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ABSTRACT

This paper deals with estimation of probabilities of rare
events in static simulation models using a fast adaptiv
two-stage procedure based on importance sampling a
Kullback-Liebler’s cross-entropy (CE). More specifically, at
the first stage we estimate the optimal parameter vector in t
importance sampling distribution using CE, and at the secon
stage we estimate the desired rare event probability usi
importance sampling (likelihood ratios). Some theoretica
aspects of the proposed method, including its convergenc
are established. The numerical results presented suggest
the method effectively estimates rare event probabilities.

1 INTRODUCTION

The performance of computer and communications system
is often characterized by the probability of certainrare
eventsand it is frequently studied through simulation. A
typical example is the probability of failure of a certain
network, which is a measure of the reliability of that sys
tem. The use of crude Monte Carlo techniques, howeve
requires a prohibitively large numbers of trials in most in
teresting cases, so new techniques are required. Amo
the methods developed are thesplitting/RESTART(see, for
instance, Garvels and Kroese 1998; Glasserman et al. 19
Görg 1999; Villén-Altamirano and Villén-Altamirano 1999)
and importance samplingtechniques (see, e.g., Glynn and
Iglehart 1989).

The main idea of importance sampling (IS), when ap
plied to rare events, is to make their occurrence mor
frequent, or in other words, to “speed up" the simulation
and at the same time keep the variance under control. It
well-known that, in theory, there exists a change of measu
that yieldszero varianceestimators. Such optimal measure
however, typically cannot be computed exactly since it de
pends on the underlying quantities being estimated. On
approach to find the right change of measure, appropria
for smaller systems, is described by results based on lar
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deviations theory; see Asmussen and Rubinstein (199
Heidelberger (1995), Kovalenko (1995), and Shahabudd
(1995) for surveys.

Another approach to the above problem can be derive
when the underlying distribution belongs to somepara-
metric family. We can then constrain the choice of IS
distributions to the same family. Although such approac
does not give the optimal zero-variance measure, it typ
cally yields significant variance reduction; see, for instanc
Rubinstein and Melamed (1998), Rubinstein and Shapi
(1993). On the other hand, the advantage of such proced
is that the resulting variance-minimization problem is finite
dimensional and as such can be tackled with optimizatio
techniques. Still, the problem can be difficult to solve, sinc
it is a stochastic optimization problem which is, in genera
nonconvex. In Rubinstein (1997), anadaptiveIS algorithm
for rare events simulation was proposed in which the chan
of measure isestimatedby minimizing the sample variance
of the IS estimator.

An alternative to the variance minimization approac
is to find the parameter that minimizes the “distance” be
tween the IS distribution and the (unknown) optimal zero
variance measure. One particular distance function that h
been proven useful is the so-called Kullback-Liebler’s cros
entropy. A major advantage of such approach is that th
resulting optimization problems are well-structured; indeed
in some cases they can be solved analytically. Moreove
as the events become rarer, the obtained parameter tend
coincide with the parameter that minimizes variance. Th
approach has been used in connection with combinator
optimization problems, see Rubinstein (1999), de Boer et a
(2001).

In this paper we concentrate on the application o
the cross-entropy method (henceforth called CE metho
to estimate rare event probabilities instatic models. We
present an algorithm, discuss its convergence, and pres
some numerical results. An expanded discussion can
found in Homem-de Mello and Rubinstein (2002). An
application of the CE method to dynamic systems suc
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as queueing networks is given in de Boer, Kroese, a
Rubinstein (2001).

2 BACKGROUND ON IMPORTANCE SAMPLING
AND CROSS-ENTROPY

We briefly review some basics concepts and set up t
notation. Let̀ be the expected performance of a stochas
system given in the form

`(x) := Pf (M(Y ) ≥ x) = IEf
[
I{M(Y )≥x}

]
, (1)

whereM(Y ) is thesample performanceand the subscriptf
means that the expectation of the random vectorY is taken
with respect to the probability density function (pdf)f .
Throughout this paper, the concept of “probability densit
function” should be understood in a broader way, that is, a
the developments are valid whenY has a discrete distribution
— in which case pdf’s are replaced by probability mas
functions (pmf’s).

Let G(y) be a probability measure (distribution) such
that dG(y) = g(y)dy, whereg(y) is a pdf. Assume that
g(y) dominatesI{M(y)≥x}f (y) in the absolutely continuous
sense, that is, supp{I{M(y)≥x}f (y)} ⊂ supp{g(y)}, where
“supp” denotes thesupportof the corresponding function,
i.e., the set of points where the function is not equal
zero. Using the pdfg we can represent̀(x) as

`(x) = IEg

[
I{M(Z)≥x}

f (Z)

g(Z)

]
.

An unbiased estimator of̀(x) is

̂̀
N(x) = 1

N

N∑
i=1

I{M(Zi )≥x}W(Zi ) , (2)

whereW(z) = f (z)/g(z) is called thelikelihood ratio(LR),
andZ1, . . . ,ZN are independent and identically distribute
(i.i.d.) samples fromg(z).

The choice of the dominating pdfg(y) is crucial for
the variance of the LR estimator (2). Ideally, we would lik
to minimize the variance of̀̂N with respect to the pdfg,
that is, we want to solve

min
g

Varg

[
I{M(Z)≥x}

f (Z)

g(Z)

]
. (3)

It is well known that the solution of problem (3) is

g∗(z) = I{M(z)≥x}f (z)∫
I{M(z)≥x}f (z)dz

. (4)
The densityg∗(z) as per (4) is called theoptimal importance
sampling density.In general, however, implementation of
the optimal importance sampling pdfg∗(z) as per (4) is
problematic. The main difficulty lies in the fact that in
order to deriveg∗(z) one needs to knoẁ, which is the
quantity we want to estimate from the simulation.

An alternative approach to the above problem can b
derived when the underlying pdf’s belong to some parametr
family F = {f (y, v), v ∈ V }. Throughout this paper, we
will assume that this is the case. Let f (y,u) denote the pdf
of the random vectorY in (1). We then restrict the choice
of the pdfg to pdf’s from the same parametric familyF , so
g differs from the original pdff (y) = f (y,u) by a single
parameter (vector)v. The likelihood ratio W in (2) with
g(y) = f (y, v) reduces toW(Z,u, v) = f (Z,u)/f (Z, v),
wherev (v 6= u) is called thereferenceparameter vector.
It is readily seen that the optimal solutions of the variance
minimization problem (3) (withg restricted toF) coincide
with those of

min
v∈V V(v), (5)

where

V(v) := IEv1

[
I{M(X)≥x}W(X,u, v)W(X,u, v1)

]
,

andv1 is chosen arbitrarily (to the extent thatf (z, v1) dom-
inatesI{M(z)≥x}f (z,u)). This is a stochastic optimization
problem, for which some methods such asstochastic ap-
proximationor sample average approximation(sometimes
called stochastic counterpart) can be used — see, e.g., R
binstein and Shapiro (1993). Lack of convexity, howeve
may lead to locally optimal solutions.

Another way to estimate the optimal reference param
eter vector is based on the Kullback–Leiblercross-entropy
(Kapur and Kesavan 1992), which defines a “distance” be
tween the two probability distributions (densities)f (y) and
g(y) and can be written as

D(f, g) =
∫
f (y) ln

f (y)

g(y)
dy. (6)

Notice thatD is not a distance in the formal sense, since i
generalD(f, g) 6= D(g, f ). Still, if g = f thenD(f, g) =
0. A similar quantity can be defined for discrete distributions
with probability mass functions (pmf) in place of pds’s and
summations in place of integrals.

Let φ(z,u) denote the optimal measure in (4) with
f (z) = f (z,u). We can define a cross-entropy betwee
φ(z,u) andf (z, v), in analogy to (6), as

D(v) := IEu

[
I{M(Y )≥x}

c
ln
I{M(Y )≥x}f (Y ,u)

cf (Y , v)

]
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(wherec is the denominator in (4)) and find the referenc
parameter vectorv∗ that solves minv∈V D(v). It is obvious
that the optimal solutions of this problem and of

max
v∈V D(v), (7)

where

D(v) := IEv1

[
I{M(X)≥x}W(X,u, v1) ln f (X, v)

]
, (8)

are identical. Given a sampleX1, ...,XN fromf (x, v1), we
can estimate the optimal solutionv∗ of the above problem
by solving

max
v∈V D̂N(v), (9)

where D̂N(v) = N−1∑N
i=1 I{M(Xi )≥x}W(Xi ,u, v1)

ln f (Xi , v) is the sample average approximation ofD(v)
in (8).

2.1 Relating Variance Minimization and Cross-Entropy

As seen above, both variance-minimization and the cro
entropy techniques (henceforth called VM and CE, respe
tively) have the same goal, namely, to approximate t
optimal importance sampling density (4). The VM metho
ensures, by construction, the best approximation within t
family {f (z, v), v ∈ V } — in the sense that variance is
minimized. The CE method, on the other hand, is bas
on a much nicer problem, which often has convexity pro
erties and thus allows for computation of optimal solution
— sometimes even in closed form, see Section 3. Th
it is natural to compare the solutions obtained from ea
method, in particular to check whether the easily computa
CE-solution is close to the optimal VM-solution.

Consider the VM and CE problems in the form (5
and (7), respectively, withv1 = u. It is clear that we can
replace the objective functionD(v) in (7) by

D1(v) := − IEu
[
I{M(Y )≥x} lnW(Y ,u, v)

]
.

By noticing that I2 = I and conditioning on the event
{M(Y ) ≥ x}, we have

V(v) = IEu
[
I{M(Y )≥x}W(Y ,u, v)

]
= IEu [W(Y ,u, v) |M(Y ) ≥ x] (10)

×Pu(M(Y ) ≥ x)
D1(v) = − IEu

[
I{M(Y )≥x} lnW(Y ,u, v)

]
= − IEu [lnW(Y ,u, v) |M(Y ) ≥ x] (11)

×Pu(M(Y ) ≥ x).
and Rubinstein

-
-

,

Notice the similarity between (10) and (11). Let nowv∗
be an optimal solution to the VM problem. Thus, we mus
haveV(u, v∗)− V(u, v) ≤ 0 for all v ∈ V , i.e.

IEu

[
W(Y ,u, v)

f (Y , v)− f (Y , v∗)
f (Y , v∗)

∣∣∣∣M(Y ) ≥ x
]
≤ 0

(12)

for all v ∈ V .On the other hand, ifv∗ is an optimal solution
to the CE problem then we must have

IEu

[
ln
f (Y , v)

f (Y , v∗)

∣∣∣∣M(Y ) ≥ x
]
≤ 0 for all v ∈ V.

(13)

The solution sets defined by (12) and (13) are in gener
different. Suppose however that there existsv∗ such that
f (y, v∗) ≥ f (y, v) for all y such thatM(y) ≥ x and all
v ∈ V . It is clear that suchv∗ satisfies both (12) and (13),
i.e., suchv∗ is both VM- and CE-optimal. This suggests
that, asx goes to infinity — i.e. asPu(M(Y ) ≥ x) goes
to zero — the VM and CE problems tend to have the
same solutions. The example in Section 4 corroborates th
intuitive notion.

3 SPECIAL DISTRIBUTIONS

We discuss now ways to solve the CE problem (7). As
happens with (5), (7) is a stochastic optimization problem
which can be solved by general techniques. It turns ou
however, that for some families of distributions (7) can b
solvedanalytically.

3.1 Natural Exponential Family

One important case occurs when the components of t
random vectorY = (Y1, . . . , Yn) are independent and each
has a distribution in thenatural exponential family(NEF)
(see, e.g., Jorgensen 1997). A random variableX is said
to have a NEF distribution if

f (y,w) = exp(yw − k(w))h(y), w ∈ W ⊂ IR, (14)

where k(w) = log
∫
ewyh(y)dy is the cumulant function

and h(y) is a real valued (normalization) function ofy.
Many distributions, such as Poisson, exponential, etc., c
be written as particular cases of the expression above; s
Rubinstein and Melamed (1998) for details. It is possibl
to show that, ifX has densityf (y,w) as in (14), then
we haveµ = IEX = k′(w) and Var[X] = k′′(w). We
then re-parameterize (14) as̃f (y, µ) = exp(yw(µ) −
k(w(µ)))h(y), wherew(µ) := [k′]−1(µ) is the inverse
function of k′, which is well defined whenk′ is strictly
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increasing — which is the case if Var[X] > 0. That is, the
parameter of the distribution is its mean.

Because of the independence assumption and the
function in (8), it is easy to see that problem (7) becom
separable. Moreover, by calculating the derivatives — whi
can done analytically — one can show that there is only o
point v∗ ∈ IRn where the gradient ofD(·) vanishes and,
moreover, the Hessian matrix∇2D(v∗) is negative definite.
It follows that v∗ is the unique global maximumof D(·).
By equating∇D(v∗) to zero, we obtain

v∗j =
IEu

[
Yj I{M(Y )≥x}

]
IEu

[
I{M(Y )≥x}

] . (15)

At first sight, formula (15) may seem useless since t
denominator on the right hand side is the quantity`(x)
we want to estimate. Nevertheless, as we shall see la
formula (15) is useful in terms of deriving an iterative
algorithm. Also, note that for the variance minimizatio
problem (5) there is no analytic solution similar to (15
even for NEF distributions. Thus, numerical optimizatio
procedures must be used in such cases. This emphas
one of the big advantages of the CE approach.

3.2 Finite Support Distributions

Another category of distributions for which the CE problem
(7) can be conveniently solved is that offinite support
distributions. Those distributions play an important role in
rare event probability estimation, particularly due to the
connection with combinatorial optimization problems; se
Rubinstein (1999).

To proceed, suppose that the components of the rand
vector Y = (Y1, . . . , Yn) are independent. AssumeY k ∼
f (y,u) takes on the valuesyk1, . . . , ykm, and letukj =
P(Yk = ykj ). The goal is then to find a discrete distributio
f (y, v) with independent marginals that solves the C
problem (7), where the setV is given by

V =
v ∈ IRnm :

m∑
j=1

vkj = 1, k = 1, . . . , n,0 ≤ vkj ≤ 1

 .

It easy to check that, in this case, (7) has concave objec
function and linear constraints. Moreover, by the assumpti
of independence we have thatf has a product form. It
follows that the derivatives∂D/∂vkj are

∂D

∂vkj
(u, v) = IEuk

[
I{M(Y )≥x} |Yk = ykj

] ukj
vkj
.

In the above, IEuk denotes the expected value unde
u with respect to all components exceptYk (so uk =
ln
s
h
e

e

ter
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e
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(u1, . . . , uk−1, uk+1, . . . , un)). These derivatives, together
with the sufficient Karush-Kuhn-Tucker optimality condi-
tions for problem (7), yield an explicit solution, which can
be expressed as

v∗kj =
IEuk

[
I{M(Y )≥x}

∣∣∣ Yk = ykj] ukj
IEu

[
I{M(Y )≥x}

] , (16)

provided of course thatPu(M(Y ) ≥ x) > 0.
Finite support distributions also have the following

important property:
Proposition 3.1 Let x∗ be the maximum value ofM(·)
over the discrete set

Y = {y11, . . . , y1m} × . . .× {yn1, . . . , ynm},

and suppose that the maximizer ofM(·) over Y (call it
y∗) is unique. Suppose that the random vectorY has
independent components with discrete distribution onY.
Then, the solution of both VM and CE programs (5) and
(7) for P(M(Y ) ≥ x∗) is the atomic measure (we shall
also call it degenerate) with mass aty∗.
Proof. Let v∗d denote the degenerate measure with mass on
y∗. That v∗d solves (5) follows immediately from the fact
that the variance of estimator̀̂N(x∗) given in (2), under
v∗d , is zero.

Let f (y,u) denote the distribution ofY . Consider
now formula (16), derived for finite support distributions.

Notice that the term IEu
[
I{M(Y )≥x∗} |Yi = yij

]
is equal to

zero if yij 6= y∗i . Otherwise, we have

IEu
[
I{M(Y )≥x∗} |Yi = y∗i

]
= IEu

[
I{Y=y∗} |Yi = y∗i

]
=

∏
k 6=i

Pu(Yk = y∗k ),

and so in (16) we obtain that

v∗ij =


0 if yij 6= y∗i∏
k 6=i Pu(Yk = y∗k )uij∏
k Pu(Yk = y∗k )

= 1 otherwise.

Proposition 3.1 demonstrates the importance of finite
support distributions — whenx is the maximum value
of M(·), the solution of both VM and CE programs to
estimateP(M(Y ) ≥ x) are always the same,regardless
of the distribution ofY . This property in turn has nice
implications for combinatorial optimization; see Rubinstein
(1999) for a discussion.
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It is also worth mentioning that the assumption o
uniqueness of the maximizer ofM in Proposition 3.1 can
be artificially enforced by imposing some ordering on the
finite setY, say the lexicographical order.

4 THE CE ALGORITHM

As mentioned before, formulas (15) and (16) are not intende
for “stand-alone” use, as they depend on the quantity`(x)

we want to estimate. However, they do suggest amulti-
stageprocedure, which we describe now. The idea is t
break down the “hard” problem of estimating the very sma
probability`(x) into a sequence of “simple” problems, each
time generating a sequence of pairs{(γ̂t , v̂t )} depending on
the parameter (probability)ρ and such thatρ >> `(x).

We start by choosing a not very smallρ, sayρ = 10−2.
Let γ0 (γ0 < x) be such that, under the original pdff (y,u),

the probability`(γ0) = IEu
[
I{M(Y )≥γ0}

]
is at leastρ. We

set nextv0 := v̂0 := u and then proceed iterating in both
v andγ with the goal of estimating the pair{`(x), v∗}, as
follows:

(a)Adaptive estimation of γt . For a fixedvt , let γt be
a (1− ρ)-quantileof M(Z) undervt . That is,γt satisfies

Pvt (M(Z) ≥ γt ) ≥ ρ, (17)

Pvt (M(Z) ≤ γt ) ≥ 1− ρ, (18)

whereZ ∼ f (z, vt ).
A simple estimatêγt of γt can be obtained by drawing

a sampleZ1, . . . ,ZN from f (z, vt ) and taking the sample
(1− ρ)-quantile. That is, we choose

γ̂t = γ̂t (vt ) ≡M(t,d(1−ρ)Ne), (19)

whereM(t,j) is the j -th order statistics of the sequence
Mt,j ≡M(Zt,j ), Zt,j ≡ Zj , j = 1, . . . , N .

(b) Adaptive estimation of vt . For fixedγt−1, derive
vt from the solution of the program

max
v∈V

{
IEvt−1

[
I{M(Z)≥γt−1}W(Z,u, vt−1) ln f (Z, v)

]}
.

(20)

The stochastic counterpart of (20) is as follows: for fixed
γ̂t−1, derive v̂t from the following program

max
v∈V

 1

N

N∑
j=1

I{M(Zj )≥γ̂t−1}W(Zj ,u, v̂t−1) ln f (Zj , v)

 .
(21)

As seen before, the optimal solutions of (20) and (21
can be obtainedanalytically, providedf (y, v) is either a
NEF or a finite support distribution — cf. (15), (16). For
example, the solution of (20) for NEF distributions is

vt,j =
IEvt−1

[
ZjI{M(Z)≥γt−1}W(Z,u, vt−1)

]
IEvt−1

[
I{M(Y )≥γt−1}W(Z,u, vt−1)

]
whereas the solution of (21) is obtained by replacing e
pected values with sample averages in the above express
Notice that, by construction, the above formula does n
involve rare events.

Before presenting a complete description of the alg
rithm, let us discuss an example to illustrate the ideas. S
pose we are interested in estimating`(x) = P(M(Y ) ≥ x),
whereM(Y ) = min(Y1, . . . , Yn) and the random vari-
ablesY1, . . . , Yn are exponentially identically distributed
with meanu, i.e., Yi ∼ f (y, u) = 1/uexp(−y/u), i =
1, . . . , n . In this example, of course, we have`(x) = e−nx/u,
so there is no need for simulation. However, in order
illustrate the mechanism of the algorithm we will appl
the multi-stage procedure described above. Moreover,
example motivates the need for some assumptions, wh
we will have to impose when dealing with presenting
complete formulation of the method.

Let us compute initially the CE-optimal parameter give
by the solution to (7). As seen earlier, for the exponent
distribution we can apply formula (15) directly. It follows
thatv∗i = v∗ := x+u. Notice that the VM-optimal solution
to (5) is given by

v∗i =
[

1

u
+ 1

x
−
√

1

u2 +
1

x2

]−1

.

For x >> u, both methods yieldv∗ ≈ x.
In order to measure the efficiency of the measure o

tained, let us compute thesquared coefficient of variation
(SCV) of the LR estimator̂̀ N(x) in (2). This quantity,
which also calledrelative error, gives an idea of how fast
the sample size must grow in order to achieve a fixed pre
sion; see, e.g., Rubinstein and Melamed (1998). It is giv
by

κ2(v, x) = NVar[̂̀N(x)]
`2(x)

.

In the present example it is easy to see that

κ2(v, x) =
[
v2ex/v

u(2v − u)
]n
− 1 .

For v∗ = x + u, the above formula reduces toκ2(v∗, x) ≈
xnen/(2u)n. That is, for largex the SCV of the CE-optimal
LR estimator increase inx polynomially. Forv = u, which
correspond to the crude Monte Carlo estimate, the SC
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increase inx exponentially. For a more general discussio
on complexity, see Asmussen and Rubinstein (1995).

Consider nowγt defined in (17)-(18). Since the al
gorithm stops whenγt ≥ x, and since the distribution o
M(Y ) is continuous, we can write

γt = max {γ ≤ x : exp(−γ n/vt )) ≥ ρ}
= min {x, Cvt/n},

whereC = log(1/ρ) > 0. The parametervt defined in (20)
can then be rewritten using (15) as

vt+1 = γt + u = min {x, Cvt/n} + u. (22)

Consider the unidimensional functiong(v) =
min{x, Cv/n} + u. It is easy to see thatg has a
single fixed pointv̄, and that v̄ = v∗ = x + u if and
only if x ≤ (C/n)(x + u), i.e. C ≥ nx/(x + u). Since
C = log(1/ρ), it follows that the CE procedure converge
to the correct solution if and only if

ρ ≤ exp

(
− nx

x + u
)
. (23)

Moreover, if ρ ≤ exp(−n) (which implies (23)), i.e. if
C/n > 1, then the differencesvt+1− vt increaseuntil the
point whenx is hit byγt ; otherwise, the differencesvt+1−vt
decreaseuntil the point whenx is hit by γt .

At first sight, condition (23) seems discouraging, sin
it requires the parameterρ to decrease exponentially withn.
Notice however that this example constitutes an intrinsica
difficult problem, since the probability being estimated go
to zero exponentially inn underany parameter. It makes
perhaps more sense to consider the behavior of (23)
fixed n — then we see thatρ ≤ exp(−n) is a sufficient
condition for the CE algorithm to work,regardless of the
value ofx. We may also consider what happens whenx
is allowed to vary withn; for example, whenx = 1/n

for some1 > 0, condition (23) becomes asymptotical
ρ ≤ exp(−1/u).

The above example suggests that the value of the
rameterρ used in the CE algorithm plays a crucial ro
— as seen there, we can only expect the CE algorithm
converge to the correct values ifρ is sufficiently small. To
determine a priori whichρ is acceptable, however, can b
a difficult task. To overcome this problem, we can chan
the value ofρ adaptively(see Rubinstein 1999 for relate
ideas). Moreover, we shall also adopt an adaptive sche
to increase the sample size used in (19) and (21).

The complete algorithm is stated in detail below.
requires the definition of constantsρ (typically, 0.01≤ ρ ≤
0.1), α > 1 andδ > 0.
r

-

e

Algorithm 4.1 :

1. Setρ0 := ρ, N := initial sample size. Generate
a sampleZ1, . . . ,ZN from the pdff (z,u) and
compute the sample(1−ρ0)-quantile (19). Denote
the initial solution byγ̂0. Sett :=1.

2. Use thesamecurrent sampleZ1, . . . ,ZN to solve
the stochastic program (21). Denote the solution
by v̂t := v̂t (γ̂t−1).

3. Generate anew sampleZ1, . . . ,ZN from the pdf
f (z, v̂t ). Let ρt := ρ.

4. Compute the sample(1−ρt )-quantile (19). Denote
the solution bŷγt .

5. If γ̂t ≥ x, set γ̂t := x and solve the stochastic
program (21) forγ̂t = x. Denote the solution as
v̂T and go to step 7.

6. Otherwise, check whether there exists̄ρ
such that the sample(1 − ρ̄)-quantile of
M(Z1), . . . ,M(ZN) is bigger than or equal to
min{x, γ̂t−1+ δ}:
(a) If there exists such̄ρ and ρ̄ = ρt , then set

t := t + 1 and reiterate from step 2;

(b) If there exists such̄ρ and ρ̄ < ρt , then set
ρt := ρ̄ and go back to step 4;

(c) Otherwise (i.e. if there exists no suchρ̄)
let N := αN and go back to step 3.

7. Estimate the rare-event probabilitỳ(x) using the
estimate (2), withv1 replaced bŷvT .

5 CONVERGENCE OF THE CE METHOD

We discuss now some issues related to convergence
Algorithm 4.1. Let v∗ be a CE-optimal solution, i.e. a
maximizer ofD(v) defined in (7). That is, we have that

v∗ ∈ argmaxv∈V
{
IEu

[
I{M(Y )≥x} ln f (Y , v)

]}
. (24)

We will need the following assumption:

Assumption A: Pv(M(Z) ≥ x) > 0 for all v ∈ V .
Assumption A simply ensures that the probability being

estimated —Pu(M(Z) ≥ x) — does not vanish whenu is
replaced by a feasible parameterv ∈ V . The assumption is
trivially satisfied when the distribution ofM(Z) has infinite
tail. For finite support distributions, the assumption hold
as long as eitherx is less than the maximum value of the
functionM(Z), or if there is a positive probability thatx
is attained.

For z ∈ IRn, v ∈ IRm, andρ > 0, defineγ (v, ρ) as an
arbitrary(1−ρ)-quantile ofM(Z) underv (cf. (17)-(18)).
Consider an arbitrary iterationt , and letρ∗x := Pvt (M(Z) ≥
x). By assumption A,ρ∗x > 0. Letρ∗ ∈ (0, ρ∗x ) be arbitrary.
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By the definition ofγ , we have that

Pvt
(M(Z) ≥ γ (vt , ρ∗)

) ≥ ρ∗

Pvt
(M(Z) ≤ γ (vt , ρ∗)

) ≥ 1− ρ∗ > 1− ρ∗x . (25)

Suppose thatγ (vt , ρ∗) < x. Then,

Pvt
(M(Z) ≤ γ (vt , ρ∗)

) ≤ Pvt (M(Z) < x) = 1−ρ∗x ,

which contradicts (25). It follows thatγ (vt , ρ) ≥ x for
ρ small enough and thus step 6 of Algorithm 4.1 can
accomplished provided̂γt is also bigger than or equal t
x. The proposition below shows that this happens forN

large enough. In the proposition, the term “with probabil
one” refers to the probability space whereZ lies, and when
Z1,Z2, . . . are viewed as random variables on that spa
We refer to Homem-de Mello and Rubinstein (2002) fo
proof of this result.
Proposition 5.1 Suppose assumption A holds. L
v ∈ V , and let Z1,Z2, . . . be i.i.d. with common pd
f (z, v). Let γ̂

N
(Z, ρ) be a sample(1 − ρ)-quantile of

M(Z1), . . . ,M(ZN). Then, there existsρx > 0 and a ran-
domNx > 0 such that, with probability one,̂γ

N
(Z, ρ) ≥ x

for all ρ ∈ (0, ρx) and allN ≥ Nx . Moreover, the probabil-
ity thatγ̂

N
(Z, ρ) ≥ x for a givenN goes to oneexponentially

fast with N .
By the above result, at some iterationT we havêγT ≥ x

and thus in step 5 we set̂γT := x. It follows that we can
view v̂T as the solution of the problem

max
v∈V

 1

N

N∑
j=1

I{M(Zj )≥x}W(Zj ,u, v̂T−1) ln f (Zj , v)


which is precisely the sample average approximation p
lem (9). This is summarized in the following propositio
Proposition 5.2 Suppose that Assumption A hold
Then, Algorithm 4.1 converges w.p.1 to a solution of
after a finite number of iterations.

We can then compare the approximating solutionv̂T
and the “true” solutionv∗ using the asymptotic analys
for optimal solutions of stochastic optimization problem
discussed in Rubinstein and Shapiro (1993). Follow
that approach, we obtain initially aconsistencyresult: as
N → ∞, the distance between̂vT and the solution se
defined in (24) goes to zero (w.p.1) provided that: i)
function lnf (z, v) is continuous inv, ii) the setV defined
in assumption A is compact, and iii) there exists a funct
h(z) such that IEu[h(Z)] < ∞ and | ln f (z, v)| ≤ h(z)

for all z and all v ∈ U . Distributional results can also b
obtained, see Rubinstein and Shapiro (1993).

Notice that the constantδ is used in Algorithm 4.1 only
to ensure convergence. In practice, one can takeδ = 0 until
the sequence{γ̂t } gets “stalled”, at which point a positiveδ
e

y

e.
a

t

b-
.
.
)

s
g

e

n

is used again. Also, it is important to observe that, even
the optimalv∗ could be obtained, some problems might stil
require a very large sample size in (2); see the discussi
following the example in Section 4. Given the limitations
of one’s computational budget, Algorithm 4.1 can be use
to detect such situation — the algorithm can be halted onc
ρt in step 6 gets too small (or, equivalently, whenN gets
too large).

6 NUMERICAL RESULTS

To illustrate the ideas set forth in the previous sections, w
present now numerical results obtained for a manufacturin
problem. In all examples below, we used an implementatio
of Algorithm 4.1 described in Section 5. Recall that the
algorithm requires the definition of three constantsρ, α and
δ. We usedρ = 0.1 andα = 2. For δ, we adopted the
conservative approachδ = 0 (recall the discussion following
the description of Algorithm 4.1). In these examples, suchδ

sufficed, i.e., the sequence{γ̂t } never got stalled. Moreover,
step 6(c) of Algorithm 4.1 was never necessary, i.e. th
initial sample size (determined after some pilot studies) wa
large enough.

Consider a single stage in a production system in whic
there areK single-server stations and a set ofJ jobs that
must be processed sequentially by all stations in a prescrib
order. We assume that the processing of jobj on stationk is
a random variable whose distribution is known, and that eac
station processes its coming jobs on a first-come-first-ser
basis, holding waiting jobs in a queue of infinite capacity
All jobs are released at time zero to be processed by th
first station (this assumption is made just for notationa
convenience and can easily be dropped). For a jobj ,
(j = 1, ..., J ) and a stationk, (k = 1, ..., K), let Ykj denote
the service time of processing jobj on stationk, and let
Ckj denote thecompletion time, i.e., the time jobj finishes
its service at stationk. By Y := (Y11, . . . , YKJ ) we denote
the vector of service times, which is assumed to be rando
with a known distribution. Note thatCKj can be viewed
as a total completion time of jobj and that eachCkj is a
function of Y , and hence is random. The above model i
studied in Homem-de-Mello, Shapiro, and Spearman (199
in the context of optimizing the performance system with
respect to the release times of the jobs; we refer to th
paper for details.

Our goal is to estimate the probability that allJ jobs will
be completed by a certain timex; that is, withM(Y ) =
CKJ (Y ), we want to estimatè (x) = P(M(Y ) ≥ x).

Calculation ofM(Y ) for a particular realization ofY can
be done via the recursive formula

Ckj = max(Ck−1,j , Ck,j−1)+ Ykj , (26)
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with Ck0 = C0j = 0 for k = 1, . . . , K, j = 1, . . . , J .
Notice that we can also view the above formula as a soluti
of a longest path problem in a directed graph; we ref
again to Homem-de-Mello, Shapiro, and Spearman (199
for details. Notice also that the above problem isstatic
(which is the focus of the present paper) since the numb
of jobs under consideration is finite.

6.1 First Case: Exponential Distributions

We consider initially the case where all service times ha
exponential distribution. For simplicity, we assume that th
service times of all jobs are i.i.d. with meanµ. In that
case it is easy to check from (26) that

CKJ ≥ Y11+ . . .+ Y1J + Y2J + . . .+ YKJ .

The expression on the right hand side of the above inequa
has distribution Gamma(K+J −1, µ), soP(Gamma(K+
J − 1, µ) ≥ x) provides a lower bound onP(M(Y ) ≥ x).
To obtain an upper bound, we consider the Chebysh
inequality

P(M(Y ) ≥ x) ≤ IEµ
[M(Y )p

]
xp

, (27)

which is valid for anyp > 0 (note thatM(Y ) ≥ 0 in
this example). We consider three values forx, namely,
x = 0.80, x = 0 andx = 20, where0 = JKµ.

To estimateP(M(Y ) ≥ x), we used the CE approach
described in the previous sections. The parameter obtai
— a K × J -dimensional vector — determined the impor
tance sampling distribution used to estimate the probabil
For the sake of comparison, we also estimated the sa
probability using standard Monte Carlo. To provide a fa
comparison, we provided the samecomputational budget
for both methods. That is, we used a larger sample size
the crude Monte Carlo, since the CE methods requires ex
computational time to calculate the optimal parameters. W
increased the sample size sequentially until the total CP
time used by the crude Monte Carlo was the same as
time used for the CE method. The same stream of rand
numbers was used for the Monte Carlo and CE estima
for eachx. The above procedure was replicated 100 time
and the average and a simultaneous 90% confidence inte
were built from those 100 independent estimates, both
Monte Carlo and CE.

Table 1 displays the estimation results forJ = 10,K =
5,µ = 25, whereas Table 2 lists the lower and upper boun
Although these results correspond to a particular instan
of data, we must emphasize that similar type of resu
were observed for other problems we generated random
In the table,̂̀N(x) is the estimate forP(M(Y ) ≥ x),
“90% H.W.” denotes the half-width of a 96.67% confidenc
)

r

d

e

r
a

e

s

al

.

.

interval andN is the sample size. Notice that, since th
sample size used with the Monte Carlo method was variab
theN column displays the average (as well as the half-wid
of a 96.67% confidence interval). Also, observe that t
individual confidence of the three intervals displayed on t
rows corresponding to eachx is 96.67%; by Bonferroni’s
inequality, theoverall confidence on those intervals is a
least 90%.

Table 1: Estimated Probabilities for Exponential Distri-
bution Case,J = 10,K = 5, µ = 25

MC
x ̂̀

N(x) 90% H.W. N

1000 7.715× 10−5 2.719× 10−5 4751 (±117)
1250 0.000 0.000 12931 (±176)
2500 0.000 0.000 46430 (±786)

CE
x ̂̀

N(x) 90% H.W. N

1000 4.964× 10−5 1.044× 10−5 1000
1250 2.679× 10−8 9.687× 10−9 2000
2500 2.987× 10−27 2.903× 10−27 5000

Table 2: Estimated Bounds for Exponential Distribution
Case,J = 10,K = 5, µ = 25
x lower bound upper bound (95% H.W.)

1000 6.675× 10−7 1.148× 10−3 (4.113× 10−4)
1250 5.065× 10−10 6.853× 10−7 (5.294× 10−7)
2500 6.855× 10−28 5.263× 10−25 (4.651× 10−25)

6.2 Second Case: Discrete Distributions

We now consider the case where all service times ha
discrete distributions with finite support. As before, w
assume for the sake of simplicity that the service times
all jobs are i.i.d., the common distribution being uniform
on the set{10,20,30,40}.

Notice that, because the random variables take on
finite number of values, the maximum possible completio
time 9 can be found by setting each random variable
its maximum value and solving a longest-path problem (
Homem-de-Mello, Shapiro, and Spearman 1999). In t
current case, because all service times are i.i.d. the to
completion time corresponds to a sum ofK+J −1 service
times, so9 = (K+J −1)×40. However, such procedure
does not determine the probability of the maximum valu
since there are multiple paths corresponding to it. A low
bound for the probability is(1/4)K+J−1. We estimated
P(M(Y ) ≥ x) for two values ofx, based on the value of
the maximum completion time9. We tookx = 0.99 and
x = 9 (obviously,P(M(Y ) > 9) = 0).

To estimateP(M(Y ) ≥ x), we used the CE approach
described in the previous sections. Notice that in th
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case the parameter to be determined — the probabiliti
of each value of each service time — is aK × J × m-
dimensional vector. As before, we also estimated the sam
probability using standard Monte Carlo, and provided th
samecomputational budgetfor both methods. The same
stream of random numbers was used for the Monte Car
and CE estimates for eachx. The above procedure was
replicated 50 times, and the average and a simultaneous 9
confidence interval were built from those 50 independen
estimates, both for Monte Carlo and CE.

Table 3 below displays the results forJ = 10,K = 5.
In this case,9 = 560. A lower bound for the probability
P(M(Y ) ≥ 9) is (1/4)14 = 3.725×10−9, while the upper
bound computed from (27) withp = 60 is 8.430×10−5±
9.931× 10−6. Although the bounds in this case are a little
bit loose, we must emphasize that, for problems wher
the probabilitiesP(Ykj = ykj ) were randomly generated
— in which case one can often calculate the probabilit
P(M(Y ) ≥ 9) exactly — the confidence intervals obtained
from the CE method usually included the true value; w
refer to Homem-de Mello and Rubinstein (2002) for details

Table 3: Estimated Probabilities for Discrete Dis-
tribution Case,J = 10, K = 5, m = 4, Uniform
Distribution

MC
x ̂̀

N(x) 90% H.W. N

500 1.423× 10−2 1.421× 10−3 680 (±40)
560 0.000 0.000 10192 (±19)

CE
x ̂̀

N(x) 90% H.W. N

500 1.424× 10−2 2.621× 10−3 100
560 7.004× 10−7 4.637× 10−7 700

The above results indicate high efficiency of the CE
method for estimation rare-event probabilities, where th
naive Monte Carlo method fails. For events that are not ve
rare, the CE method may still help in terms of providing
estimates with smaller variance.
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