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Estimation of Purcell factor from mode-splitting spectra in an optical microcavity
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We investigate scattering process in an ultra-high-Q optical microcavity coupled to subwavelength
scatterers by introducing splitting quality Qsp, a dimensionless parameter defined as the ratio of the
scatterer-induced mode splitting to the total loss of the coupled system. A simple relation is intro-
duced to directly estimate the Purcell factor from single-shot measurement of transmission spectrum
of scatterer-coupled cavity. Experiments with polystyrene (PS) and gold (Au) nanoparticles, Erbium
ions and Influenza A virions show that Purcell-factor-enhanced preferential funneling of scattering
into the cavity mode takes place regardless of the scatterer type. Experimentally determined highest
Qsp for single PS and Au nanoparticles are 9.4 and 16.19 corresponding to Purcell factors with lower
bounds of 353 and 1049, respectively. The highest observed Qsp was 31.2 for an ensemble of Au
particles. These values are the highest Qsp and Purcell factors reported up to date.

PACS numbers: 78.67.Bf, 42.60.Da, 42.81.Qb, 42.65.Es

There has been a growing interest in ultra-high-Q op-
tical whispering gallery mode (WGM) microcavities as
they provide a suitable platform to study both funda-
mental physical phenomena (e.g., opto-mechanics, light-
matter interactions) and to fabricate practical devices
(e.g., single molecule and nanoparticle detection, opti-
cal sensors, etc.) [1]. Observed, for the first time, by
Il’chenko et al. [2] and later addressed comprehensively
by Weiss et al. [3], mode-splitting in WGM microcavi-
ties have developed into a useful tool to investigate light-
matter interaction [4–10].

Mode splitting occurs due to the lifting of the degen-
eracy of the clockwise (CW) and the counter-clockwise
(CCW) propagating WGMs as a result of their coupling
via scattering centers intrinsically present (i.e., due to
material inhomogeneity, structural defects, dust contam-
inations) or intentionally introduced (e.g., particle depo-
sitions, fiber tips, etc.) into the microcavity mode vol-
ume. Superposition of CW and CCW modes form two
orthogonal standing wave modes (SWMs), one of which
experiences a frequency shift and extra linewidth broad-
ening with respect to the other. This leads to a doublet
in the transmission spectrum.

Previously, we used mode-splitting in passive and ac-
tive microcavities to measure individual nanoparticles
[6, 11]. It was also used to demonstrate Purcell-factor-
enhanced scattering by considering a collective scatter-
ing rate of an ensemble of silicon nanocrystals embedded
randomly into a microcavity [8]. These results were in-
teresting; however they do not provide insight into the
quantification of mode splitting and the Purcell-factor-
enhanced scattering at the level of a single scatterer.

Purcell effect takes place due to light scattering regard-
less of whether the scatterer is quantum (modeled as dis-
crete energy levels) or classical (modeled as a dipole). It
is an important figure of merit for quantifying the ability
of a cavity to couple to an emitter or a scatterer. Thus,
it is important to develop reliable and easily accessible

methods to measure Purcell factor accurately. In this
Letter, we report the direct estimation of Purcell factor
from mode splitting in the transmission spectrum with a
single-shot measurement, and clarify the role of individ-
ual scatterer on the quality of mode-splitting and hence
on Purcell-enhanced Rayleigh scattering.

The proposed method for direct estimation of Purcell
factor and demonstrated high Purcell-enhanced scatter-
ing efficiencies at single scatterer resolution, using PS and
Au nanoparticles, and Influenza A (InfA) virions, will
play an important role in detecting and studying clas-
sical and quantum scatterers independent of their type
and internal structures. For example, quantum scatter-
ers such as atoms and molecules can be detected by mode
splitting spectra and Purcell-enhanced scattering in a mi-
crocavity with a resonance largely detuned from their op-
tical transitions such that they are not optically excited.
This will provide an alternative technique to fluorescence,
absorption and ionization based atom detection and will
eliminate the need for near-resonant lasers.

The amount of mode-splitting and the difference in the
linewidths of the individual resonances in the doublet
are given as 2g = −αf2(r)ω/V and 2Γ = −2gαω3/3πc3

where the polarizability α is defined as α = 4πR3(n2 −
1)/(n2 +2) for a single particle of radius R and refractive
index n, V denotes the mode volume, f(r) the normal-
ized mode distribution, c the speed of light, and ω the
angular frequency of the initial resonant WGM [4, 6].
The coupling strength of the initially degenerate WGMs
can be described with the mode-splitting quality Qsp as

Qsp =
2|g|

Γ + (ω/Q)
(1)

where ω/Q is the initial resonance linewidth. To resolve
the mode-splitting in the transmission spectra, Qsp > 1
should be satisfied, i.e., 2|g| should exceed the mean of
intrinsic and scatterer induced decay rates of the system:

2|g| > Γ + (ω/Q). (2)
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FIG. 1: Splitting quality versus particle size (R) for PS (re-
fractive index n = 1.59) particles for initial cavity quality
factor Q equals to 106 and 108. Vertical red lines denotes the
size range of particles used in the experiments. Mode split-
ting is resolved if Qsp lies above the horizontal dashed line
(Qsp > 1). The points labeled with ⋆ denote the Qsp values
obtained in single-particle experiments with particles of mean
radii R = 100nm and R = 135nm.

If the scattering losses dominate the cavity losses, i.e.,
Γ ≫ (ω/Q), Eq. (1) simplifies to QI

sp = 2|g|/Γ. Then
quality of mode-splitting can be related to the nanopar-
ticle through particle polarizability as

QI
sp =

∣

∣

∣

∣

2g

Γ

∣

∣

∣

∣

=
3λ3

4απ2
. (3)

Thus, in this regime mode-splitting quality is affected
neither by the Q of the cavity modes nor by f(r). It
is determined by the resonance wavelength of the initial
WGM and the particle polarizability.

On the other hand, if the cavity losses dominates, i.e.,
Γ ≪ (ω/Q), Eq. (1) simplifies to

QII
sp =

2|g|Q
ω

=
αf2(r)Q

V
≤ αQ

V
(4)

where the upper bound is obtained by setting f2(r) = 1.
Thus, in this regime Qsp increases linearly with particle
polarizability and the quality factor of the WGM. More-
over, the mode field distribution and volume strongly af-
fect the splitting-quality in this regime. Since one does
not have precise control on the location of the nanoparti-
cle within the microcavity mode volume, f(r) is unknown
and it plays a limiting role for Qsp in this regime. The
expressions obtained for splitting quality for scattering

losses dominant and for cavity losses dominant regimes
in Eqs. (3) and (4), respectively, also establish the rela-
tionship for the lower bound of Purcell factor F :

F ≥ QI
spQ

II
sp ≥ 4Q2

sp (5)

where F = (3/4π2)λ3(Q/V ). The second part of the in-
equality is obtained using 1/Qsp = 1/QI

sp + 1/QII
sp and

4Q2
sp ≤ QI

spQ
II
sp. The relation in Eq. (5) can be used
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FIG. 2: Total quality factor QT versus mode splitting quality
Qsp for various values of PS particle size R. Red ⋆ points
correspond to randomly chosen (QT, R) pairs in the region
106

≤ Q ≤ 5 × 107 and 50 nm ≤ R ≤ 100 nm. Linear
boundaries are obtained by varying Q in 106

≤ QT ≤ 108 for
fixed R, and inverted parabola-like boundaries are obtained
by decreasing R down to 10 nm for fixed Q.

to estimate the lower bound of Purcell factor in an ex-
periment by using the Qsp obtained from transmission
spectrum of single-particle coupled microcavity.

In Fig. 1, we depict the dependence of Qsp on the par-
ticle size and the quality-factor of the microcavity. For
particles larger than a critical size, we have Qsp ∼ QI

sp

suggesting that the additional decay channel formed by
the particle dominates the cavity losses. On the other
hand, for particles smaller than a critical size, we see
Qsp ∼ QII

sp which suggests that small particles do not in-
duce significant loss when compared to the cavity losses.
In between these two critical particle sizes, there is a
region where the splitting-quality can be explained nei-
ther by QI

sp nor by QII
sp; hence the exact expression of Qsp

given in Eq.(1) should be used. Furthermore, we see that
for a given Q, there is a critical lower and critical upper
bound for the particle size beyond which Qsp becomes
less than one. While the upper bound is determined by
particle size, the lower bound is strongly affected by Q.
Therefore, by choosing a mode with higher Q, mode-
splitting induced by particles with radii of a few nanome-
ters can be resolved, subsequently such particles can be
detected and measured. It is worth noting that Qsp for

a fixed cavity Q-factor is upper bounded by QI
sp = QII

sp,

i.e., ω/Q = Γ implying Qsp = QI
sp/2 = QII

sp/2, and the
particle size which pushes Qsp to its maximum value be-
comes smaller with increasing cavity Q-factor. One can
easily show that the particle maximizing Qsp should have

polarizability satisfying α = 3π−2f(r)−1λ3
√
F/4.

Here we discuss how the mode-splitting quality Qsp

depends on the total quality factor QT of a scatterer-
coupled microcavity (Fig.2). QT takes into account both
the cavity losses and particle related losses, i.e.,QT =
ω[Γ + (ω/Q)]−1. Then Qsp = QT(2g/ω) implying that
Qsp increases linearly with QT with a slope of 2g/ω if
R (or α) is kept constant, i.e., g and Γ are fixed too.
When Q is very small, process is dominated by cavity
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FIG. 3: Schematics of a tapered fibre interfaced to a silica mi-
crotoroid with deposited nanoparticles, and typical transmis-
sion spectra captured with a photo detector for PS particles
of radii R = 100nm (top) and R = 135nm (bottom).

losses. Since scatterer-related-losses are constant (i.e.,
R is fixed), increasing Q decreases cavity losses. When
cavity and scatterer losses are equal (Γ = ω/Q), we have
QT = ω/2Γ and Qsp = QI

sp/2 = g/Γ. If Q is increased
beyond this value, cavity losses becomes smaller than the
scatterer losses. In the limit of large Q, we have QT =
ω/Γ leading to Qsp = QI

sp = 2g/Γ. Thus two sections can
be defined: (L1) Cavity losses dominant section (ω/Q >
Γ) which is the part of the linear curve within 0 ≤ QT <
ω/2Γ and 0 ≤ Qsp < QI

sp/2. (L2) Scattering dominant
section (ω/Q < Γ) is the part bounded with QT > ω/2Γ
and QI

sp/2 < Qsp ≤ QI
sp.

Next we investigate what happens if Q is kept constant
at Q0 and the particle size R is decreased from its ini-
tial value of R0 (Fig.2). If the process is initially in the
region ω/Q0 > ΓR0

, decreasing particle size will signifi-
cantly decrease Γ due to its Γ ∝ R6 dependence which
makes it much lower than ω/Q0. Due to g ∝ R3 depen-
dence, g also decreases but at a slower pace. Then, in
this case the process continues to be dominated by cav-
ity losses, and Qsp decreases with decreasing R. If the
process is initially in the region ω/Q0 < ΓR0

, the evo-
lution is strongly affected by g and Γ rather than ω/Q.
Thus, the slower pace of decrease in g compared to that
in Γ allows an increase in Qsp. This continues until the
point of ω/Q = ΓR and Qsp = g/Γ. Further decrease of
R shifts the process from scatterer-dominated regime to
cavity-loss-dominated regime in which the effect of ω/Q
is much stronger. Thus, after stepping into this regime,
the process will stay in this regime with decreasing R
until Qsp decreases from its peak value to zero.

Figure 3 shows transmission spectra obtained for single
PS particles of R = 100nm and 135nm coupled to a mi-
crotoroid [6]. For these spectra, we calculate Qsp = 8 and
Qsp = 9.4 from Eq. (1). Then Eq. (5) yields the corre-
sponding Purcell factors as F ≥ 256 and F ≥ 353. This is
the best Purcell factor obtained for a single PS nanoparti-
cle. The ⋆ points in Fig.1 denote experimentally obtained
Qsp for different depositions of nanoparticles whose sizes

were estimated using α = (3λ3/8π2)(1/QI
sp) [6]. Differ-

ent Qsp values for the same estimated size are due to
different f(r) at each deposition.

For multi-scatterer case, SWMs are affected by all par-
ticles in varying degrees and they are spectrally-shifted
from the original WGM resonance. We denote (ωj , γj)
with j = 0, 1, 2 as the angular resonance frequencies and
linewidths of the initial (pre-scatterer) WGM (j = 0),
and low (j = 1) and high (j = 2) frequency SWMs cre-
ated after the deposition of N scatterers. Then, we have

ωj − ω0 =

N
∑

i=1

2gi sin2(φi + j
π

2
) (6)

γj − γ0 =
N

∑

i=1

2Γi sin2(φi + j
π

2
) (7)

where φi denotes the spatial distance of i-th particle from
the anti-node of a SWM. From Eq. (6), we find the
amount of mode splitting as

χ = ω2 − ω1 =

N
∑

i=1

2gi cos(2φi). (8)

Moreover, Eq. (7) yields the linewidth relation as

γ1 + γ2 = 2γ0 +

N
∑

i=1

2Γi. (9)

To resolve the split modes after the deposition of N scat-
terers, |χ| > (γ1 + γ2)/2 should be satisfied. Thus, mode
splitting quality for N -scatterer then becomes

Q(N)
sp =

2|χ|
γ1 + γ2

=
2

∣

∣

∣

∑N

i=1 gi cos(2φi)
∣

∣

∣

(ω0/Q) +
∑N

i=1 Γi

(10)

which has a form similar to Eq. (1). Assuming that the
particles have the same polarizability and using triangle
inequality and 0 ≤ | cos(2φi)| ≤ 1, we find that split-
ting quality in the limit of scatterer dominant regime
becomes Q(N)I

sp ≤ QI
sp where QI

sp is given in Eq. (3).
If we further set f2(ri) = f2(r) and consider the cavity
losses dominant regime, mode splitting quality becomes
Q(N)II

sp = αf2(r)QN/V ≤ αQN/V where in the last part
we assumed maximum overlap between the WGM and
each of the scatterers, i.e.,f2(r) = 1. Assuming that all
particles have the same α, and defining g = g′f2(ri) and
Γ = Γ′f2(ri) with g′ = −αω/2V and Γ′ = α2ω4/6πV c3,
it is easy to see that

Q(N)
sp ≤ 2|g′|

∑N

i=1 f2(ri)

(ω0/Q) + Γ′
∑N

i=1 f2(ri)
≤ 2N |g′|

(ω0/Q) + NΓ′
(11)

where we used f2
i (r) = f2(r) = 1. For N = 1, Eq.

(11) reproduces the results for the single scatterer case.
Following the procedure carried out for a single scatterer,
we find the Purcell factor for multi-scatterer case as

F (N) ≥ 4N−1Q(N)2
sp (12)
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FIG. 4: A series of transmission spectra obtained for consec-
utive depositions of PS nanoparticles (R = 135nm) into the
mode volume of the resonator and the corresponding amount
of mode splitting, additional linewidth broadening and the
mode splitting quality. A total of five nanoparticle deposition
is depicted. Each frequency jump in the spectra corresponds
to a single nanoparticle deposition event.

from which one can deduce that the minimum attain-
able Purcell factor decreases with increasing number of
scatterers due to the increasingly dominating scatterer
induced dissipation. Thus lower bound of the Purcell
factor can be estimated from the experimentally obtained
transmission spectra and using the calculated Q(N)

sp in Eq.
(12) provided that the number of particles N is known.

Figure 4 shows the evolution of transmission spec-
tra and calculated mode splitting, additional linewidth
broadening and mode splitting quality as nanoparticles
are deposited into the resonator mode volume. Each dis-
crete jump corresponds to deposition of a single nanopar-
ticle. With each particle deposition, mode splitting is
either enhanced or reduced depending on the location
of the particle on the mode volume. Measured values
of Q(1)

sp = 9.2, Q(2)
sp = 14.1, Q(3)

sp = 14.0, Q(4)
sp = 7.3

and Q(5)
sp = 6.8, respectively, corresponds to F (1) ≥ 338,

F (2) ≥ 397, F (3) ≥ 261, F (4) ≥ 53, and F (5) ≥ 36. Esti-
mated Purcell factor for two-particle event, which is also
the highest Purcell factor ever reported [8, 12], implies
that at least 99.75% of the scattered light is captured by
the doubly degenerate cavity modes [8].

We investigated the effect of scatterer properties with
experiments using Au nanoparticles, Erbium (Er+3) ions
and InfA virions. For a single Au nanoparticle (R =
100nm), we measured Qsp = 16.2 corresponding to

F (1) ≥ 1049. With subsequent depositions, Qsp changed

as Q(2)
sp = 20.16, Q(3)

sp = 24.64 and Q(4)
sp = 20.88 with

the estimated F (2) ≥ 812, F (3) ≥ 809, and F (4) ≥ 435.
For an ensemble of N ≤ 20, the highest measured Qsp

was 31.2 with the resonance modes shifted from each
other by 2|g| = 364.9MHz with a mean linewidth of
11.7MHz. This corresponds to F ≥ 194.7 implying a cap-
ture efficiency higher than 99.5%. The splitting quality
of Qsp = 31.2 is the highest reported up to date [8]. Next,
we performed experiments using Er-doped silica micro-
toroids [11]. Gain provided by optically pumping Er+3

ions enables detection of small intrinsic mode splitting,
which could not be observed before optical pumping.
Such small mode splittings yielded Qsp ∼ 3.5. Finally, we
deposited InfA virions one-by-one on a microtoroid. Esti-
mated mode splitting qualities are Q(1)

sp = 2.5, Q(2)
sp = 5.9,

Q(3)
sp = 9.8, Q(4)

sp = 9.2 and Q(5)
sp = 12.6, respectively

corresponding to F (1) ≥ 25, F (2) ≥ 69, F (3) ≥ 128,
F (4) ≥ 84, and F (5) ≥ 127. These results demonstrate
that preferential backscattering into the resonator takes
place regardless of the scatterer type, and that it can
be quantified from the mode splitting spectrum with a
single-shot measurement.

In conclusion, we have investigated scattering induced
mode splitting in ultra-high-Q microcavities, and intro-
duced a formalism to quantify the quality of mode split-
ting for single and multiple-scatterers as the particles
enter the mode volume of the resonator. This formal-
ism enables estimating the lower bound for Purcell fac-
tor and Rayleigh scattering capture efficiency from the
transmission spectra. This will help understanding the
Purcell-factor-enhanced scattering process at the single
particle level, and boosting the sensitivity of detecting
individual nanoparticles entering to or embedded into
the mode volume of a resonator. Finally, this method
can be further extended for a wide class of microcavi-
ties with embedded, adsorbed or deposited emitters and
scatterers (e.g., nanocrystals, plasmonic particles, atoms,
molecular gases) independent of their internal structures
using collective or individual enhancement effects, thus
providing a non-invasive detection scheme.
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