like an IEEE requirements document, they often
assume that all the details are there and will skip the
detailed conversation.

• Technical tasks masquerading as stories. Much of the
power of Agile comes from having a working increment of
software at the end of each iteration

• Skipping the conversation. Stories are intentionally
vague before iteration planning. If you skip the acceptance
criteria conversation, you risk moving in the wrong
direction, missing edge cases or overlooking customer
needs.

[22] Says that story point is a relative measure heavily used
for agile estimation of size. The team decides how big a
point is, and based on that size, determines how many
points each work item is. But this technique demands a
degree of consistency across teams for a more streamlined
approach to solution delivery. This generates a challenge
for CMMI organizations to adopt Agile in software
estimation and planning. The proposed process and
methodology are applied in a CMMI company level three
on different projects. By that, the story point is used on the
level of the organization, not the project. Then, the
performance of sizing process is measured to show a
significant improvement in sizing accuracy after adopting
the agile story point in CMMI organizations. To complete
the estimation cycle, an improvement in effort estimation
dependent on story point is also introduced, and its
performance effect is measured. [21] Recognizes that in
the case of agile projects, story points are used to measure
the effort required to implement a user story. Hence in this
paper, total number of story points are used along with
project velocity to calculate the effort required for agile
software development. In order to achieve better

56

prediction accuracy, various kernel methods-based support
vector regression techniques are introduced.
The performance of the various models generated using
SVR kernel methods can be evaluated by using the
following evaluation criteria.
* Mean Magnitude of Relative Error (MMRE)
* Prediction Accuracy (PRED)
The results obtained are optimized using four different
support vector regression kernel methods. At the end of the
study, the results generated are compared in order to access
their accuracy. While comparing the results obtained using
various SVR kernel methods, it can be concluded that RBF
kernel-based support vector regression technique
outperformed other three kernel methods. Poor effort
estimation is one of the main problems, as highlighted in
[18], which impact the success of the software projects.
Underestimation results in schedule and budget overruns,
on the other hand overestimation can result in inefficiency
and waste of resources. Several size measures, including
source lines of code (SLOC) and function points, have
been defined but SLOC can only be measured at the end of
the project. Functional size measurement methods are
much more suitable for early size measurement. However,
many of these methods are suitable for procedural business
information systems and effort estimation based on these
measures does not usually consider the software
development methodology used. The solution proposed is
an effort estimation method for projects employing object
oriented software development methodology. Use cases
are broadly applied in object oriented software
development and use cases are usually key requirements
inputs to object oriented analysis and design activities.
Therefore, use cases are valuable resources for software
size measurement and effort estimation. The authors have
considered problem domain models rather than design
class diagrams for size and effort estimation. The simplest
technique used to measure the size of a program is Source
Lines of Code (SLOC), as identified in [17] but SLOC
required to develop the same application in two different
platforms may not be the same. Also, LOC is dependent
on the programming language. A better technique
proposed was Function Point Analysis (FPA). Function
Points have to be counted manually (drawback is that it is
based on human decisions). The counting process cannot
be automated. An extension to FPA is the Use Case Points
method for sizing and estimating projects developed using
object oriented methods. The main drawback of this
approach is that use case based estimation method based
on UML cannot be done during the early project phase as
the use case document is usually prepared after project sign
off and requires detailed analysis.

Story Point is a unit to measure the size of a user Story or
a feature. A point is assigned to each user Story. These
Points are relative in nature, i.e. a Story that is assigned a
two point value is assumed to take twice the effort than a
Story that is assigned a single point value. A Story Point
may be assigned based on the effort involved, the
complexity and the inherent risk in developing a feature.
An estimate of the effort of developing a user Story

requires the developer to have some experience of
estimating, to have access to historical data and have the
freedom to use a trial based estimation approach.[16]
Highlights that user stories are a widespread instrument for
representing requirements. Often however, user stories are
too coarse, so that misunderstandings or dependencies
remain unforeseeable. Granularity of user stories needs to
be investigated more, but at the same time is a hard-to-
grasp concept. This paper investigates Expected
Implementation Duration (EID) of a user story as a
characteristic of granularity. We want to find out, whether
it is suitable as a quality aspect and can help software
teams improve their user stories. Here, a hint of use case
point estimation technique is adopted for estimating a user
story. It will be like combining two different concepts, one
from the scenario where requirements are clear, so that the
use cases, or to be specific key elements used in them are
derived, and other from uncertain requirement scenario,
i.e. story points.

III. RESEARCH FRAMEWORK

The idea is to utilize user stories in deriving a model where
related metrics are identified. For this interviewing
technique is used to evaluate weight-age of user stories in
agile life cycle. It was observed that story development is
just an initial step; the major time a development team
spends is on investing in group discussions within teams,
where they discuss the high level implementation details
as well.

FLOW DIAGRAM OF THE RESEARCH FRAMEWORK

Figure 1: Research Framework
The projects are divided in to user stories. These are user
driven so they are short and generic in nature. The success
an implementation is gauged in reference to its user story.
Then the estimation team may optionally breakdown the
user stories into sub-stories, if needed, which would
basically be the high level activities a development person
perform to implement it completely. This is optional stage
as in some cases user stories are self-explanatory and
simple to understand, like providing the functionality of

Evolution of User

Stories

Breakdown into

Sub-Stories

(Optional)

Assignment of

User Points

Complexity Based

Assignment of

User Points

Based On Time

Summation of

User Points

Re-evaluation via

Burndown

Velocity

57

login feature is a well understood task already. But
breakdown of activities becomes important for newer, not
yet fashioned features.

After this stage, each story is supposed to have a limit on
its sizing i.e. the number of user points in it. Now the
interesting part is calculation of these user points. Two
parameters are explored here, complexity and man hours.
Computation of both of these parameters may be
facilitated with breakdown stage. The activities estimated
will give a fair idea as to how much user interfacing the
story will provide, how much database transactions it may
involve, how much class implementations it may exercise
and most importantly the success criteria of the user story.
These are scaled on a range for assignment as below:

Classification Criteria Scale

Easy Simple UI
Single database entity
hit
<= 3 steps of success
scenario
<= 5 classes are
involved
Single user type
involved

1

Moderate More UI
>= 2 database entity hit
4 to 7 steps of success
scenario
5 to 10 classes are
involved
<= 3 user types involved

2

Complex Complex UI processing
>= 3 database entity hit
7+ steps of success
scenario
10+ classes are involved
> 3 user types involved

3

Table 1: Classification of User Story
Then the velocity of a resource for each activity is
calculated. This is limited on the factors like expertise and
experience of resources assigned on the story. This is then
summed up, adding buffers as well, providing the man days
a project need. The time value gained here is the time based
user point associated with the story. This multiplied with
the other complexity based user point calculated above will
give the number, which ultimately is the size of user story.
This activity is to be done at the beginning of the project,
the time when you don’t have all the details, and at the end
of the project, where you exactly know the number of user
points that are implemented. The comparison of these

would give a reasonable idea how correct and concrete the
user story technique may be considered.

The idea is to measure the size of a project in an agile
environment using user stories. A project can be considered
as a huge story and stories are complex. So determining
complexity of a story will eventually lead in identification
of variables associated with it, henceforth affecting its size.
The size may be translated in to units of time, efforts (man
hours), cost, human resource etc.

Complexity of a story may depend on various factors
associated with it. One could be the user types. If multiple
types of users are involved in a story, then its complexity is
expected to increase. A simple story would involve a single
type of user.

Another component of a story’s complexity could be the
action steps involved in it. Action steps could be
understood as the steps required for the successful
completion of a story. Having greater number of steps
entails involvement of more transactions and hence more
complexity in the story.

Having said this, we may deduce the below relations:
 𝑃𝑆 ∝ 𝑈𝑆 𝐴

 𝑃𝑆 ∝ 𝑈𝑆 𝐵

Where,
 𝑃𝑆 refers to the size of the project (i.e. its complexity), 𝑈𝑆 𝐴is the number of user types associated with a story 𝑈𝑆 𝐵is the number of action steps involved in a story

In gaming segment, it has been observed that the games that
have stories associated with them are less popular in
comparison to the games which do not have any known
story plots as their base. One example could be of the
famous Tom & Jerry cartoon series, which do not have any
known games based on it, but the cartoon is very famous
on its own. Another example could be of Angry Birds game
which is very popular as a game but it is not based on any
famous story or cartoon series. This strengthens the idea
that when stories are user driven and not repetitive,
successful development is a challenge. This is the case
when you have scenarios where standards operating
procedures (SOPs) are not known or available. By
availability of SOP, it is meant the scenarios with repetitive
work, like applications of banking systems, ATMs, as
evident from the survey, mostly agile work is being carried
out in repetitious manner where experience gained in
development of one module or sprint is utilized in the next
upcoming sprints. People provide their estimates based on
their experience and in comparison to their early
development work. This cannot be applied to the stories
which are user driven and hence have no relevant
experience applicable to them. Example scenarios are

58

taken, and categorization of each with respect to the
relations and relevant parameters explored.
Major Story Scenarios are:

1. User Types
2. Action Steps
3. Technology
4. Class Implementations Involved
5. Database Entity Hits
6. User Interface Complexity
7. Time Cost
8. Human Resources
9. Code Size

A month long ‘Hospital’ project is taken here to test the
discussed concept. The project involves CRM
implementation of MS dynamics in a hospital where paper
less environment is desired and everything is to be kept
online for example patients will just bring a card and
showing that all their past record, reports, receipts &
appointments are retrieved & used from the system.

The input for estimation is the request for proposal
document. Variation comes in resource planning from
client because at times technical consultants from client
side are not available and in-house team has to study the
internal systems at client side. For UAT machine is
prepared and applied at client side in production and on
approval is sent for Go Live. The in-house PM co-ordinates
with client side PM as functional consultant & technical
consultants are the main source of information for the
estimations.

Figure 2
The project size was estimated using past experience in

original model and an effort of 254 man hours was planned.
In actual, the project took 322 man hours, where
interestingly most variations were among activities planned
against ‘DEV2’ resources.

Figure 3

IV. RESULT

Applying our proposed technique, a story associated
with ‘DEV2’ work is re-estimated as below: The story,
as highlighted in below snapshot, involves a scenario
where already in placed CRM solution needs to be
integrated with IVR new customer lead. Discussion
with analysis team identified that 3 user types would
be associated with the story i.e. doctors, hospital data
entry management team & hospital administrative
staff. The success criteria involves 5 steps from login
to logout, with 4 class implementations.

Breakdown of story in use case points identified following
granular activities:

Integration with IVR
Integrate IVR new customer/lead with CRM
Data input from client (5 hrs.)
Data verification by FC & TC (10 hrs.)
Creation of new customer/lead module unit (10 hrs.)
Testing the module integration (3 hrs.)

This is a scale 2, moderate story per our classification as
discussed in table 1.

Moderate More UI
>= 2 database entity hit
4 to 7 steps of success
scenario
5 to 10 classes are involved
<= 3 user types involved

2

Table 2
Scale 2 story details, using the Dev2 costs as identified in
the project, $18/hr.

Table 3
The baseline estimated using experience was 15 hrs. work.
Breaking down in use case points the activity estimated as
28 hrs. work which is much closer to the actual 30 hrs.
work.

V. CONCLUSION

Future work involves identification of patterns in the case
scenarios under study and then testing the effect of
complexity for them. This comparison of the patterns where
standard operating procedures are not known will help to
analyze the effect of identified factors, especially variation

User
Types

Action
Steps

Class
Implementations
Involved

Database
Entity
Hits

Time
Cost

H
R

3 5 4 3 28
hrs.

2

59

of user types & action steps of a user story on a project’s
size. It will involve the modus operandi of picking up an
agile project, irrespective of the framework of development
it follows (which could be scrum, extreme programming
etc., as discussed in the above sections) and then following
it through all its iterations. Doing this for all iterations in a
project will provide a relatively larger data set and
hopefully a bunch of scenario patterns. Collectively, data
will be analyzed once before the beginning of the project
and then towards its end. There could be many user stories
that are not implemented towards project end, and many
such stories would have been implemented which were not
present at the project start, but rose up in the course of
project.

The before and after activity will deduce the preciseness
and accuracy of this adaptation for the closest possible
estimation, as we think of the traditional estimation models
in classical software development life cycle.

ACKNOWLEDGMENT

We would like to thanks to Mr. Huzafah Noor from e-
BizSoft for providing information test project data. We are
also thankful to Dr. Zubair A Shaikh and his research
center CRUC as they also facilitated this research.

REFERENCES

[1] “Estimating Software Size”, software engineering online
lectures, The University of Edinburgh, last modified autumn 2004
[2] Andreas Schmietendorf, Martin Kunz, Reiner Dumke, “Effort
estimation for Agile Software Development Projects”
[3] Evita Coelho and Anirban Basu, "Effort Estimation in Agile
Software Development using Story Points", International Journal of
Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA, Volume
3– No.7, August 2012.
[4] V. Mahnic, "A Case Study on Agile Estimating and Planning
using Scrum" (University of Ljubljana, Faculty of Computer and
Information Science, Electronics and electrical engineering, ISSN
1392 – 1215 2011. No. 5(111)).
[5] Ken Power, May 22, 2011, “Using Silent Grouping to Size
User Stories”, System Agility Blog,
[6] Mike Cohn, Apr22, 2013, "Estimating with Tee Shirt Sizes",
Succeeding with Agile - Mike Cohn's Blog,
[7] Popli, R. & Chauhan, N., “Agile estimation using people and
project related factors”
[8] Siobhan Keaveney & Kieran Conboy, “Cost Estimation in
Agile Development Projects”.
[9] Muhammad Usman, Emilia Mendes, Francila Weidt &
Ricardo Britto, “Effort estimation in agile software development: a
systematic literature review”
[10] S. Bhalerao & Maya Ingle, “Incorporating Vital Factors in
Agile Estimation through Algorithmic Method”.
[11] Abrahamsson P., Fronza, I. Moser, R., Vlasenko, J. & Pedrycz
W., “Predicting Development Effort from User Stories”
[12] Eduardo Miranda & Pierre Bourque, “Sizing User Stories
Using Paired Comparisons”.
[13] Ziauddin, Shahid Kamal Tipu & Shahrukh Zia, “An Effort
Estimation Model for Agile Software Development”
[14] C. Sathish Kumar, A. Anitha Kumari & R. Srinivasa Perumal,
“An Optimized Agile Estimation Plan Using Harmony Search
Algorithm”, Vol 6
[15] Jean-Marc Desharnais, Luigi Buglione & Bura Kocatürk,
“Using the COSMIC method to estimate Agile user stories”
[16] Olga Liskin, Raphael Pham, Stephan Kiesling & Kurt
Schneider, Why We Need a Granularity Concept for User Stories

(Book Title» Agile Processes in Software Engineering and Extreme
Programming), Volume 179, 2014
[17] Evita Coelho, Anirban Basu,"Effort Estimation in Agile
Software Development using Story Points"
[18] Tülin Erçelebi, Altan Koçyiit,"An Early Software Effort
Estimation Method Based on Use Cases and Conceptual Classes",
VOL. 9, NO. 8, AUGUST 2014
[19] Richard Dick Carlson, Story Point Estimating
[20] Marcelo Schenone, “Using Story Points to Estimate Software
Development Projects in the Commercial Phase”
[21] Shashank Mouli Satapathy, Aditi Panda & Santanu Kumar
Rath, "Story Point Approach based Agile Software Effort
Estimation using Various SVR Kernel Methods"
[22] El Deen Hamouda, “Using Agile Story Points as an
Estimation Technique in CMMI Organizations”
[23] Anna Georgsson,"Introducing Story Points and User Stories
to Perform Estimations in a Software Development Organisation"
[24] Carl Friedrich Kreß, Oliver Hummel, Mahmudul Huq, "A
Practical Approach for Reliable Pre-Project Effort Estimation"
[25] Joe Schofield, Alan W. Armentrout & Regina M.
Trujillo,"Function Points, Use Case Points, Story Points:
Observations From a Case Study"
[26] Dean Leffingwell, Pete Behrens, A User Story Primer
[27] Viljan Mahni & Toma Hovelj, On using planning poker for
estimating user stories
[28] Sylvie Trudel & Luigi Buglione, Guideline for Sizing Agile
Projects with COSMIC
[29] Henry Selvaraj, Dawid Zydek, Grzegorz Chmaj. Progess in
Systems Engineering.
[30] Ronica Roth, Write a Great User Story

[31] User Stories: An agile introduction. Anonymous.

60

