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ABSTRACT deviations theory; see Asmussen and Rubinstein (1995),

Heidelberger (1995), Kovalenko (1995), and Shahabuddin
This paper deals with estimation of probabilities of rare (1995) for surveys.
events in static simulation models using a fast adaptive Another approach to the above problem can be derived
two-stage procedure based on importance sampling and when the underlying distribution belongs to somara-
Kullback-Liebler’s cross-entropy (CE). More specifically, at metric family. We can then constrain the choice of IS
the first stage we estimate the optimal parameter vector in the distributions to the same family. Although such approach
importance sampling distribution using CE, and atthe second does not give the optimal zero-variance measure, it typi-
stage we estimate the desired rare event probability using cally yields significant variance reduction; see, for instance,
importance sampling (likelihood ratios). Some theoretical Rubinstein and Melamed (1998), Rubinstein and Shapiro
aspects of the proposed method, including its convergence, (1993). On the other hand, the advantage of such procedure
are established. The numerical results presented suggest thats that the resulting variance-minimization problem is finite-
the method effectively estimates rare event probabilities. dimensional and as such can be tackled with optimization

techniques. Still, the problem can be difficult to solve, since
1 INTRODUCTION it is a stochastic optimization problem which is, in general,

nonconvex. In Rubinstein (1997), adaptivelS algorithm
The performance of computer and communications systems for rare events simulation was proposed in which the change

is often characterized by the probability of certamre of measure igstimatedy minimizing the sample variance
eventsand it is frequently studied through simulation. A  of the IS estimator.
typical example is the probability of failure of a certain An alternative to the variance minimization approach

network, which is a measure of the reliability of that sys- is to find the parameter that minimizes the “distance” be-
tem. The use of crude Monte Carlo techniques, however, tween the IS distribution and the (unknown) optimal zero-
requires a prohibitively large numbers of trials in most in- variance measure. One particular distance function that has
teresting cases, so new techniques are required. Amongbeen proven useful is the so-called Kullback-Liebler’s cross-
the methods developed are thglitting/RESTARTsee, for entropy. A major advantage of such approach is that the
instance, Garvels and Kroese 1998; Glasserman et al. 1999;resulting optimization problems are well-structured; indeed,
Gorg 1999; Villén-Altamirano and Villén-Altamirano 1999)  in some cases they can be solved analytically. Moreover,
andimportance samplingechniques (see, e.g., Glynn and as the events become rarer, the obtained parameter tends to
Iglehart 1989). coincide with the parameter that minimizes variance. This
The main idea of importance sampling (IS), when ap- approach has been used in connection with combinatorial
plied to rare events, is to make their occurrence more optimization problems, see Rubinstein (1999), de Boer et al.
frequent, or in other words, to “speed up" the simulation, (2001).
and at the same time keep the variance under control. It is In this paper we concentrate on the application of
well-known that, in theory, there exists a change of measure the cross-entropy method (henceforth called CE method)
that yieldszero varianceestimators. Such optimal measure, to estimate rare event probabilities static models. We
however, typically cannot be computed exactly since it de- present an algorithm, discuss its convergence, and present
pends on the underlying quantities being estimated. One some numerical results. An expanded discussion can be
approach to find the right change of measure, appropriate found in Homem-de Mello and Rubinstein (2002). An
for smaller systems, is described by results based on large application of the CE method to dynamic systems such
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as queueing networks is given in de Boer, Kroese, and
Rubinstein (2001).

2 BACKGROUND ON IMPORTANCE SAMPLING
AND CROSS-ENTROPY

We briefly review some basics concepts and set up the
notation. Let? be the expected performance of a stochastic
system given in the form

U(x) == Pp(M(Y) =x) =Ey [I{M(Y)Zx}] - @

whereM (Y) is thesample performancand the subscripf
means that the expectation of the random ve#tds taken
with respect to the probability density function (pdf).
Throughout this paper, the concept of “probability density
function” should be understood in a broader way, that is, all
the developments are valid wh&rhas a discrete distribution
— in which case pdf's are replaced by probability mass
functions (pmf’s).

Let G(y) be a probability measure (distribution) such
that dG(y) = g(y)dy, whereg(y) is a pdf. Assume that
g(y) dominatedrq(y)>x} f (¥) in the absolutely continuous
sense, that is, SUPQA(y)=x) f(¥)} C supdg(y)}, where
“supp” denotes thesupportof the corresponding function,
i.e., the set of points where the function is not equal to
zero. Using the pdg we can represeni(x) as

1 (Z)
Z(X) = Eg [I{M(Z)Zx} @} .

An unbiased estimator df(x) is

N

" 1

v = 5 2 Tmzoza WEZD )
i=1

whereW (z) = f(z)/g(z) is called thdikelihood ratio(LR),
andZj, ..., Zy are independent and identically distributed
(i.i.d.) samples frong(z).

The choice of the dominating pdf(y) is crucial for
the variance of the LR estimator (2). Ideally, we would like
to minimize the variance ofy with respect to the pd§,
that is, we want to solve

. f(2)
Ve 1 — .
T [ M@z g(ZJ

®3)

It is well known that the solution of problem (3) is

I mz)=xy f(2)
[ Iimy=x f(2)dz

'@ = 4
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The densityg*(z) as per (4) is called theptimal importance
sampling densityIn general, however, implementation of
the optimal importance sampling pdf(z) as per (4) is
problematic. The main difficulty lies in the fact that in
order to deriveg*(z) one needs to know, which is the
guantity we want to estimate from the simulation.

An alternative approach to the above problem can be
derived when the underlying pdf’s belong to some parametric
family F = {f(y, v), v € V}. Throughout this paper, we
will assume that this is the casket f(y, u) denote the pdf
of the random vecto¥ in (1). We then restrict the choice
of the pdfg to pdf's from the same parametric famify, so
g differs from the original pdff (y) = f(y, u) by a single
parameter (vectory. The likelihood ratio W in (2) with
g(y) = f(y,v) reducestdV(Z,u,v) = f(Z,u)/f(Z,v),
wherev (v # u) is called thereferenceparameter vector.

It is readily seen that the optimal solutions of the variance-
minimization problem (3) (withg restricted taF) coincide
with those of

min V),

(®)

where
V() = Ev, [ Ipg)20 WX 1 )W X, 1, 01)]

andw1 is chosen arbitrarily (to the extent thatz, v1) dom-
inates/irz)=x) f (z, u)). This is a stochastic optimization
problem, for which some methods such siechastic ap-
proximationor sample average approximatiqgometimes
called stochastic counterpart) can be used — see, e.g., Ru-
binstein and Shapiro (1993). Lack of convexity, however,
may lead to locally optimal solutions.

Another way to estimate the optimal reference param-
eter vector is based on the Kullback-Leibtgoss-entropy
(Kapur and Kesavan 1992), which defines a “distance” be-
tween the two probability distributions (densitie&)y) and
g(y) and can be written as

o,

g(y) ©)

D(f. g) = f fIn y.

Notice thatD is not a distance in the formal sense, since in
generalD(f, g) # D(g, f). Still, if g = f thenD(f, g) =
0. Asimilar quantity can be defined for discrete distributions,
with probability mass functions (pmf) in place of pds’s and
summations in place of integrals.

Let ¢(z,u) denote the optimal measure in (4) with
f() = f(z,u). We can define a cross-entropy between
¢(z,u) and f(z, v), in analogy to (6), as

I > I > Ys u
D(v) = Eu {M(Y)_X} In {M(Y)_)C}f( )
cf(Y,v)
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(wherec is the denominator in (4)) and find the reference
parameter vector* that solves migcy D(v). Itis obvious
that the optimal solutions of this problem and of

max D(v),
veVv

(7)
where
D) = Ev, [y X2 WX w000 (X, )], (8)

are identical. Given asampky, ..., Xy from f(x, v1), we
can estimate the optimal solutiarf of the above problem
by solving

max Dy (v), 9)
veV

where Dy(@) = NN 1 x oW (Xi 1, v1)
In f(X;, v) is the sample average approximation @fv)
in (8).

2.1 Relating Variance Minimization and Cross-Entropy

As seen above, both variance-minimization and the cross-
entropy techniques (henceforth called VM and CE, respec-
tively) have the same goal, namely, to approximate the
optimal importance sampling density (4). The VM method
ensures, by construction, the best approximation within the
family {f(z,v), v € V} — in the sense that variance is
minimized. The CE method, on the other hand, is based
on a much nicer problem, which often has convexity prop-
erties and thus allows for computation of optimal solutions
— sometimes even in closed form, see Section 3. Thus,
it is natural to compare the solutions obtained from each
method, in particular to check whether the easily computable
CE-solution is close to the optimal VM-solution.

Consider the VM and CE problems in the form (5)
and (7), respectively, witlvy = u. It is clear that we can
replace the objective functio®(v) in (7) by

D1(v) = —Eu [l py)eq MW, 0 0)].

By noticing that /2 = I and conditioning on the event
{M(Y) > x}, we have

V) = Eu [l W u0)]
= Eu[WX,u,v) | M) > x] (10)
X Py(M(Y) > x)
Div) = —Eg [I{M(Y)Zx} InW (Y, u, v)]
— —Ex[INW(Y,u v | MY)>x] (11)

X Py (M(Y) > x).
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Notice the similarity between (10) and (11). Let naw
be an optimal solution to the VM problem. Thus, we must
haveV(u, v*) — V(u,v) <Oforallv eV, ie.

JY,v) — f(¥Y,v")
FY,v7)

Ey [W(Y, u,v)

M) > xi| <0
(12)

for all v € V .On the other hand, i* is an optimal solution
to the CE problem then we must have

f(Y,v)

E In —=—
u [ D)

M) zx] < 0 foralveV.
(13)

The solution sets defined by (12) and (13) are in general
different. Suppose however that there existssuch that
f(y,v*) > f(y,v) for all y such thatM(y) > x and all

v € V. Itis clear that such* satisfies both (12) and (13),
i.e., suchv* is both VM- and CE-optimal. This suggests
that, asx goes to infinity — i.e. asPy (M(Y) > x) goes

to zero — the VM and CE problems tend to have the
same solutions. The example in Section 4 corroborates that
intuitive notion.

3 SPECIAL DISTRIBUTIONS

We discuss now ways to solve the CE problem (7). As it
happens with (5), (7) is a stochastic optimization problem
which can be solved by general techniques. It turns out,
however, that for some families of distributions (7) can be
solvedanalytically.

3.1 Natural Exponential Family

One important case occurs when the components of the
random vectoy = (Y1, ..., Y,) are independent and each
has a distribution in th@atural exponential famil{NEF)
(see, e.g., Jorgensen 1997). A random variables said
to have a NEF distribution if

fO,w) =explyw —k(w)h(y), we W C R, (14)
where k(w) = log [ e"*h(y)dy is the cumulant function
and h(y) is a real valued (normalization) function of
Many distributions, such as Poisson, exponential, etc., can
be written as particular cases of the expression above; see
Rubinstein and Melamed (1998) for details. It is possible
to show that, ifX has densityf(y, w) as in (14), then
we havey = EX = k'(w) and VafX] = k"(w). We
then re-parameterize (14) a&(y, 1) explyw(u) —
k(w(u))h(y), where w(n) := [K'171(n) is the inverse
function of ¥/, which is well defined wherk’ is strictly
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increasing — which is the case if J&] > 0. That is, the
parameter of the distribution is its mean.

(u1, ..., ug—1, Uug+1, - - -, Uy)). These derivatives, together

with the sufficient Karush-Kuhn-Tucker optimality condi-

Because of the independence assumption and the In tions for problem (7), yield an explicit solution, which can

function in (8), it is easy to see that problem (7) becomes
separable. Moreover, by calculating the derivatives —which
can done analytically — one can show that there is only one
point v* € IR" where the gradient oD(-) vanishes and,
moreover, the Hessian matri®? D (v*) is negative definite.

It follows that v* is the unique global maximunof D(-).

By equatingV D(v*) to zero, we obtain

o—

Ey [Yj I{M(Y)zx}:l (15)
Eu [I{M<Y)2x}]

At first sight, formula (15) may seem useless since the
denominator on the right hand side is the quantity)

be expressed as

Ey [I{MY)ZX} Y, = ij] Ukj

. (16)

k
Ukj
Eu [’{M(Ym}]

provided of course thaPy (M(Y) > x) > 0.

Finite support distributions also have the following
important property:
Proposition 3.1  Letx* be the maximum value d#1(-)
over the discrete set
s Ynm},

Y=t Y} X oo X {01, ...

we want to estimate. Nevertheless, as we shall see laterand suppose that the maximizer .M (.) over ) (call it

formula (15) is useful in terms of deriving an iterative
algorithm. Also, note that for the variance minimization
problem (5) there is no analytic solution similar to (15),
even for NEF distributions. Thus, numerical optimization

y*) is unique Suppose that the random vect®r has
independent components with discrete distributionJan
Then, the solution of both VM and CE programs (5) and
(7) for P(M(Y) > x*) is the atomic measure (we shall

procedures must be used in such cases. This emphasizeslso call it degeneradewith mass aty*.

one of the big advantages of the CE approach.
3.2 Finite Support Distributions

Another category of distributions for which the CE problem
(7) can be conveniently solved is that Hhite support
distributions Those distributions play an important role in
rare event probability estimation, particularly due to their
connection with combinatorial optimization problems; see
Rubinstein (1999).

To proceed, suppose that the components of the random Eu

vectorY = (Y1, ...,Y,) are independent. Assunié; ~
f(y,u) takes on the valuesy1, ..., yun, and letuy;
P(Yr = yij). The goalis then to find a discrete distribution
f(y,v) with independent marginals that solves the CE
problem (7), where the séft is given by

m
V=JveR™:> =1 k=1..n0<uy;<1
j=1

It easy to check that, in this case, (7) has concave objective

function and linear constraints. Moreover, by the assumption
of independence we have thgt has a product form. It
follows that the derivativeg D/dv; are

Ukj

oD
Ukj ’

aUkj (u,v) = Euk [I{M(Y)ZX} | Yy = ykj]

In the above, K denotes the expected value under
u with respect to all components except (so u* =
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Proof. Let v}, denote the degenerate measure with mass on
y*. Thatv}; solves (5) follows immediately from the fact
that the variance of estimatdiy (x*) given in (2), under
v}, is zera

Let f(y,u) denote the distribution o¥. Consider
now formula (16), derived for finite support distributions.

Notice that the term [I{M(Y)zx*} Y = y,»j] is equal to
zero if y;; # y¥. Otherwise, we have

Eu [I{Y:y*} |Y; = y’*:l

[]Puvi =y

[I{MY)zx*} |¥i = y,.*]

ki
and so in (16) we obtain that
0 it yij # yf
vii = 1 T Puic = yui

= 1 otherwise.

]_[k Py (Y, = y;:)

Proposition 3.1 demonstrates the importance of finite
support distributions — when is the maximum value
of M(-), the solution of both VM and CE programs to
estimate P(M(Y) > x) are always the samegegardless
of the distribution ofY. This property in turn has nice
implications for combinatorial optimization; see Rubinstein
(1999) for a discussion.
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It is also worth mentioning that the assumption of
unigueness of the maximizer @¢#1 in Proposition 3.1 can
be artificially enforced by imposing some ordering on the
finite set), say the lexicographical order.

4 THE CE ALGORITHM

As mentioned before, formulas (15) and (16) are notintended
for “stand-alone” use, as they depend on the quartity
we want to estimate. However, they do suggeshualti-
stageprocedure, which we describe now. The idea is to
break down the “hard” problem of estimating the very small
probability £(x) into a sequence of “simple” problems, each
time generating a sequence of pdi(®, v,)} depending on
the parameter (probability) and such thap >> £¢(x).

We start by choosing a not very smallsayp = 1072,
Letyo (yo < x) be such that, under the original pfity, u),
the probability(y0) = Eu [ (¥ =) | IS at leasto. We
set nextvg := Vg := u and then proceed iterating in both
v andy with the goal of estimating the pafé(x), v*}, as
follows:

(a) Adaptive estimation of y,. For a fixedv,, lety, be
a (1 — p)-quantileof M(Z) underv,. That is,y, satisfies

Py, (M(Z) = y1)
Py, (M(Z) < 1)

17)
(18)

P,

=
> 1_109

whereZ ~ f(z, vy).

A simple estimatey; of ¥, can be obtained by drawing
a sampleZy, ..., Zy from f(z, v;) and taking the sample
(1 — p)-quantile. That is, we choose

Vi = vi(v) = M ra-p)ny. (19)

where M, ;) is the j-th order statistics of the sequence
M;,j = M(Zt’j), 2, =2, j= 1,....N.

(b) Adaptive estimation of v;. For fixedy,_1, derive
v, from the solution of the program

r1§1€zavx{E,,,_1 [I{M(Z)Z%_l}W(z, w,v_1)In f(Z, v)]} .
(20)

The stochastic counterpart of (20) is as follows: for fixed
y:—1, derivev, from the following program

1 N
N g W Z DN f(Z;,0)
j=1

(21)

max
veV

As seen before, the optimal solutions of (20) and (21)
can be obtainednalytically, provided f(y, v) is either a
NEF or a finite support distribution — cf. (15), (16). For
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example, the solution of (20) for NEF distributions is

Ev,_, [Z./I{M<Z)zy,_1}W(Z’ u, "t—l)]

Ev, [1{M<Y>zy,_1}W(Z’ u, "f—l)]

Urj =

whereas the solution of (21) is obtained by replacing ex-
pected values with sample averages in the above expression.
Notice that, by construction, the above formula does not
involve rare events.

Before presenting a complete description of the algo-
rithm, let us discuss an example to illustrate the ideas. Sup-
pose we are interested in estimatii@) = P(M(Y) > x),
where M(Y) = min(Yy,...,Y,) and the random vari-
ablesYy,..., Y, are exponentially identically distributed
with meanu, i.e., Y; ~ f(y,u) = ljuexp(—y/u), i =
1,...,n.Inthisexample, of course, we hatter) = e/,
so there is no need for simulation. However, in order to
illustrate the mechanism of the algorithm we will apply
the multi-stage procedure described above. Moreover, the
example motivates the need for some assumptions, which
we will have to impose when dealing with presenting a
complete formulation of the method.

Let us compute initially the CE-optimal parameter given
by the solution to (7). As seen earlier, for the exponential
distribution we can apply formula (15) directly. It follows
thatv’ = v* := x +u. Notice that the VM-optimal solution
to (5) is given by

-1
O E O S
i u X MZ )C2 '

For x >> u, both methods yield™* ~ x.

In order to measure the efficiency of the measure ob-
tained, let us compute thequared coefficient of variation
(SCV) of the LR estimatory(x) in (2). This quantity,
which also calledelative error, gives an idea of how fast
the sample size must grow in order to achieve a fixed preci-
sion; see, e.g., Rubinstein and Melamed (1998). It is given

by

) _ NVarlty ()]
k“(v,x) = —Ez(x)

In the present example it is easy to see that

}l’l
For v* = x + u, the above formula reduces &3 (v*, x) ~
x"e" /(2u)". Thatis, for largex the SCV of the CE-optimal

LR estimator increase in polynomially Forv = u, which
correspond to the crude Monte Carlo estimate, the SCV

UZEX/U

2 _
v, x) = |:u(2v —u)
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increase inx exponentially For a more general discussion  Algorithm 4.1 :
on complexity, see Asmussen and Rubinstein (1995).

Consider nowy, defined in (17)-(18). Since the al- 1. Setpo := p, N := initial sample size. Generate
gorithm stops whery, > x, and since the distribution of a sampleZy, ..., Zy from the pdff(z,u) and
M(Y) is continuous, we can write compute the samplé — po)-quantile (19). Denote

the initial solution byyy. Setr:=1.
e = max{y <x :exp(—yn/v)) > p} 2. Use thesamecurrent sampleZ, ..., Zy to solve

the stochastic program (21). Denote the solution
by v; := v, (-1

3. Generate anew sampleZy, ..., Zy from the pdf
f(z,v). Letp, :==p.

4. Compute the sampld— p;)-quantile (19). Denote
the solution byy;.

5. If 7 > x, sety, := x and solve the stochastic
program (21) fory, = x. Denote the solution as
vr and go to step 7.

6. Otherwise, check whether there existg
such that the sample(l — p)-quantile of
M(Zq), ..., M(Zy) is bigger than or equal to
min{x, ;_1 + &}:

@) If there exists sucle and p = p;, then set
t :=t + 1 and reiterate from step 2;

= min{x, Cv;/n},

whereC = log(1/p) > 0. The parameter, defined in (20)
can then be rewritten using (15) as

V1 = Y +u = min{x,Cv;/n}+u. (22)

Consider the unidimensional functiong(v) =
min{x, Cv/n} + u. It is easy to see thag has a
single fixed pointv, and thatv = v* = x + « if and
only if x < (C/n)(x +u), i.e. C > nx/(x + u). Since

C =log(1/p), it follows that the CE procedure converges
to the correct solution if and only if

p < eXp<— ™ ) (23)

X +u (b)  If there exists such and 5 < p;, then set

. o . . o := p and go back to step 4;
Moreover, if p < exp(—n) (which implies (23)), i.e. if

C/n > 1, then the differences,;.1 — v; increaseuntil the
point whenx is hit by y;; otherwise, the differencag 1 — v,
decreaseuntil the point whenx is hit by y;. 7. Estimate the rare-event probabiliy(x) using the

At first sight, condition (23) seems discouraging, since estimate (2), withv1 replaced byvr.
it requires the parameterto decrease exponentially with
Notice however that this example constitutes an intrinsically
difficult problem, since the probability being estimated goes 5 CONVERGENCE OF THE CE METHOD
to zero exponentially im underany parameter. It makes
perhaps more sense to consider the behavior of (23) for We discuss now some issues related to convergence of
fixedn — then we see thap < exp(—n) is a sufficient AIgorithm 4.1. Letv* be a CE-optimaI solution, i.e. a
condition for the CE algorithm to workegardless of the ~ maximizer of D(v) defined in (7). That is, we have that
value ofx. We may also consider what happens when

(c) Otherwise (i.e. if there exists no sugh
let N := aN and go back to step 3.

is allowed to vary withn; for example, whenx = A/n v € argmax,cy {Eu [I{M(Y)>x} In f(Y, v)]]. (24)
for some A > 0, condition (23) becomes asymptotically -
p = exp(—A/u). We will need the following assumption:

The above example suggests that the value of the pa-
rameterp used in the CE algorithm plays a crucial role  Assumption A: Py(M(Z) > x) > O forallve V.
— as seen there, we can only expect the CE algorithm to Assumption A simply ensures that the probability being
converge to the correct valuesfis sufficiently small. To estimated —Py (M(Z) > x) — does not vanish whem is
determine a priori whiclp is acceptable, however, can be  replaced by a feasible parametee V. The assumption is
a difficult task. To overcome this problem, we can change trivially satisfied when the distribution 0¥1(Z) has infinite
the value ofp adaptively(see Rubinstein 1999 for related  ail. For finite support distributions, the assumption holds
ideas). Moreover, we shall also adopt an adaptive scheme a5 |ong as either is less than the maximum value of the

to increase the sample size used in (19) and (21). function M(Z), or if there is a positive probability that
The complete algorithm is stated in detail below. It s attained.

requires the definition of constantgtypically, 0.01 < p < Forz € IR", v € IR™, andp > 0, definey (v, p) as an

0.1), @ > 1 ands > 0. arbitrary (1 — p)-quantile of M(Z) underwv (cf. (17)-(18)).

Consider an arbitrary iteratianand leto} := Py, (M(Z) >
x). By assumption Ap¥ > 0. Letp* € (0, p}) be arbitrary.
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By the definition ofy, we have that

*

o
1—p*>1-p}. (25)

Py, (M(Z) = y(v;, p¥))
Py, (M(Z) < y(v;, p%))

=
=
Suppose thay (v, p*) < x. Then,

Py, (M(Z) < y(v, ") < Py, (M(Z) <x) = 1—p],
which contradicts (25). It follows thay (v, p) > x for
o small enough and thus step 6 of Algorithm 4.1 can be
accomplished providegk, is also bigger than or equal to
x. The proposition below shows that this happens Xor
large enough. In the proposition, the term “with probability
one” refers to the probability space wheéfdies, and when
Z1,Z,, ... are viewed as random variables on that space.
We refer to Homem-de Mello and Rubinstein (2002) for a
proof of this result.
Proposition 5.1  Suppose assumption A holds. Let
v € V, and letZ1,Z,, ... be i.i.d. with common pdf
f(z,v). Lety,(Z,p) be a sample(l — p)-quantile of
M(Zy), ..., M(Zy). Then, there exists, > 0and aran-
domAN, > 0 such that, with probability oney, (Z, p) > x
forall p € (0, py) and allN > N,.. Moreover, the probabil-
ity thaty,, (Z, p) > x foragivenN goes to onexponentially
fastwith N.

By the above result, at some iteratibrwe haveyy > x
and thus in step 5 we s&y := x. It follows that we can
view v as the solution of the problem

max

1Y =
vev N Z I{M(Zj)Zx}W(Zj’ u,vr-1)In f(Zj.v)
j=1

which is precisely the sample average approximation prob-
lem (9). This is summarized in the following proposition.
Proposition 5.2  Suppose that Assumption A holds.
Then, Algorithm 4.1 converges w.p.1 to a solution of (9)
after a finite number of iterations.

We can then compare the approximating solufign
and the “true” solutionv* using the asymptotic analysis
for optimal solutions of stochastic optimization problems
discussed in Rubinstein and Shapiro (1993). Following
that approach, we obtain initially @onsistencyresult: as
N — oo, the distance betweed; and the solution set
defined in (24) goes to zero (w.p.1) provided that: i) the
function In f (z, v) is continuous irw, ii) the setV defined
in assumption A is compact, and iii) there exists a function
h(z) such that B[h(Z)] < co and |In f(z,v)| < h(z)
for all z and allv € U. Distributional results can also be
obtained, see Rubinstein and Shapiro (1993).

Notice that the constaidtis used in Algorithm 4.1 only
to ensure convergence. In practice, one can daked until
the sequencéy;} gets “stalled”, at which point a positive
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is used again. Also, it is important to observe that, even if
the optimalv* could be obtained, some problems might still
require a very large sample size in (2); see the discussion
following the example in Section 4. Given the limitations
of one’s computational budget, Algorithm 4.1 can be used
to detect such situation — the algorithm can be halted once
p: in step 6 gets too small (or, equivalently, whahgets

too large).

6 NUMERICAL RESULTS

To illustrate the ideas set forth in the previous sections, we
present now numerical results obtained for a manufacturing
problem. In all examples below, we used an implementation
of Algorithm 4.1 described in Section 5. Recall that the
algorithm requires the definition of three constamte and

3. We usedp = 0.1 ande = 2. For§, we adopted the
conservative approaéh= 0 (recall the discussion following
the description of Algorithm 4.1). In these examples, siich
sufficed, i.e., the sequen{g } never got stalled. Moreover,
step 6(c) of Algorithm 4.1 was never necessary, i.e. the
initial sample size (determined after some pilot studies) was
large enough.

Consider a single stage in a production system in which
there areK single-server stations and a set.bfobs that
must be processed sequentially by all stations in a prescribed
order. We assume that the processing of jain statiork is
arandom variable whose distribution is known, and that each
station processes its coming jobs on a first-come-first-serve
basis, holding waiting jobs in a queue of infinite capacity.
All jobs are released at time zero to be processed by the
first station (this assumption is made just for notational
convenience and can easily be dropped). For a jpb
(j=1,...,J)and astatiott, (k =1, ..., K), letY;; denote
the service time of processing jobon stationk, and let
Cj denote thecompletion timei.e., the time joby finishes
its service at statioh. By Y := (Y11, ..., Yx ) we denote
the vector of service times, which is assumed to be random
with a known distribution. Note thaCx; can be viewed
as a total completion time of jop and that eaclCy; is a
function of Y, and hence is random. The above model is
studied in Homem-de-Mello, Shapiro, and Spearman (1999)
in the context of optimizing the performance system with
respect to the release times of the jobs; we refer to that
paper for details.

Our goal is to estimate the probability that &ljobs will
be completed by a certain time that is, with M(Y) =
Cks(Y), we want to estimate(x) = P(MY) > x).
Calculation of M(Y) for a particular realization o¥ can
be done via the recursive formula

Cxj = max(Ci_1,j, Ck j-1) + Yij, (26)
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with Cro = Coj =0 fork =1,...,K, j=1,...,J. interval andN is the sample size. Notice that, since the
Notice that we can also view the above formula as a solution sample size used with the Monte Carlo method was variable,
of a longest path problem in a directed graph; we refer theN column displays the average (as well as the half-width
again to Homem-de-Mello, Shapiro, and Spearman (1999) of a 96.67% confidence interval). Also, observe that the
for details. Notice also that the above problemstatic individual confidence of the three intervals displayed on the
(which is the focus of the present paper) since the number rows corresponding to eachis 96.67%; by Bonferroni's

of jobs under consideration is finite. inequality, theoverall confidence on those intervals is at

least 90%.

6.1 First Case: Exponential Distributions Table 1: Estimated Probabilities for Exponential Distri-

We consider initially the case where all service times have bution Case/ =10, K =5, p =25

exponential distribution. For simplicity, we assume that the MC
S . - : x Iy (x) 90% H.W. N
service times of all jobs are i.i.d. with mean In that 1000 | 7715% 105 | 2719x 105 | 4751 G117)
.. . X . X
case it is easy to check from (26) that 1250 0.000 0.000 12931 (-176)
2500 0.000 0.000 46430 (786)
Ckys = Yuu+...+ Yy +Yoy +...+Ygy. CE
. . . . . £ 90% H.W. N
The expression on the right hand side of the above inequality a N &) —r > —
T 1000 | 4.964x 10 1.044x 10 1000
has distribution Gamm& + J — 1, 1), so P(Gammak + _g )
71 - rovid lower bound oR (M(Y) > 1250 | 2.679x 10 9.687 x 10 2000
— 1. 1) = x) provides a lower bound oR (M(Y) = x). 2500 | 2.987x 10727 | 2.903x 10~27 5000

To obtain an upper bound, we consider the Chebyshev

inequality
E, [M(¥)7] Table 2: Estimated Bounds for Exponential Distribution
PM(Y)>x) < [ i (27) Case,J =10,K =5, n= 25
xP X lower bound upper bound (95% H.W.)
L . . 1000 | 6.675x 107 | 1.148x 1073 (4.113x 107 %)
which is valid for anyp > 0 (note thatM(Y) > 0 in 1250 | 5.065% 1010 | 6:853x 10-7 (5.294x 10-7)
this example). We consider three values fgr namely, 2500 | 6.855x 10-28 | 5.263x 10-25 (4.651x 10-29)

x =08, x =T andx = 2I", wherel" = JK u.

To estimateP (M (Y) > x), we used the CE approach
described in the previous sections. The parameter obtained
— a K x J-dimensional vector — determined the impor-
tance sampling distribution used to estimate the probability. _ ) )
For the sake of comparison, we also estimated the same VW& Now consider the case where all service times have
probability using standard Monte Carlo. To provide a fair discrete distributions with finite support. As before, we
comparison, we provided the sarmemputational budget assume for t'h.e sake of S|mpI|C|ty thgt the service tlmes of
for both methods. That is, we used a larger sample size for all jobs are i.i.d., the common distribution being uniform
the crude Monte Carlo, since the CE methods requires extra ©" the set10, 20, 30, 40}. _
computational time to calculate the optimal parameters. We __ Notice that, because the random variables take on a
increased the sample size sequentially until the total cPU finite number of values, the maximum possible completion
time used by the crude Monte Carlo was the same as the 't|me v can be found by Se'ttlng each random variable to
time used for the CE method. The same stream of random [tS maximum value and solving a longest-path problem (cf.
numbers was used for the Monte Carlo and CE estimates Homem-de-Mello, Shapiro, and Spearman 1999). In the
for eachx. The above procedure was replicated 100 times, current case, because all service times are i.i.d. the total
and the average and a simultaneous 90% confidence intervalCOMPletion time corresponds to a sumioft-J — 1 service
were built from those 100 independent estimates, both for imes, so¥ = (K +J —1) x 40. However, such procedure
Monte Carlo and CE. does not determine the probability of the maximum value,

Table 1 displays the estimation results foe 10, K = since there are multipl_e_ pa_ths corresponding to |t A lower
5,1 = 25, whereas Table 2 lists the lower and upper bounds. Pound for the probability is1/4)%+/~1. We estimated
Although these results correspond to a particular instance £ (M(Y) = x) for two values ofx, based on the value of
of data, we must emphasize that similar type of results th® maximum completion tim&. We tookx = 0.9¥ and
were observed for other problems we generated randomly, * = ¥ (obviously, P(M(Y) > W) = 0).

In the table, Zy(x) is the estimate forP(M(Y) > x), To estimateP (M(Y) > x), we used the CE approach
“90% H.W.” denotes the half-width of a 96.67% confidence described in the previous sections. Notice that in this

6.2 Second Case: Discrete Distributions
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case the parameter to be determined — the probabilities Garvels, M. J. J., and D. P. Kroese. 1998. A comparison of
of each value of each service time — iskax J x m- RESTART implementations. IAroceedings of the 1998
dimensional vector. As before, we also estimated the same Winter Simulation Conferenced. D. J. Medeiros, E. F.
probability using standard Monte Carlo, and provided the Watson, J. S. Carson, and M. S. Manivannan, 601-609:

samecomputational budgetor both methods. The same IEEE Press.
stream of random numbers was used for the Monte Carlo Glasserman et al. 1999. Multilevel splitting for estimating
and CE estimates for each The above procedure was rare event probabilitiesOperations Research7 (4):

replicated 50 times, and the average and a simultaneous 90%  585-600.
confidence interval were built from those 50 independent Glynn, P. W., and D. L. Iglehart. 1989. Importance sampling

estimates, both for Monte Carlo and CE. for stochastic simulation®anagement Scien&s (11):
Table 3 below displays the results fér= 10, K = 5. 1367-1392.
In this case W = 560. A lower bound for the probability = Gérg, C. 1999. Simulating rare event details of ATM delay
P(M(Y) > W) is (1/4)1* = 3.725x 102, while the upper time distributions with RESTART/LRE. IRroceedings
bound computed from (27) witp = 60 is 8430x 10~°+ of the RESIM WorkshopUniversity of Twente, The
9.931x 1076, Although the bounds in this case are a little Netherlands.
bit loose, we must emphasize that, for problems where Heidelberger, P. 1995. Fast simulation of rare events in
the probabilitiesP (Yy; = yi;) were randomly generated gqueueing and reliability model#ACM Transaction of
— in which case one can often calculate the probability Modeling and Computer Simulatidsn (1): 43-85.
P(M(Y) > W) exactly — the confidence intervals obtained Homem-de Mello, T., and R. Y. Rubinstein. 2002. Rare
from the CE method usually included the true value; we event probability estimation for static models via cross-
refer to Homem-de Mello and Rubinstein (2002) for details. entropy and importance sampling. Manuscript, Ohio
) o ) ) State University.
Tf_ible_ 3: Estimated Probabilities for Dlscr_ete Dis- Homem-de-Mello, T., A. Shapiro, and M. L. Spear-
tribution Case,J = 10, K = 5, m = 4, Uniform

man. 1999. Finding optimal material release times us-

Distribution e ing simulation based optimizatiodManagement Sci-
- ) 50% T W i ence45:86-102.
N o H.WW. . .
rgensen, B. 199The theory of dispersion m hap-
500 | 1.423x 1072 | 1.421x 103 | 680 (+40) Jo griasnea’n d H:HQ € theory of dispersion modefshap
560 0.000 0.000 10192 @19 ' L
oE &19) Kapur, J. N., and H. K. Kesavan. 19%nhtropy optimization
7 90% AW ¥ principles with applicationsAcademic Press.
5)60 142‘11"()61)0_2 26210 03 100 Kovalenko, I. 1995. Approximations of queues via small
euieandil Rubunteadi parameter method. IAdvances in Queueing: Theory,
560 | 7.004x 10 4637 x 10 700

Methods and Open Problemsd. J. Dshalalow, 481—

I . - 509. CRC Press.
The above results indicate high efficiency of the CE g pinstein, R. Y. 1997. Optimization of computer simu-
method for estimation rare-event probabilities, where the lation models with rare event&European Journal of

naive Monte Carlo method fails. For events that are not very Operations Research9:89-112.

rare, the CE method may sitill help in terms of providing g pinstein, R. Y. 1999. The cross-entropy method for com-

estimates with smaller variance. binatorial and continuous optimizatioMethodology
and Computing in Applied Probabilit@:127-190.

Rubinstein, R.Y., and B. Melamed. 1998odern simulation

) _ ) and modeling Chichester, England: J. Wiley & Sons.
Asmussen, S., and R. Y. Rubinstein. 1995. Complexity prop- gpinstein, R. Y., and A. Shapiro. 1993iscrete event sys-

erties of steady-state rare-events simulation in queueing tems: Sensitivity analysis and stochastic optimization

models. InAdvances in Queueing: Theory, Methods by the score function metho@hichester, England: J.
and Open Problemsed. J. Dshalalow, 429-462. CRC Wiley & Sons.

Press.
de Boer et al. 2001. A tutorial on the cross-entropy method.
Manuscript, available atwwwhome.cs.utwente.
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