
E s t i m a t i o n  o f  R e l a t i v e  
U n c a l i b r a t e d  C a m e r a s  

Richard L Hartley 

G.E. CRD, Schenectady, NY, 12301. 

C a m e r a  P o s i t i o n s  for  

A b s t r a c t .  This paper considers, the determination of internal camera pa- 
rameters from two views of a point set in three dimensions. A non-iterative 
algorithm is given for determining the focal lengths of the two cameras, as 
well as their relative placement, assuming all other internal camera param- 
eters to be known. It is shown that this is all the information that may be 
deduced from a set of image correspondences. 

1 I n t r o d u c t i o n  

A non-iterative algorithm to solve the problem of relative camera placement was given 
by Longuet-Higgins ([4]). However, Longuet-Higgins's solution made assumptions about 
the camera that may not be justified in practice. In particular, it is assumed implicitly 
in his paper that the focal length of each camera is known, as is the principal point (the 
point where the focal axis of the camera intersects the image plane). Whereas it is often 
a safe assumption that the principal point of an image is at the center pixel, the focal 
length of the camera is not easily deduced, and will generally be unknown for images 
of unknown origin. In this paper a non-iterative algorithm is given for finding the focal 
lengths of the two cameras along with their relative placement, as long as other internal 
parameters of the cameras are known. It follows from the derivation of the algorithm, 
as well as from counting degrees of freedom that this is all the information that may be 
deduced about camera parameters from a set of image correspondences. 

In this paper, the term magnification will be used instead of focal length, since it 
includes the equivalent effect of image enlargement. 

2 The 8-Point Algorithm 

First, I will derive the 8-point algorithm of Longuet-Higgins in order to fix notation and 
to gain some insight into its properties. Alternative derivations were given in [4] and 
[5]. Since we are dealing with homogeneous coordinates, we are interested only in values 
determined up to scale. Consequently we introduce the notation A m B (where A and B 
are vectors or matrices) to indicate equality up to multiplication by a scale factor. Image 
space coordinates will usually be given in homogeneous coordinates as (u, v, w) T. 

2.1 Algorithm Derivation 

We consider the case of two cameras, one which is situated at the origin of object space 
coordinates, and one which is displaced from it. The two cameras may be represented 
by the transformation that they perform translating points from object space into image 
space coordinates. The two transformations are assumed to be 

(u, v, w) T -- (x, y, z) T (1) 
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and 
(~,, r  ~,)T = a ((=, y, z) T -- (t~, t~,tz)T) (2) 

where R is a rotation matrix, the vectors (u, v, w) T and (u', v', w') T are the homogeneous 
coordinates of the image points, and (=,y,z)  T and ( tz , ty , tz)  T are non-homogeneous 
object space coordinates. Writing T = (tx,ty, t~)T, and using homogeneous coordinates 
in both object and image space, the above relations may be written in matrix form as 

( u , v ,w )  T = ( I  l O) (x ,y ,z ,1 )  T = P l ( X , y , z , 1 )  m (3) 

and 
(u,, r  ~,)T = (R I - R T ) ( = ,  y, z, 1) T = P=(~, y, z, 1) T (4) 

where ( I  [ 0) and (R [ - R T )  are 3 • 4 matrices divided into a 3 x 3 block and a 3 x 1 
column and I is the identity matrix. 

Now, I will define a transformation between the 2-dimensional projective plane of 
image coordinates in image 1 and the pencil of epipolar lines in the second image. As 
is well known, given a point (u, v, w) T in image 1, the corresponding point in image 2 
must lie on a certain epipolar line, which is the image under P~ of the set s of all points 
(z, y, z, 1) T which map under P1 to (u, v, w) T. To determine this line one may identify two 
points in s  namely the camera origin (0, 0, 0, 1) T and the point at infinity, (u, v, w, 0) T . 
The images of these two points under P2 are - R T  and R(u, v, w) T respectively and the 
line that passes through these two points is given in homogeneous coordinates by the 
cross product, 

(p, q, r) T = R T  x R(u, v, w) T = R (T x (u, v, w) T) (5) 

Here (p, q, r) T represents the line pu' + qv' + rw' = O. Representing by S the matrix 

S=ST= ( 

equation (5) may be written as 

0 - t ~  ty 

t~ 0 0 x ) - t y  t~ 
(6) 

(p, r r) T = R S ( u ,  v, w) T (7) 

Since the point (u', v', w') T corresponding to (u, v, w) T must lie on the epipolar line, we 
have the important relation 

(u', v', w')Q(u, v, w)T = 0 (8) 

where Q = RS. This relationship is due to Longuet-Itiggins ([4]). 
As is well known, given 8 correspondences or more, the matrix Q may be computed 

by solving a (possibly overdetermined) set of linear equations. In order to compute the 
second camera transform, P2, it is necessary to factor Q into the product RS  of a rotation 
matrix and a skew-symmetric matrix. Longuet-ttiggins ([4]) gives a rather involved, and 
apparently numerically somewhat unstable method of doing this. I will give an alternative 
method of factoring the Q matrix based on the Singular Value Decomposition ([1]). The 
following result may be verified. 

T h e o r e m  1. A 3 x 3 real matrix Q can be factored as the product of a rolalion malriz 
and a non-zero skew symmetric matrix if and only if Q has two equal non-zero singular 
values and one singular value equal to O. 
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A proof is contained in [2]. This theorem allows us to give an easy method of factoring 
any matrix into a product RS, when possible. 

T h e o r e m  2. Suppose the matrix Q can be factored into a product R S  where R is orthogo- 
hal and S is skew-symmetric. Let the Singular Value Decomposition of Q be UDV "r where 
D = diag(k, k, 0). Then up to a scale factor the factorization is one of the following: 

S ~. VZV3. ; R ~ UEV3. o r  U E T V  3. ; Q ~ R S  . 

where (Ol ) (Zol ) 
E = 1 0 , Z = (9) 

0 0 

Proof That  the given factorization is valid is true by inspection. That  these are the only 
solutions is implicit in the paper of Longuet-Higgins ([4]). [3 

It may be verified that  T (the translation vector) in Theorem 2 is equal to V.(0, 0, 1) 3. 
since this ensures that  S T  = 0 as required by (6). Furthermore IITll = 1, which is a con- 
venient normalization suggested in [4]. As remarked by Longuet-Higgins, the correct 
solution to the camera placement problem may be chosen based on the requirement 
tha t  the visible points be in front of both cameras ([4]). There are four possible rota- 
t ion/translat ion pairs that  must be considered based on the two possible choices of  R and 
two possible signs of T. Therefore, since U E V  T V(O, O, 1) T = U(0, 0, 1)3. the requisite 
camera matrix P2 = (R I - R T )  is equal to (UEV3. I - U ( 0 ,  0, 1) T) or one of the obvious 
alternatives. 

2.2 N u m e r i c a l  C o n s i d e r a t i o n s  

In any practical application, the matrix Q found will not factor exactly in the required 
manner because of inaccuracies of measurement. In this case, the requirement will be to 
find the matrix closest to Q that  does factor into a product  RS. Using the sum of squares 
of matrix entries as a norm (Frobenius norm [1]), we wish to find the matrix Q'  = RS  
such that  IIQ - Q']I is minimized. The following theorem shows that  the factorization 
given in the previous theorem is numerically optimal. 

T h e o r e m  3. Let Q be any 3 x 3 matrix and Q = UDV T be its Singular Value Decomposi- 
tion in which D = diag(r,s,t) and r > s > t. Define the matrix Q' by Q' = U D ' V  T where 
D'  = diag(k, k,0) and k = (r+s)/2. Then Q' is the matrix closest to Q in Frobenius norm 
which satisfies the condition Q' = RS, where R is a rotation and S is skew-symmetric. 
Furthermore, the factorization is given up to sign and scale by R ~ U E V  r or UE r V T 
and S ~ V Z V  r .  

This theorem is plausible given the norm-preserving property of orthogonal transfor- 
mations. However, its proof is not entirely obvious and falls beyond the scope of this 
paper. 

2 .3  A l g o r i t h m  O u t l i n e  

The algorithm for computing relative camera locations for calibrated cameras is as fol- 
lows. 
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1. Find Q by solving a set of equations of the form (8). 
2. Find the Singular Value Decomposition Q = UDV T , where D = diag(a, b, c) and 

a > b > c .  
3. The transformation matrices for the two cameras are P1 = ( I  I 0) and P2 equal to 

one of the four following matrices. 

( UEVT I U(O,O, 1) T) 
( UEVT I-U(O,O, 1) T) 
( u E T v T I  U(0,0,1)  T) 
(UETV m [ - U ( 0 , 0 ,  1) T) 

The choice between the four transformations for Pu is determined by the requirement 
tha t  the point locations (which may be computed once the cameras are known [4]) must 
lie in front of both cameras. Geometrically, the camera rotations represented by UEV T 
and UETV T differ from each other by a rotation through 180 degrees about  the line 
joining the two cameras. Given this fact, it may be verified geometrically tha t  a single 
pixel-to-pixel correspondence is enough to eliminate all but  one of the four alternative 
camera placements. 

3 U n c a l i b r a t e d  C a m e r a s  

If  the internal camera calibration is not known, then the problem of finding the camera 
parameters is more difficult. In general one would like to allow arbitrary non-singular 
matrices K describing internal camera calibration and consider camera matrices of the 
general form ( K R  I - K R T ) ,  that  is, general 3 x 4 matrices. Because K is multiplied by a 
rotation, R, it may be assumed that  K is upper triangular. Allowing for an arbitrary scale 
factor, there are 5 remaining independent entries in K representing camera parameters. 
Other  authors ([6]) have allowed four internal camera parameters, namely principal point 
offsets in two directions and different scale factors in two directions. If  however different 
scaling is allowed in two directions not necessarily aligned with the direction of the 
image-space axes, then one more parameter is needed, making up the 5. 

It is too much to hope that  from a set of image point correspondences one could 
retrieve the full set of internal camera parameters for a pair of cameras as well as the 
relative external positioning of the cameras. Indeed if {xi} are a set of points visible 
in a pair of cameras with transform matrices P1 and P2, and G is an arbitrary non- 
singular 4 • 4 matrix, then replacing each xi by G-lx i  and each camera Pj with Pi G 
preserves the object-point to image-space correspondences. As may be seen, the internal 
parameters of one of the cameras, P1 say, may be chosen arbitrarily. The situation is not 
helped by adding more cameras. This is in contrast to the case of calibrated cameras 
in which a finite number of solutions are possible ([2]). The question remains, therefore, 
how much can be deduced about the internal camera parameters from a set of image 
correspondences. 

For uncalibrated cameras, a matrix Q can be defined, analogous to the matrix defined 
for calibrated cameras, and this matrix may be computed given matched point pairs, 
according to (8). It may be observed that  however many pairs of matched points are 
given, as far as determining camera models is concerned, the matrix Q encapsulates all 
the information available, except as to which points lie behind or in front of the cameras. 
As remarked above, the choice of the four possible relative camera placements may be 
determined using just one matched point pair - the rest may be thrown away once Q 
has been computed. To justify this observation it may be verified that  a pair of matching 
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points (u, v, W) T and (u', v', w') T correspond to a possible placement of an object point 
if and only if (u', v', w')Q(u, v, w) T = 0. This means that the addition of match points 
beyond 8 does not add any further information except numerical stability. Now, Q has 
only 7 degrees of freedom consisting of 9 matrix entries, less one for arbitrary scale 
and one for the condition that det(Q) = 0. (Theorem 1 does not hold for uncalibrated 
cameras.) Therefore, the total number of camera parameters that  may be extracted from 
a set of image-point correspondences does not exceed 7. As shown by Longuet-Higgins, 
the relative camera placements account for 5 of these (not 6, since scale is indeterminate), 
and this paper accounts for two more, the camera magnification factors. It is not possible 
to extract any further information from Q, or hence from a set of matched points. 

3.1 F o r m  o f  t he  Q - m a t r l x  

Let K1 and K2 be two matrices representing the internal camera transformations of the 
two cameras and let P1 -- (K1 I 0) and P2 -- (K2R I - K 2 R T )  be the two camera trans- 
forms. The task is to obtain R, T, K1 and K2 given a set of image-point correspondences. 
For the present, the matrices K1 and Ks will be assumed arbitrary. 

As before, it is possible to determine the epipolar line corresponding to a point 
(u ,v ,w)  T in image 1. The two points that must lie on the epipolar line are the im- 
ages under P2 of the camera centre (0, 0, 0, 1) T of the first camera and the point at 

infinity ( K ~ l ( ~ v ' w ) T  ) .  Transform P~ takes these two points to the points - K 2 R T  

and K2RK~ 1 (u, v, w) T. The line through these points is given by the cross product 

K2RT x K~RK~I(u,  v, w) T (10) 

If K is a square matrix, we use the notation K* to represent the cofactor matrix of K, 
that is the matrix defined by K~ = ( - 1 )  ~+j det(K (~j)) whereK (~D is the matrix derived 
from K by removing the i-th row and j - th  column. If K is non-singular, then it is well 
known that K* = det (K) . (KT)  -1. In other words, K* ~, (KT)  -1. The cofactor matrix 
is related to cross products in the following way. 

L e m m a 4 .  I f  a and b are 3-dimensional column vectors and K is a 3 x 3 matrix, then 
Ka x Kb ~ K*(a x b). 

Using this fact it is easy to evaluate the cross product (10). 

K2RT x g 2 R g ~ l ( u ,  v, w) T ~ K~RK~ - l ( g t T  x (u, v, w) T) (11) 

Now, writing S = SIqT as defined in (6), we have a formula for the epipolar line corre- 
sponding to the point (u ,v ,w)  T in image 1 : 

(p, q, r) T ~ K~RKITS(u ,  v, w) T (12) 

Furthermore, setting Q = K~RK1TS  we have the formula 

(u ' , v ' ,w ' )Q(u ,v ,w)  T = 0 . (13) 

An alternative factorization for Q that may be derived from (10) and Lemma 4 is 

Q ~ ( K ~ I ) T R S K ~  1 (14) 

where S = ST as given by (6). 
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3.2 Factorlzat ion of  Q 

Our goal, given Q, is to find the factorizat ion Q ~ K ~ R K I T S .  As before, we use the  
Singular  Value Decomposit ion,  Q = U D W  T. By mult iplying by - 1  if necessary, U and V 
may  be chosen such the det (U)  -- de t (V)  = -F1 so tha t  U* -- U and V* = V. Since Q is 
singular,  the diagonal  mat r ix  D equals diag(r,  s, 0) where r and s are positive constants.  
Since QW(0,  0,1) T = 0, it  follows tha t  SW(0 ,  0, 1) T -- 0 since K~RK~ T is non-singular,  
and so S ~ W Z W  T where Z is given in (9). The general solution to the problem of 
factoring Q into a product  R~S ~, where R * is non-singular and S ~ is skew-symmetric  is 
therefore given by 

Q = (UX,~ ,a , . rETWT) . (WZW T) (15) 

where X~,Z,7 is given by 

X,,~,~ = s (16) 
0 

and a ,  fl and 7 are a rb i t ra ry  constants.  The  two bracketed expressions are R'  and S '  
respectively and the factorizat ion is unique (except for the variables a ,  fl and 7) up to 
scale. In contrast  to the s i tuat ion in Section 2.1 we do not need to consider the a l ternate  
solut ion in which E T is replaced by E,  since tha t  is taken care of by the undetermined 
values ~, ~ and 7. Since both  E and W are or thogonal  matrices,  we write V = W E ,  and 
V is also orthogonal.  

Now, we turn our a t tent ion to the matr ix  R ~ = UX~,,p,TV T. For some values of c~, 
* * - I  and 7, it must  be true tha t  R' .~ K 2 R K  1 where R is a rota t ion matr ix .  From this it 

follows t h a t R ~ .  , - 1  ~ �9 K 2 R K 1 . We now apply the proper ty  tha t  a ro ta t ion mat r ix  is equal 
* It: ~ 1 D I *  TT" to  its cofactor matr ix ,  (inverse transpose).  This means tha t  K 2 -1R~K'~ ~ ~2 ~L ~1 or 

K 2 K 2 T R  ' ~-, RI*K1K1 r . (17) 

, T where is the  mat r ix  Since R '  ~ UXc,,fL~V T , it  follows tha t  R ~* ~ UX,~,~,TV X*,~.~, 

x * : , ~  = r7 (18) 
\ - s ~  - r ~  rs 

and so from (17) 

(Ks K2 T)UXc,,~,~, V T ~ UX*,z,.y V T (K1 Kl - r )  . (19) 

At  this point ,  it  is necessary to specialize to the case where K1 and Ks are of the 
simple form K1 = diag(1, 1, k l )  and Ks = diag(1, 1, ks). In this case, kl and k2 are the 
inverses of the magnification factors. If the entries of UXa,z,~,V T are ( f i j )  and those of 

* T UXc,,~,~V are (gij), then mult iplying by (K~K2 T) and (K1K~ T) respectively gives an 
equat ion 

f l l  S12 f13 ~ :gll g12 k2g13~ 
/ =xig l k g 3/ (20) 

where the f i j  and gij linear expressions in a ,  fl and 7, and x is an unknown scale factor. 
The  top left hand block of (20) comprises a set of equations of the form 

( .fll :12"~ X(gll g12) (21) 
f21 Y22) = \g21 g2~ " 
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If the scale factor were known, then this system could be solved for a , /3  and 7 as a set 
of linear equations. Unfortunately, x is not known, and it is necessary to find the value 
of z before solving the set of linear equations. Since the entries of  the matrices on both 
sides of (21) are linear expressions in a , /3  and 7, it is possible to rewrite (21) in the form 

M1(a,/3,7, 1) T - x M,(c~,/3,7, 1) T = 0 , (22) 

where M1 and M ,  are 4 x 4 matrices, each row of M1 or M ,  corresponding to one of 
the four entries in the matrices in (21). Such a set of equations has a solution only if 
det(Ma - z Mz) = 0. This leads to a polynomial equation of degree 4 in z : p(z)  = 
det(M1 - x M, )  = 0. It will be seen later that  this polynomial reduces to a quadratic. 

The form of the matrix M~ may be written out explicitly. Let X~,;~,- r be written in 
the form c~.A~a +/3.A2~ + 7.A~3 + ( r .A~  + s A ~ ) ,  where Aij is the matrix having a one 
in position i , j  and zeros elsewhere. Then, 

UXa,~,TV y = o~UA13V T -1-/3UA23 VT -1-7UAz3V T -k-rUAll V r -~- sU A22V T . 

It may be verified that  the the p,q-th entry of the matrix UAijV T is equal to UpiVqj. 
Now, suppose that  the rows of M1 are ordered corresponding to the entries f ~ ,  fx~, f~l 
and f22 of UXc,,z.yV T. Then 

( f l l ~  / UllV13 
f12 / [ Ull V23 
f 2 1 ]  -- [U21VI3 
f22 / k U21V~3 

and MI is the matrix in this 
computed in a similar manner. 

[ -s.U13Vn 
|-s.U13V21 

M~, = [-s.U2~Vn 
\ -s.U23V21 

Ul~V13 U13V13 r.UllVll+s.U12Vl~ {a  
U12V23 V13V23 r'UllV21-~s'U12V221 ~ (23) 
U22V13 U23V~3 r.U2Wn+s.U~2Vx2] 
U2~V23 U23V23 r.U21V~l +s.U22V22 ] 

expression. The exact form of the matrix Mx may be 

-r.UlsYl2 r.U12V12+S.UllVll rs.U13V13~ 
-r.V13V22 r.U12V22+S.UllV21 rs.U13V23] 
-r.U23V12 r.U~2V12+s.U2Wll rs.U~3Vl~ } 
-r.U23V22 r.U22V22+s.U~W~l rs.U23V~3 ] 

(24) 

With the help of a symbolic algebraic manipulation program such as Mathematica ([7]) 
three identities may easily be established by direct computat ion : 

d e t ( M x ) - 0  , d e t ( M 1 ) = 0  , d e t ( M l + M x ) + d e t ( M i - M ~ ) = 0  . 

From this it follows easily that  p(x) = det(M1 - x M, )  = a l z  q- a3x 3. The root x : 0 
of this polynomial may safely be ignored, since according to (21) it would imply that  
fq  = 0 for i , j  < 2, and hence that R is singular, which by assumption it is not. Thus p(x) 
reduces to a quadratic as promised, and this quadratic has two roots of equal magnitude 
and opposite sign. It is possible that  p(x) has no real root, which indicates that  no real 
solution is possible given the assumed camera model. This may mean that  the position 
of the principal points have been wrongly guessed. For a different value of each principal 
point (that is, a translation of image space coordinates) a solution may be possible, but  
the solution will be dependent on the particular translations chosen. 

Supposing, however, that  x is a real root of p(x), the values of  a,  /3 and 7 may be 
determined by solving the set of equations given in (21). Finally, the values of kl and k2 
may be read off from equation (20). In particular, 

k~ = x.g31/f31 --- x.g32/f32 (i) 
kl 2 : fl3/X.gl3 m_ f23/x.g23 (ii) (25) 
k~f33 = z.k12g33 �9 (iii) 
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The apparent redundancy in the equations (25) is resolved by the following proposi- 
tion. 

P r o p o s i t i o n  5. 
1. I f  x is either of the roots of p(x), then the two expressions zg31/f31 and zgs2/f32 

for k~ in (g5.i) are equal. Similarly, the two expressions/or k~ in (e5.ii) are equal 
and the relationship (25.iii) is always true. 

2. Values k~ and k~ are either both positive or both negative. 
3. The estimated values of k~ corresponding to the two opposite roots of p(x) are the 

same. The same holds for the two values of k~. 

Proof of this proposition is beyond the scope of this paper. The case where k~ and k~ are 
negative implies as before that no solution is possible. Once again, selecting a different 
value for the principal points (origin of irnage-space coordinates) may lead to a solution. 

At this point, it is possible to continue and compute the values of the rotation matrix 
directly. However, it turns out to be more convenient, now that  the values of the mag- 
nification are known, to revert to the case of a calibrated camera. More particularly, we 
observe that according to (14), Q may be written as Q = K ~ I Q ' K ~  1 where Qf = RS,  
and _R is a rotation matrix. The original method of Section 2.3 may now be used to solve 
for the camera matrices derived from Q~. In this way, we find camera models P1 = ( I  I 0) 
and P2 = (R I - R T )  for the two cameras corresponding to Q'. Taking account of the 
magnification matrices K1 and K2, the final estimates of the camera matrices are (K1 I 0) 
and (K2R I - K 2 R T  ). 

In practice it has been observed that greater numerical accuracy is obtained by re- 
peating the computation of kl and k2 after replacing Q by Qt. The values of kl and k~. 
computed from Q~ are very close to 1 and may be used to revise the computed magni- 
fications very slightly. However, such a revision is necessary only because of numerical 
round-off error in the algorithm and is not strictly necessary. 

3.3 A l g o r i t h m  Out l ine  

Although the mathematical derivation of this algorithm is at times complex, the imple- 
mentation is not particularly difficult. The steps of the algorithm are reiterated here. 

1. Compute a matrix Q such that (u~, v~, 1)YQ(ul, vi, 1) -- 0 for each of several matched 
pairs (at least 8 in number) by a linear least-squares method. 

2. Compute the Singular Value Decomposition Q ~ U D W  r with det(U) = det(V) = 
+1 and set r and s to equal the two largest singular values. Set V -- W E .  

3. Form the matrices M1 and M~ given by (23) and (24) and compute the determinant 
p(x)  = det(Ul  - x i~:)  = alx  .-b a3x 3. 

4. If - a l / a a  < 0 no solution is possible, so stop. Otherwise, let x = -X/ '~l/aa,  one of 
the roots of p(x). 

5. Solve the equation (M1 - x M=)(a,/~, 7, 1) T -- 0 to find a, fl and 7 and use these 
values to form the matrices X~,,p,. r and X*~,x given by (16) and (18). 

�9 7" and observe that  the four top left 6. Form the products UX,~,/L.rV "r and UX~,,~,.rV 
elements of these matrices are the same. 

7. Compute kl and k2 from the equations (25) where ( f i j)  and (gii) are the entries of 
the matrices UX~,,/L. r V T and * T UX,~,Z,.rV respectively. If kl and k2 are imaginary, 
then no solution is possible, so stop. 

8. Compute the matrix Q~ = K2QK1 where K1 and K2 are the matrices diag(1, 1, kl) 
and diag(1, 1, k~) respectively. 
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9. Compute the Singular Value Decomposition of Q' = UID'V ''r. 
10. Set P1 = (K1 I 0) and set P2 to be one of the matrices 

(K2 v'Ev''r [ g2v'(o,o,1) T) 
(K2U'E'rV"rl K2U'(0, 0,1) T) 
(K2U'EV I O, 1) T) 
(K2 U'ETV'T I -g2v'(o, O, 1) T) 

according to the requirement that the matched points must lie in front of both cam- 
eras. 

4 P r a c t i c a l  R e s u l t s  

This algorithm has been encoded in C and tested on a variety of examples. In the first test, 
a set of 25 matched points was computed synthetically, corresponding to an oblique place- 
ment of two cameras with equal magnification values of 1003. The principal point offset 
was assumed known. The solution to the relative camera placement problem was com- 
puted. The two cameras were computed to have magnifications of 1003.52 and 1003.71, 
very close to the original. Camera placements and point positions were computed and 
were found to match the input pixel position data within limits of accuracy. Similarly, 
the positions in 3-space of the object points matched the known positions to within one 
part in 1 0  4 . 

The algorithm was also tested out on a set of matched points derived from a stereo- 
matching program, STEREOSYS ([3]). A set of 124 matched points were found by an 
unconstrained hierarchical search. The two images used were 1024 x 1024 aerial overhead 
images of the Malibu region with about 40% overlap. The algorithm described here was 
applied to the set of 124 matched points and relative camera placements and object-point 
positions were computed. The computed model was then evaluated against the original 
data. Consequently, the computed camera models were applied to the computed 3-D 
object points to give new pixel locations which were then compared with the original 
reference pixel data. The RMS pixel error was found to be 0.11 pixels. In other words, 
the derived model matches the actual data with a standard deviation of 0.11 pixels. This 
shows the accuracy not only of the derived camera model, but also the accuracy of the 
point-matching algorithms. 
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