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Abstract: Relative chlorophyll content (SPAD) is an important index for characterizing the nitrogen
nutrient status of plants. Continuous, rapid, nondestructive, and accurate estimation of SPAD values
in wheat after heading stage can positively impact subsequent nitrogen fertilization management
strategies, which regulate grain filling and yield quality formation. In this study, the estimation of
SPAD of leaf relative chlorophyll content in spring wheat was conducted at the experimental base in
Wuyuan County, Inner Mongolia in 2021. Multispectral images of different nitrogen application levels
at 7, 14, 21, and 28 days after the wheat heading stage were acquired by DJI P4M UAV. A total of
26 multispectral vegetation indices were constructed, and the measured SPAD values of wheat on the
ground were obtained simultaneously using a handheld chlorophyll meter. Four machine learning
algorithms, including deep neural networks (DNN), partial least squares (PLS), random forest (RF),
and Adaptive Boosting (Ada) were used to construct SPAD value estimation models at different time
from heading growth stages. The model’s progress was evaluated by the coefficient of determination
(R2), root mean square error (RMSE), and mean absolute error (MAPE). The results showed that the
optimal SPAD value estimation models for different periods of independent reproductive growth
stages of wheat were different, with PLS as the optimal estimation model at 7 and 14 days after
heading, RF as the optimal estimation model at 21 days after heading, and Ada as the optimal
estimation model at 28 d after heading. The highest accuracy was achieved using the PLS model for
estimating SPAD values at 14 d after heading (training set R2 = 0.767, RMSE = 3.205, MAPE = 0.060,
and R2 = 0.878, RMSE = 2.405, MAPE = 0.045 for the test set). The combined analysis concluded that
selecting multiple vegetation indices as input variables of the model at 14 d after heading stage and
using the PLS model can significantly improve the accuracy of SPAD value estimation, provides a
new technical support for rapid and accurate monitoring of SPAD values in spring wheat.

Keywords: wheat; machine learning; SPAD; vegetation indices

1. Introduction

Spring wheat is a major crop in northern China, and its growth and yield are critical for
ensuring food security in the region. Chlorophyll, a pigment essential for photosynthesis in
plants, has a strong influence on the nitrogen nutrition status, photosynthetic capacity, and
yield of crops, and is a key parameter reflecting crop growth. Accurate and rapid estimation
of chlorophyll levels can effectively assess the growth environment, water, and fertilizer
management of crops, informing subsequent field management decisions and yield pre-
diction [1–3]. Chemical methods are the traditional approach for measuring chlorophyll
content, but they are laborious, destructive, and slow [4]. In addition, chlorophyll extracted
from plant leaves is susceptible to decomposition by light, resulting in inaccurate measure-
ment. The manual handheld chlorophyll meter, while faster than chemical methods, can
only provide information on the chlorophyll content of a single leaf and does not account
for the vertical heterogeneity within the canopy. Therefore, accurate measurement over a
large area in time and space is not achievable with manual handheld chlorophyll meters.
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Unmanned aerial vehicles (UAVs) have emerged as a promising remote sensing platform
for obtaining physiological and biochemical traits of crops due to their mobility, flexibility,
wide coverage, and high spatial and temporal resolution [5,6]. Spectral images acquired
by UAVs in combination with algorithmic models have been shown to effectively monitor
chlorophyll content [7–9]. While hyperspectral cameras have high inversion capabilities,
they also have disadvantages, such as high cost, poor convenience, and complex operation
processes. In contrast, multispectral images are less expensive and easier to control in flight
and have equivalent inversion capabilities to hyperspectral images. Therefore, the use
of UAV multispectral images for the acquisition and accurate inversion of crop growth
parameters has great theoretical and practical value. Several studies have been conducted
using UAV multispectral remote sensing technology to monitor the physical and chemical
parameters of crops. Zhou et al. [10] developed a SPAD value inversion model for winter
wheat using stepwise regression, principal component regression, and ridge regression.
Niu et al. [11] employed two visible vegetation indices and four multispectral vegetation
indices, along with stepwise regression and random forest regression methods, to estimate
the SPAD values of winter wheat. Mao et al. [12] utilized two multispectral sensors with
varying spectral response functions (Multiple Camera Array MCA and Sequoia) to obtain
multispectral images of maize flowering under different nitrogen application levels and de-
veloped a more accurate estimation model by calculating vegetation indices and regressing
them on the ground SPAD values.

The growth of wheat can be divided into three stages: the foundation stage, which
begins at seed emergence and ends at stem elongation; the construction stage, which starts
at the first node detachable from flowering and is a critical stage for yield; and the pro-
duction stage, which begins at flowering and ends at ripening. Within the construction
stage, there is also a period of nutritional and reproductive growth in parallel. After wheat
heading, nutritional growth largely ceases, and the plant enters the independent reproduc-
tive growth stage. In previous research, the use of UAV multispectral imaging to estimate
chlorophyll content has mostly focused on the flowering or early filling stages [13–15],
with fewer studies examining the multi-temporal variation of wheat SPAD within the
independent reproductive growth stage after heading. However, as the plant progresses
through different growth stages, the optimal estimation model may change due to changes
in the modeling data set. Therefore, this study employed separate modeling for different
growth periods of wheat in order to achieve higher estimation accuracy.

The Hetao irrigation area, located in the northwestern part of China, is a region
characterized by aridity and semi-aridity, and has limited water resources. In recent years,
various water-saving irrigation patterns have been introduced in the region to replace
conventional irrigation methods. These changes in irrigation patterns may impact the
growth and development of wheat, which can be reflected in changes in canopy reflectance
and SPAD values. Previous research on SPAD estimation of spring wheat in the Hetao
irrigation area has not considered the effects of different irrigation modes on SPAD values.
This study aims to develop an estimation model for SPAD values in spring wheat under
both conventional and water-saving irrigation modes in the Hetao irrigation area, in order
to improve the general applicability of the model for large-scale satellite remote sensing
applications in the region.

2. Materials and Methods
2.1. Study Site and Experimental Design

In this study, two irrigation modes (conventional irrigation and water-saving irriga-
tion) and six nitrogen fertilizer application rates were studied in a field trial. Multispectral
images were collected using a UAV equipped with multispectral sensors at four time points
(7, 14, 21, and 28 days after wheat heading) and were combined with ground measurements.
Four machine learning regression models (DNN, PLS, RF, and Ada) were used to determine
the optimal period and model for estimating SPAD values after the heading stage of spring



Agronomy 2023, 13, 211 3 of 16

wheat in the Hetao irrigation area of Inner Mongolia. The results of this study provide
theoretical support for remote sensing monitoring of SPAD values in this region.

This study was conducted at Wuyuan Agricultural Technology Extension Center
(107◦35′ N, 40◦30′50′′ E, elevation 1028 m a.s.l.), located in Bayannur City, Inner Mongolia,
China, during 2021 (location is shown in Figure 1). The region has a temperate continental
monsoon climate. The soil type at the experimental site was loam, with baseline fertility
level of organic matter 17.65 g/kg, alkaline nitrogen 57.45 mg/kg, available phosphorus
26.83 mg/kg, available potassium 152.42 mg/kg, and pH = 7.32. The spring wheat cultivar
“Yongliang 4” was selected for the study. The experiment used a split-plot design, with
irrigation as the main plot and nitrogen (N) application as the subplot. There were two
irrigation modes: conventional irrigation (four times at tillering stage, jointing stage,
flowering stage, and early grain filling stage) and water-saving irrigation (two times
at jointing stage and flowering stage), each with a volume of 900 m3/ha using flood
irrigation. The N application subplot had six levels: CK (no fertilizer), N0 (0 kg/ha), N1
(75 kg/ha), N2 (150 kg/ha), N3 (225 kg/ha), N4 (300 kg/ha). The experiment had a total
of 12 treatments with three replications, resulting in 36 experimental plots of 42 m2 each.
Phosphorus fertilizer was applied as a base fertilizer at sowing, and the sowing rate was
set at 375 kg/ha. Rainfall and temperature data are shown in Figure 2.
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2.2. UAV Multispectral Data Acquisition and Processing

Multispectral image data were collected at 7, 14, 21, and 28 days after heading stage
of the wheat plant using a DJI Phantom 4 multispectral drone (Da-Jiang Innovations,
Shenzhen, China).The drone (P4M, Figure 3) integrates five multispectral sensors (blue
B: 450 ± 16 nm, green G: 560 ± 16 nm, red R: 650 ± 16 nm, red edge RE: 730 ± 16 nm
16 nm, near infrared NIR: 840 ± 26 nm) and one RGB visible light sensor. To avoid hotspot
phenomenon in the images, the images were acquired between 9:00 and 11:00 a.m. on
clear and windless days, with the takeoff location fixed and kept consistent each time.
Before takeoff, the UAV was manually placed directly above the three reflectivity gray
plates of 20%, 40%, and 60%, and reflectivity plate photos were taken. The flight path was
automatically planned by DJI GS Pro after calculating the current solar azimuth, with a
flight altitude of 30 m, a heading overlap of 85%, and a collateral overlap of 80%. The
D-RTK 2 high-precision GNSS mobile station was used to assist the positioning of the UAV
and improve the positioning accuracy of the UAV itself. After the flight, DJI Terra was used
to perform radiometric correction of the images acquired during the mission, followed by
image stitching to obtain a single-band reflectivity orthophoto.
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2.3. Construction and Selection of Spectral Indices

The reflectance of each treatment plot was extracted by the zonal statistics function
of ENVI, and the following vegetation indices (VIs, Vegetable Indices) were calculated
(Table 1).
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Table 1. Vegetation indices and calculation method.

Index Name Calculation Formula References

Leaf chlorophyll index LCI = (Rnir − Rrededge)/(Rnir + Rred ) [16]
Difference vegetation index DVI = Rnir − Rred [16]
Enhanced Vegetation Index EVI = 2.5× (Rnir − Rred)/(Rnir + 6× Rred − 7.5× Rblue + 1) [16]

Green Normalized Difference Vegetation GNDVI =
(
Rnir − Rgreen

)
/
(
Rnir + Rgreen

)
[17]

Ratio Between NIR and Green Bands VI(nir/green) = Rnir /Rgreen [18]
Ratio Between NIR and Red Bands VI(nir / red) = Rnir /Rred [19]

Ratio Between NIR and Red Edge Bands VI(nir/rededge) = Rnir /Rrededge [20]
Napierian Logarithm of The Red Edge lnRE = 100× (lnnir− lnred) [21]

Modified Soil-Adjusted Vegetation Index 1 MSAVI1 = (1 + L)
(

Rnir−Rred
Rnir+Rred+L

)
(L = 0.1) [22]

Modified Soil-Adjusted Vegetation Index 2 MSAVI2 = Rnir + 0.5−
√
(2× Rnir + 1)2 − 8× (Rnir − Rred)/2 [22]

Optimized Soil-Adjusted Vegetation Index OSAVI = (1 + 0.16)× (Rnir−Rred)
(Rnir+Rred+0.16)

[23]

Modified Triangular Vegetation Index 2 MTVI2 =
1.5×[1.2×(Rnir −Rgreen )−2.5×(Rred −Rgreen )]√

(2×Rnir+1)2−(6×Rnir−5×
√

Rred )−0.5
[24]

Normalized Difference Red Edge Index NDRE =
(Rnir −Rrededge )
(Rnir +Rrededge )

[25]

Normalized Difference Vegetation Index NDVI = (Rnir −Rred )
(Rnir +Rred )

[26]

Modified Simple Radio MSR = (Rnir − Rred − 1)/
(√

Rnir + Rred + 1
)

[27]
Soil-Adjusted Vegetation Index SAVI = (Rnir−Rred)

(Rnir+Rred+0.5) × (1 + 0.5) [28]

Simplified Canopy Chlorophyll Content Index SCCCI = NDRE
NDVI [29]

Modified Chlorophyll Absorption Reflectance
Index MCARI =

(
Rrededge − Rred − 0.2×

(
Rrededge − Rgreen

))
×
( Rrededge

Rred

)
[30]

Modified Chlorophyll Absorption Reflectance
Index 2 MCARI2 = 1.5× (2.5×(Rnir −Rrededge )−1.3×(Rnir −Rg))

(2×(Rnir+1)2−(6×Rnir−5×(Rred)
2)−0.5)

[31]

Transformed Chlorophyll Absorption
Reflectance Index TCARI = 3×

((
Rrededge − Rred

)
− 0.2×

(
Rrededge − Rgreen

)
×
( Rrededge

Rred

))
[32]

Normalized Difference Index NDI = (Rnir −Rrededge )
(Rnir +Rred )

[33]

Red-Edge Chlorophyll Index 1 Cl1 = Rnir
Rrededge

− 1 [34]

Red-Edge Chlorophyll Index 2 Cl2 =
Rrededge
Rgreen

− 1 [35]

Structure-Insensitive Pigment Index SIPI = (Rnir −Rblue )
(Rnir+Rred)

[36]

TCARI/OSAVI TCARI
OSAVI [31]

MCARI/OSAVI MCARI
OSAVI [31]

2.4. Ground Data Acquisition and Processing

During images collection by the UAV, five wheat plants were selected in each plot
according to the “five-point sampling method”, and the SPAD values of leaf tip, leaf middle,
and leaf base of the flag leaf of the wheat plant were measured using a SPAD 502Plus
chlorophyll meter (Konica Minolta, Tokyo, Japan). The average value was taken as the
SPAD value of the plant.

2.5. Construction of Regression Model

In this study, four regression models were implemented in Python for the estimation
of SPAD values as follows.

Deep neural networks (DNN) is a neural network containing multiple hidden layers
(at least 3 layers), which has more hidden layers and a stronger fitting ability compared to
traditional neural networks.

Partial least squares (PLS) draws on the advantages of statistical methods, such as
correlation analysis, principal component analysis, and multiple linear regression, and is
widely used in hyperspectral inversion estimation with high correlation between indepen-
dent variables because of its strong ability to remove autocorrelation between features.

Random forest regression (RF) is a machine learning algorithm that uses multiple
decision trees to train and predict samples and has strong anti-interference ability. It also
has the advantages of fast training speed and no processing of input data.

Adaptive Boosting (Ada) is one of the representative algorithms of Boosting in inte-
grated learning, which mainly changes to obtain different test samples by controlling the
weights of sample distribution.
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2.6. Segmentation of Dataset and Accuracy Evaluation

The samples of each period were randomly divided into training set and test set at the
ratio of 7:3, and K-fold cross validation (K = 5) was used to optimize the model. Five-fold
cross-validation involves dividing the original training set into 5 groups, using each subset
of data as a validation set in turn, and using the remaining 4 subsets of data as the training
set. The results from K groups are then summed and averaged to reduce the error of the
training set and improve the generalization ability of the model by avoiding the inclusion
of test data during the training process.

The accuracy of the model is evaluated by three metrics: the coefficient of determi-
nation (R2), the root means square error (RMSE), and the mean absolute prediction error
(MAPE). R2 is used to indicate the degree of fit between the estimated and measured values,
with a value closer to 1 indicating a higher accuracy of the model fit. RMSE reflects the
deviation of the estimated value from the measured value, with a smaller value indicating
a higher accuracy of the model fit. MAPE is the average of absolute errors, which more
accurately reflects the actual errors in the prediction value.

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (1)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(2)

MAPE =
100%

n ∑n
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (3)

yi is the observed value, yi is the mean of the observed values, ŷi is the model predicted
value, and n is the number of samples.

3. Results
3.1. Basic Statistical Information of Measured SPAD Values

The SPAD values of different treatments are shown in Table 2. As the reproductive
process advances, different N treatments under the 2W treatment showed a trend of
increasing then decreasing, the maximum SPAD value appeared 21 days after heading, and
the maximum SPAD value of different N treatments under the 4W treatment appeared
7 days after heading. With the increase in nitrogen application, the SPAD values after
different heading periods showed a trend of increasing and then decreasing.

Table 2. Basic statistics of the field measurements at different stages.

Irrigation N Treatment 7 d 14 d 21 d 28 d

2W

N0 41.99 bcd 43.42 bcd 43.11 d 36.33 bc
N5 46.90 abc 47.75 abc 47.05 bcd 42.99 ab

N10 48.42 abc 50.23 ab 51.89 ab 43.82 ab
N15 50.10 ab 51.05 a 55.50 a 45.29 a
N20 48.58 abc 46.05 abcd 51.53 abc 46.51 a
CK 39.95 cd 36.26 de 33.46 e 14.73 e

4W

N0 41.70 bcd 35.75 ef 28.47 e 10.47 e
N5 46.61 abc 42.75 bcde 45.09 cd 24.35 d

N10 47.97 abc 41.80 cde 45.81 bcd 29.48 cd
N15 51.15 a 46.77 abcd 50.62 abc 34.55 c
N20 41.65 bcd 45.75 abcd 46.13 bcd 26.15 d
CK 36.29 cd 29.63 f 31.37 e 12.87 e

Alphabets within columns followed by the same letter are statistically insignificant at the 0.05 level.
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3.2. Correlation Analysis of SPAD Values and Vegetation Indices

The correlation coefficients between SPAD values and each vegetation index at dif-
ferent periods after heading are shown in Table 3. The highest correlation coefficient was
observed at 7 days after heading, followed by 21 days. Except for 7 days after heading, the
correlation coefficient for the rest of the period showed 2W < 4W. Under the 2W treatment,
the vegetation indices with the highest correlation coefficients at 7, 14, 21, and 28 days after
tapping were MCARI2, MSAVI2, SCCCI, and MCARI. The highest correlation coefficients
under 4W were MCARI2, MSAVI1, CL1, and DVI.

Table 3. Correlation coefficients between spectral vegetation indices and SPAD.

Indices
7 d 14 d 21 d 28 d

2W 4W 2W 4W 2W 4W 2W 4W

DVI 0.912 0.867 0.650 0.867 0.701 0.830 0.708 0.802
EVI 0.908 0.866 0.695 0.871 0.708 0.856 0.727 0.798

NDVI 0.842 0.815 0.790 0.871 0.703 0.867 0.740 0.790
GNDVI 0.882 0.825 0.776 0.870 0.741 0.903 0.741 0.779
NDRE 0.912 0.846 0.739 0.863 0.764 0.925 0.749 0.774

LCI 0.912 0.846 0.739 0.863 0.764 0.925 0.749 0.774
OSAVI 0.879 0.847 0.745 0.873 0.714 0.876 0.734 0.799

VI(NIR/G) 0.893 0.867 0.671 0.830 0.765 0.919 0.742 0.756
VI(NIR/R) 0.842 0.863 0.637 0.819 0.761 0.918 0.726 0.754

VI(NIR/RE) 0.917 0.863 0.698 0.849 0.765 0.926 0.748 0.766
lnRE 0.856 0.844 0.735 0.853 0.747 0.916 0.742 0.782

MSAVI1 0.870 0.840 0.759 0.873 0.713 0.875 0.736 0.797
MSAVI2 0.729 0.706 0.815 0.855 0.589 0.796 0.734 0.719
MTVI2 0.895 0.868 0.677 0.863 0.711 0.859 0.722 0.801
MSR 0.915 0.859 0.640 0.866 0.692 0.801 0.679 0.793
SAVI 0.898 0.860 0.706 0.872 0.712 0.867 0.727 0.802

SCCCI 0.924 0.840 0.723 0.864 0.772 0.925 0.231 −0.652
MCARI −0.824 −0.782 −0.785 −0.854 −0.739 −0.881 −0.783 0.463

MCARI2 0.929 0.870 0.663 0.853 0.764 0.910 0.746 0.750
TCARI −0.817 −0.850 −0.638 −0.830 −0.766 −0.921 −0.562 0.682

NDI 0.902 0.840 0.755 0.866 0.758 0.920 0.749 0.779
CL1 0.917 0.863 0.698 0.849 0.765 0.926 0.748 0.766
CL2 0.869 0.850 0.710 0.840 0.759 0.910 0.743 0.763
SIPI 0.834 0.809 0.779 0.865 0.713 0.867 0.735 0.788

TCARI/OSAVI −0.826 −0.841 −0.689 −0.846 −0.753 −0.919 −0.766 −0.618
MCARI/OSAVI −0.826 −0.786 −0.797 −0.870 −0.695 −0.847 −0.757 −0.742

3.3. Model Development and Evaluation
3.3.1. Estimation of SPAD Values after Heading 7 d

Table 4 and Figure 4 shows the evaluation of the accuracy of the SPAD estimation
models for 7 d after wheat heading stage. the R2 of the training set and the test set of the
four models are above 0.70, with the accuracy of the training set higher accuracy than the
test set. Using the accuracy of the test set as the evaluation criterion of the models, the
accuracy of the models was found to be in the following order: PLS > RF > Ada > DNN.
The R2, RMSE, and MAPE values of the test set of the PLS model were 0.762, 3.048, and
0.052, respectively, which were 7.32%, 2.28%, and 7.17% higher than the R2 of the RF, Ada,
and DNN models, respectively. RMSE decreased by 9.25%, 3.33%, and 9.20%, and MAPE
decreased by 21.25%, 0%, and 7.69%. Based on these results, it can be concluded that the
PLS model had the highest accuracy and stability in estimating the SPAD values of wheat
7 d after heading stage.
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Table 4. Accuracy assessment of different estimation models at 7 d after heading.

Model
Training Set Test Set

R2 RMSE MAPE R2 RMSE MAPE

DNN 0.754 2.784 0.048 0.710 3.359 0.063
PLS 0.786 2.595 0.043 0.762 3.048 0.052
RF 0.957 1.169 0.021 0.745 3.153 0.052

Ada 0.968 0.829 0.014 0.711 3.357 0.056
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3.3.2. Estimation of SPAD Values after Heading 14 d

The accuracy of the SPAD estimation models for 14 d after wheat heading stage was
evaluated and presented in Table 5 and Figure 5. The R2 values for the training and test sets
of the four models are above 0.75, and the accuracy of the training set of the DNN and PLS
models was lower than that of the test set, while the accuracy of the training set of the RF
and Ada models was higher than that of the test set. When using the accuracy of the test set
as the evaluation criterion for the models, the accuracies of different models were found to
be PLS > Ada > RF > DNN in descending order. The R2, RMSE, and MAPE values for the
test set of PLS model were 0.878, 2.405, and 0.045, which were 12.13%, 10.72%, and 7.33%
higher than the R2 values of the RF, Ada, and DNN models, respectively, and the RMSE
is reduced by 25.05%, 23.41%, and 18.28%, and the MAPE decreased by 44.44%, 53.33%,
and 35.56%. The comprehensive analysis concluded that the PLS model had the highest
accuracy and stability in estimating the SPAD values of wheat 14 d after heading stage.
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Table 5. Accuracy assessment of different estimation models at 14 d after heading.

Model
Training Set Test Set

R2 RMSE MAPE R2 RMSE MAPE

DNN 0.716 3.538 0.067 0.783 3.209 0.065
PLS 0.767 3.205 0.060 0.878 2.405 0.045
RF 0.924 1.835 0.036 0.793 3.140 0.069

Ada 0.934 1.711 0.029 0.818 2.943 0.061
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3.3.3. Estimation of SPAD Values after Heading 21 d

The accuracy of SPAD estimation models for 21 d after wheat heading stage was
shown in Table 6 and Figure 6. The R2 of training set and test set of all four models were
above 0.65, with the training set accuracy of the DNN and PLS models higher than the test
set, while the training set accuracy of the RF and Ada models were lower than the test set.
The accuracy of different models, from largest to smallest, was DNN > RF > Ada > PLS.
The R2 value of the DNN test set model was 0.737, the RMSE was 4.806, and the MAPE
was 0.086, which were 12.18%, 1.80%, and 5.74% higher than the R2 values of the PLS, RF,
and Ada models, respectively. The RMSE was 12.41%, 2.42%, −11.02%, and the MAPE
decreased by 28.33%, 18.10%, and −4.88%. Based on this analysis, it can be concluded that
the DNN model was the most accurate and stable in estimating the SPAD values of wheat
21 d after heading stage.
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Table 6. Accuracy assessment of different estimation models at 21 d after heading.

Model
Training Set Test Set

R2 RMSE MAPE R2 RMSE MAPE

DNN 0.881 2.922 0.044 0.737 4.806 0.086
PLS 0.777 4.009 0.080 0.657 5.487 0.120
RF 0.678 4.815 0.097 0.724 4.925 0.105

Ada 0.684 5.028 0.092 0.697 4.329 0.082
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3.3.4. Estimation of SPAD Values after Heading 28 d

The accuracy of the SPAD estimation model for 28 d after the wheat heading stage
was evaluated and presented in Table 7 and Figure 7. The R2 values for the training and
test set of all four models are above 0.65, and the accuracy of the training set is higher
than the test set for all models except the DNN model. When using the test set accuracy
as the evaluation criterion, the Ada model was found to be the most accurate, followed
by RF, PLS, and DNN in descending order. The R2 value for the Ada model was 0.815,
the RMSE was 5.904, and the MAPE was 0.237, which were 20.38%, 14.63%, and 14.47%
higher, respectively, than those of the DNN, PLS, and RF models. The RMSE was reduced
by 62.77%, 60.67%, and 60.59%, and the MAPE was reduced by 22.80%, 20.74%, and 31.30%
for the Ada model compared to the other models. Overall, the Ada model was found to
have the highest accuracy and stability in estimating the SPAD values of wheat 28 d after
heading stage.
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Table 7. Accuracy assessment of different estimation models at 28 d after heading.

Model
Training Set Test Set

R2 RMSE MAPE R2 RMSE MAPE

DNN 0.691 7.054 0.262 0.677 7.801 0.307
PLS 0.713 6.803 0.299 0.711 7.383 0.299
RF 0.926 3.442 0.115 0.712 7.368 0.345

Ada 0.971 2.168 0.067 0.815 5.904 0.237
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3.4. Comparison of Accuracy of Four Estimation Models at Different Growth Stages

As the growth process progressed, the accuracy of the four models demonstrated an
overall trend of increasing then decreasing and then increasing again. The optimal model
for estimating SPAD values varied depending on the growth stage (Figure 8). The model
with the highest R2 value at 7 and 14 days after heading was PLS, the model with the
highest R2 value at 21 d after heading was RF, and the model with the highest R2 value
at 28 d after heading was Ada. The model with the lowest RMSE value at 7 and 14 days
after heading was PLS, and the model with the lowest RMSE value at 21 and 28 days after
heading was Ada. The model with the lowest MAPE value at 7 days after heading was PLS
and RF, the lowest at 14 days after heading was PLS, and the lowest at 21 and 28 days after
heading was Ada.
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4. Discussion

Leaf SPAD value is an important indicator for characterizing the nitrogen nutrition
status of plants [37], and several studies have been conducted to estimate the SPAD value of
crop plants using the unmanned aerial vehicle (UAV) remote sensing technology platform in
order to diagnose crop nitrogen nutrition and provide a reference basis for subsequent field
nitrogen fertilization management [38,39]. Fast access to the growth conditions of crops in
farmland is an important aspect of smart agriculture for fast sensing and intelligent decision
making. Although there are few studies that focus on the independent reproductive growth
stage (from heading to maturity) of wheat, monitoring leaf SPAD values during this stage
and adopting appropriate water and fertilizer management can coordinate the development
of population and individual main stem and tillers, and have significant regulatory effects
on late grain filling, final yield, and grain quality formation. In this study, multispectral
images were acquired every 7 days after the wheat heading stage using an unmanned
aerial vehicle, and vegetation indices were extracted to construct separate SPAD estimation
models for wheat.

Vegetation indices have been found to be correlated with agronomic traits making
them an important alternative to traditional agronomic parameters [40]. This study demon-
strated that the measured SPAD values of wheat at various growth stages had strong
correlations and linear sensitivity with most vegetation indices. However, this study also
found that the correlation between the corresponding SPAD values and the vegetation
indices gradually decreased as the reproductive process progressed. This may be due
to the fact that during the nutritional growth stage of wheat, most of the absorbed and
accumulated nitrogen is stored in nutritional organs, such as leaves [41], leading to a higher
spectral reflectance sensitivity of the canopy. During the independent reproductive growth
stage, nitrogen is gradually transferred from nutritional organs to the spike, the leaves
senesce and degrade [42], resulting in a decrease in spectral reflectance sensitivity.

The spectral characteristics of the vegetation canopy are influenced by numerous
physical and biochemical variables, which exhibit different behaviors at different growth
stages [43,44]. As a result, the accuracy of the estimation models constructed based on
the extraction of vegetation indices from spectral reflectance varies across fertility periods.
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Previous research has shown that the accuracy of estimation models tends to decrease
at the heading, flowering, and filling stages of winter wheat [45]. Another study found
that the accuracy of three regression models for estimating SPAD values in winter wheat
increased, then decreased, and then increased again during the four growth periods from
nodulation to flowering [10]. In the present study, the accuracy of the model constructed
at the four growth stages showed relatively consistent performance, except for the SPAD
value estimation model at 21 d of heading stage. The width of a violin plot represents the
probability density of the data. As shown in Figure 9c, the distribution of spectral indices at
21 d after heading displayed an obvious concentration and an oversaturation phenomenon,
leading to a decreased sensitivity of vegetation indices and subsequently increased error
and decreased model accuracy in the estimation process. In contrast, after 28 d of heading
stage, plants treated with low levels of nitrogen exhibited senescence, chlorophyll decompo-
sition, and decreased chlorophyll content, while those treated with high levels of nitrogen
maintained high chlorophyll content, which to some extent weakened the oversaturation
phenomenon and thus improved model accuracy.
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Compared with using a single vegetation index as the model input variable, the esti-
mation method based on multiple vegetation indices can improve the model accuracy to a
certain extent. In a multi-year study by Kooistra et al. [46] to estimate chlorophyll content
of potato leaves, the regression model obtained with a single vegetation index as an input
variable had a maximum R2 of 0.641. Multiple vegetation indices were used in this study
to jointly participate in the estimation, and the model with the lowest precision among the
four periods, R2 = 0.657, was also above this precision. Yuan et al. [47] found in their study
on estimating chlorophyll content of plant seedlings that most vegetation indices, although
significantly correlated with SPAD values, had low R2 for regression models with a single
vegetation index as the explanatory variable, and the accuracy of the regression models
was significantly improved when multiple vegetation indices were used as explanatory
variables. In this study, all four regression models based on 26 vegetation indices demon-
strated good performance, with test set R2 ranging from 0.657 to 0.878, RMSE ranging from
2.934 to 7.801, and MAPE ranging from 0.045 to 0.345. This suggests that the inclusion of
multiple vegetation indices in the regression models allowed for the incorporation of more
valid spectral information, resulting in improved estimation accuracy.

The accuracy of different models for estimating SPAD values of spring wheat varied
significantly across different data sets. An appropriate estimation model can effectively
capture the relationship between vegetation indices and SPAD values and maintain stable
model structure and parameters. Previous studies have shown the effectiveness of machine
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learning algorithms in plant nutrition diagnosis [48,49], and it is important to identify the
best model for estimating SPAD at different stages of fertility in spring wheat after heading
stage. In this study, the optimal model was PLS at 7 and 14 days after heading, RF at 21 d
after heading, and Ada at 28 d after heading. The R2 of the training set of the Ada and RF
models at 7, 14, and 28 days was significantly higher than that of the test set, and showed
a significant overfitting phenomenon, probably due to the high autocorrelation among
the 26 vegetation indices of the input, which was influenced by the multicollinearity of
the input feature variables. The regression modeling method of PLSR converts a set of
highly correlated independent variables into a set of mutually independent, non-linearly
related principal component variables by extracting principal components in the process
of establishing regressions, which can effectively capture most of the information of the
original data and eliminate the covariance among vegetation indices, resulting in the best
estimation accuracy of all four models being obtained at 7 d and 14 d after sampling. In
the case of deep learning models, a large amount of diverse data is typically required for
model training in order to understand the relationship between data and estimates, and
the number of samples in this study was not sufficient to support a deep learning network
with multiple hidden layers, leading to a low level of estimation accuracy for the DNN
model. However, the estimation accuracy (R2) for all four periods was found to be greater
than 0.677, indicating the strong potential for the DNN model to be used for estimation.
This finding is in line with the results of Liu et al. [50].

5. Conclusions

The optimal SPAD estimation models were different for the four periods after the
spring wheat heading stage, with PLS as the optimal model at 7 and 14 d after heading
stage, RF at 21 d after heading stage, and Ada at 28 d after heading stage, where the highest
accuracy was achieved by using the PLS model to estimate SPAD values at 14 d after
heading stage (training set R2 = 0.767, RMSE = 3.205, MAPE = 0.060, and test set R2 = 0.878,
RMSE = 2.405, MAPE = 0.045).

Further studies could include validation of the model’s performance on additional
datasets, assessment of its practical usefulness and potential adoption by farmers through
field trials, integration with precision agriculture tools and technologies, such as drones
or sensors, and the optimization of fertilization and irrigation practices to improve wheat
yield and quality.
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