
 

Electronic Journal of Applied Statistical Analysis 

EJASA, Electron. J. App. Stat. Anal., Vol. 3, Issue 2 (2010), 75 – 84 

ISSN 2070-5948, DOI 10.1285/i20705948v3n2p75 

© 2008 Università del Salento – SIBA http://siba-ese.unile.it/index.php/ejasa/index 

 

75 

ESTIMATION OF RELIABILITY IN MULTICOMPONENT STRESS- 

STRENGTH MODEL: LOG-LOGISTIC DISTRIBUTION 
 

 

G. Srinivasa Rao
1*
, RRL Kantam

2 

 
1
Department of Basic Sciences, Hamelmalo Agricultural College, Keren, Eritrea 

2Department of Statistics, Nagarjuna University, Guntur, India 

 
Received 30 August 2009; Accepted 22 April 2010 

Available online 14 October 2010 

 

Abstract: A multicomponent system of k components having strengths following k- 

independently and identically distributed random variables x1, x2, ….xk and each 

component experiencing a random stress Y is considered. The system is regarded 

as alive only if at least s out of k (s<k) strengths exceed the stress. The reliability 

of such a system is obtained when strength, stress variates are given by log-

logistic distribution with different scale parameters. The reliability is estimated 

using Moment Method, ML method, Modified ML method and Best Linear 

Unbiased method of estimation in samples drawn from strength and stress 

distributions. The reliability estimators are compared asymptotically. The small 

sample comparison of the reliability estimates is made through Monte- Carlo 

simulation. 
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1. Introduction  
 

Let X, Y be two independent random variables following log – logistic distribution suggested by 

Balakrishnan et. al. [2] with scale parameters 1 2,σ σ  respectively and common shape parameter 

β . Then the p.d.f.’s and c.d.f.’s of X and Y are given by: 
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Let the random 
1 2, , ,... ky x x x  be independent, G(y) be the continuous cdf of Y and F(x) be the 

common continuous cdf of 
1 2, ,... kx x x . The reliability in a multicomponent stress- strength model 

developed by Bhattacharyya and Johnson [3] is given by: 
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Where 1 2, ,... kx x x are iid with common cdf F(x) this system is subjected common random stress 

Y. Assuming that F(.) and G (.) are log – logistic distributions with unknown scale 

parameters 1 2,σ σ and common shape parameter β  and that independent random samples 

1 2 n 1 2 mx x <....<x  and  y <y .... y< < <  are available from F(.) and G (.), respectively. The 

reliability in multicomponent stress- strength for log- logistic distribution using (5) we get: 
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where 1 1 2Z=(y/ )  and = /βσ λ σ σ . The probability in (6) is called reliability in a multicomponent 

stress- strength model (Bhattacharyya and Johnson [3]). The survival probability of a single 

component stress – strength versions have been considered by Enis and Geisser [6], Downtown 

[5], Awad and Gharraf [1], McCool [12], Nandi and Aich [13], Surles and Padgett [22], Raqab 

and Kundu [16], Kundu and Gupta [9 &10], Raqab et.al. [17], Kundu and Raqab [11]. The 

reliability in multicomponent stress- strength was developed by Bhattacharyya and Johnson [3], 

Pandey and Borhan Uddin [14]. 

Suppose a system, with k identical components, functions if (1 )s s k≤ ≤ or more of the 

components simultaneously operate. In its operating environment, the system is subjected to a 

stress Y which is a random variable with cdf G(.). The strengths of the components, that are the 

minimum stresses to cause failure, are independent and identically distributed random variables 

with cdf F(.). Then the system reliability, which is the probability that the system does not fail, is 



Rao, G.S., Kantam, RRL, Electron. J. App. Stat. Anal., Vol 3 (2010), Issue 2, 75 – 84. 

77 

the function ,s kR  given in (5). The estimation of survival probability in a multicomponent stress 

– strength system when the stress, strength variates are following log- logistic distribution is not 

paid much attention. Therefore, an attempt is made here to study the estimation of reliability in 

multicomponent stress–strength model with reference to log- logistic probability distribution and 

the findings are presented in Sections 2 and 3. Finally conclusions in Section 4. 

 

 

2. Different Methods of Estimation of Parameters in ,s kR  

 

If 1 2,σ σ are not known, it is necessary to estimate 1 2,σ σ  to estimate ,s kR . In this paper we 

estimate 1 2,σ σ  by ML method and modification to ML method, Method of moment, BLUEs 

thus giving rise to four estimates. The estimates are substituted inλ to get an estimate of 

,s kR using equation (6). The theory of methods of estimation is explained below. 

It is well known that the method of Maximum Likelihood Estimation (MLE) has invariance 

property. When the method of estimation of parameter is changed from ML to any other 

traditional method, this invariance principle does not hold good to estimate the parametric 

function. However, such an adoption of invariance property for other optimal estimators of the 

parameters to estimate a parametric function is attempted in different situations by different 

authors.  Travadi and Ratani [24], Kantam and Srinivasa Rao [7] and the references therein are a 

few such instances. Srinivasa Rao and Kantam [20] studied point estimation of system reliability 

exemplified for the log- logistic distribution, in this article they have studied various methods of 

estimation of scale parameter involved in system reliability 1( ) 1 ( ) [1 ( ) ]R x F x x βσ −= − = + . In 

this direction, we have proposed some estimators for the reliability of multicomponent stress – 

strength model by considering the estimators of the parameters of stress, strength distributions by 

standard methods of estimation in log- logistic distribution.  

 

2.1 Method of Maximum Likelihood Estimation (MLE) 

Let 1 2 n 1 2 mx x <....<x ;  y <y .... y< < <  be two ordered random samples of size n, m respectively 

on strength, stress variates each following log – logistic distribution with scale parameters 1 2,σ σ  

and shape parameter β . The log- likelihood function of the observed sample is: 
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The MLEs of 
(1) (1)

1 2 1 2
ˆ, and ,say , andβ σ σ β σ σ  respectively can be obtained as the iterative 

solution of 
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Where 1 2/  and /i i j ju x v yσ σ= = . 

To avoid computational difficulty, here we consider β  is a known value and on solving (9) and 

(10) we get MLEs of (1) (1)

1 2 1 2and aredenoted as andσ σ σ σ . The asymptotic variance of the MLE 

is given by:  

 

1
2 2 2 2( log  / ) (3 / )( / ) ; 1,2i iE L n iσ β σ

−
 − ∂ ∂ = =        when m=n.    (11) 

 

The MLE of survival probability of multicomponent stress – strength model is given by (1)

,s kR  

with λ  is replaced by 
(1) (1) (1)

1 2/λ σ σ=  in (6). 

It can be seen that equations (9) and (10) can not be solved analytically for 1 2,σ σ . Therefore 

Srinivasa Rao [19] approximated F (.) by a linear function say ( )  i i i iF u uγ δ≅ +  and 

( )j j j jG v vµ ϑ≅ +  where 1 2/  and /i i j ju x v yσ σ= =  and , , ,i i j jγ δ µ ϑ  are to be suitably found. 

Here we present Tikku [23] method of finding , , ,i i j jγ δ µ ϑ  after using approximation in 

equations (9) and (10), solutions for 
1 2,σ σ  are given by: 
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The above estimators are named as MMLE of 
1 2,σ σ , which are linear estimators in 

ix 's and y 'sj
. 

Hence its variance can be computed using the variances and covariances of standard order 

statistics provided we have the values of , , ,i i j jγ δ µ ϑ . Tikku [23] is based on linearization of 

certain portion of log likelihood equation. This method would result in linear estimators 

requiring certain constants such as , , ,i i j jγ δ µ ϑ  tabulated by Srinivasa Rao [19] for n=1(1) 10, 
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3(1)6β = . Borrowing these tabulated values of MMLE we can find estimates of 1 2,σ σ  and have 

estimate of λ  and hence estimate of ,s kR . Thus for a given pair of samples on stress, strength 

variates we get an estimate of ,s kR by the above method is (2)

,s kR . Thus the MMLE of survival 

probability of multicomponent stress – strength model is given by (2)

,s kR  where λ  is replaced 

(2) (2) (2)

1 2/λ σ σ=  in (6). 

 

2.2 Method of Moment Estimation (MOM) 

We know that, if x, y  are the sample mean of samples on strength, stress variates then moment 

estimators of 
1 2,σ σ  are (3)

1 / (1 1/ ) (1 1/ )xσ β β= Γ + Γ −  and (3)

2 / (1 1/ ) (1 1/ )yσ β β= Γ + Γ −  

respectively. The moments are obtained from Balakrishnan et. al. [2]. The third estimator, we 

propose here is (3)

,s kR  with λ  is replaced by (3) (3) (3)

1 2/λ σ σ=  in (6). 

 

2.3 Best Linear Unbiased Estimation (BLUE) 

Srinivasa Rao [19] has developed the coefficients to get the BLUEs of σ  in a scaled log–logistic 

distribution. Hence the BLUEs of 1 2,σ σ  are (4)
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where 1 2 1 2( , ,..., )  and ( , ,...., )m nl l l c c c  are to be borrowed from Srinivasa Rao [19]. The fourth 

estimator that we propose be (4)

,s kR  with λ   is replaced by (4) (4) (4)

1 2/λ σ σ= in (6). 

Thus for a given pair of samples on stress, strength variates we get 4 estimates of 
,s kR by the 

above 4 different methods. The asymptotic variance (AV) of an estimate of ,s kR  which is a 

function of two independent statistics (say) 1 2t ,t  is given by Rao [15]: 

 

2 2

, ,

, 1 2

1 2

R R
ˆAV(R )=AV(t ) AV(t )

s k s k

s k σ σ

∂ ∂   
+   ∂ ∂   

      (13) 

 

Where 
1 2t ,t  are to be taken in four different ways namely, exact MLE, TMMLE on lines of Tiku 

[23], MOM moment estimator and BLUEs. In the present case using (6) we get: 
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which can be used to get ,
ˆAV(R )s k . 
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Because we are using linear estimator as MMLE, which is obtained through admissible 

approximation to log likelihood function, this estimator is asymptotically as efficient as exact 

MLE. From the asymptotic optimum properties of MLEs (Kendall and Stuart [8]) and of linear 

unbiased estimators (David [4]), we know that MLEs and BLUEs are asymptotically equally 

efficient having the Cramer – Rao lower bound as their asymptotic variance as given in (11). 

Thus from Equation (13), the asymptotic variance of ,R̂ s k when ( 1 2t ,t ) are replaced by MLE, 

TMMLE and BLUE in succession, we get same result. In the log – logistic distribution the 

moment estimator of the scale parameter is sample mean divided by (1 1/ ) (1 1/ )β βΓ + Γ − . Under 

central limit property for iid variates the asymptotic distribution of the moment estimator is 

normal with the asymptotic variance is given by: 

 

Asymptotic variance of moment estimator =
[ ]{ }

[ ]

2

2

2

(1 2/ ) (1 2/ ) - (1 1/ ) (1 1/ )
/

(1 1/ ) (1 1/ )
n

β β β β
σ

β β

Γ + Γ − Γ + Γ −

Γ + Γ −
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As exact variances of our estimates of ,s kR  are not analytically tractable, the small sample 

comparisons are studied through simulation in Section 3. 

 

 

3. Small Sample Comparison 
 

3000 random sample of size 3(1) 10 each from stress population, strength population are 

generated for λ = 1, 2, 3 on lines of Bhattacharyya and Johnson [3]. The scale parameters 

1 2,σ σ of the variates are estimated by MLE, MMLE, Moment, and BLUE and are used in 

estimating λ . These four estimators of λ  are used to get the multicomponent reliability for (s, k) 

= (1, 3), (2, 4). The sampling bias, mean square error (MSE) of the reliability estimates over the 

3000 such sample is given in Table 1 and Table 2 for 3&5β = . The other values of β  are also 

available with authors. Also, true value of reliability in multicomponent stress- strength increases 

with the increase of shape parameter β and λ  values. The true value of reliability is close to 

0.99 when 6β = and λ =4 for (s, k) = (1, 3). With respect to bias TMMLE shows very close to 

exact MLE than to other two methods regarding minimum bias in most of the parametric and 

sample combinations, in some combinations TMMLE shows minimum bias than exact MLE. 

With respect to MSE the choice is BLUE and the nearest estimator is exact MLE regarding 

minimum MSE over the other suggested methods of estimation.  
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Table 1: Results of the Simulation Study of Bias and MSE for Estimates of Reliability ( 3β = ) 

(s,k) (m,n) λ  
True 

,s kR  

Bias MSE 

mle   tmmle   mom  blue mle   tmmle   mom  blue 
(1,3) 3 1 0.511 -0.00101 0.02823 -0.03031 -0.03287 0.02084 0.02617 0.02108 0.01913 
 4 1 0.511 -0.00126 0.01101 -0.02183 -0.02581 0.01598 0.01779 0.01719 0.01466 
 5 1 0.511 -0.00011 0.00355 -0.01206 -0.02049 0.01317 0.01389 0.01497 0.01238 
 6 1 0.511 0.00919 0.01004 -0.00384 -0.00810 0.01271 0.01283 0.01472 0.01157 
 7 1 0.511 -0.00222 -0.00423 -0.01170 -0.01762 0.00968 0.00964 0.01167 0.00918 
 8 1 0.511 0.00063 -0.00218 -0.00712 -0.01238 0.00895 0.00886 0.01059 0.00849 
 9 1 0.511 0.00146 -0.00200 0.00056 -0.01014 0.00789 0.00795 0.01139 0.00766 
 10 1 0.511 0.00174 -0.00226 -0.00151 -0.00920 0.00715 0.00716 0.00918 0.00691 

 3 2 0.635 0.00178 0.03781 -0.03335 -0.03996 0.04174 0.04907 0.04592 0.03902 
 4 2 0.635 0.00158 0.01706 -0.02491 -0.02890 0.03227 0.03510 0.03608 0.03089 
 5 2 0.635 0.00368 0.00784 -0.00777 -0.02135 0.02751 0.02856 0.03482 0.02664 
 6 2 0.635 0.01279 0.01428 -0.00084 -0.00818 0.02428 0.02446 0.02956 0.02287 
 7 2 0.635 0.00028 -0.00234 -0.00853 -0.01902 0.01970 0.01967 0.02642 0.01908 
 8 2 0.635 -0.00099 -0.00455 -0.00916 -0.01718 0.01832 0.01820 0.02273 0.01795 
 9 2 0.635 0.00551 0.00116 0.00730 -0.00865 0.01652 0.01668 0.02444 0.01632 
 10 2 0.635 0.00162 -0.00320 -0.00183 -0.01140 0.01476 0.01490 0.01988 0.01464 

 3 3 0.656 0.01509 0.05318 -0.01795 -0.02795 0.05346 0.06330 0.06036 0.04813 
 4 3 0.656 0.01195 0.02850 -0.01363 -0.01912 0.04053 0.04439 0.04624 0.03801 
 5 3 0.656 0.01210 0.01650 0.00427 -0.01342 0.03441 0.03571 0.04665 0.03280 
 6 3 0.656 0.01964 0.02134 0.00834 -0.00166 0.02920 0.02947 0.03688 0.02728 
 7 3 0.656 0.00577 0.00316 0.00007 -0.01383 0.02365 0.02373 0.03463 0.02277 
 8 3 0.656 0.00304 -0.00060 -0.00332 -0.01351 0.02185 0.02164 0.02836 0.02124 
 9 3 0.656 0.01048 0.00610 0.01553 -0.00383 0.01988 0.02005 0.03140 0.01951 
 10 3 0.656 0.00491 0.00007 0.00293 -0.00823 0.01758 0.01771 0.02444 0.01736 

(2,4) 3 1 0.465 0.00957 0.03614 -0.01561 -0.01855 0.01772 0.02307 0.01715 0.01508 
 4 1 0.465 0.00774 0.01903 -0.00995 -0.01375 0.01325 0.01513 0.01384 0.01140 
 5 1 0.465 0.00746 0.01087 -0.00176 -0.01021 0.01114 0.01186 0.01266 0.00991 
 6 1 0.465 0.01496 0.01580 0.00483 -0.00030 0.01080 0.01093 0.01242 0.00942 
 7 1 0.465 0.00407 0.00227 -0.00297 -0.00948 0.00797 0.00789 0.00970 0.00718 
 8 1 0.465 0.00551 0.00304 -0.00026 -0.00590 0.00733 0.00719 0.00864 0.00668 
 9 1 0.465 0.00643 0.00345 0.00724 -0.00367 0.00658 0.00659 0.00985 0.00618 
 10 1 0.465 0.00567 0.00225 0.00387 -0.00380 0.00591 0.00585 0.00774 0.00552 

 3 2 0.554 0.01888 0.05230 -0.01094 -0.01814 0.03685 0.04470 0.03921 0.03211 
 4 2 0.554 0.01652 0.03120 -0.00649 -0.01052 0.02857 0.03175 0.03076 0.02577 
 5 2 0.554 0.01599 0.02001 0.00765 -0.00630 0.02469 0.02582 0.03147 0.02282 
 6 2 0.554 0.02268 0.02414 0.01227 0.00364 0.02201 0.02223 0.02656 0.01994 
 7 2 0.554 0.00989 0.00748 0.00406 -0.00762 0.01748 0.01738 0.02380 0.01622 
 8 2 0.554 0.00787 0.00461 0.00231 -0.00683 0.01619 0.01595 0.02025 0.01529 
 9 2 0.554 0.01337 0.00943 0.01722 0.00053 0.01505 0.01506 0.02269 0.01439 
 10 2 0.554 0.00862 0.00435 0.00732 -0.00313 0.01325 0.01321 0.01806 0.01273 

 3 3 0.568 0.02937 0.06443 0.00139 -0.00872 0.04618 0.05588 0.05107 0.03944 
 4 3 0.568 0.02472 0.04023 0.00257 -0.00276 0.03523 0.03919 0.03908 0.03160 
 5 3 0.568 0.02253 0.02673 0.01698 -0.00016 0.03003 0.03135 0.04079 0.02765 
 6 3 0.568 0.02790 0.02953 0.01925 0.00859 0.02575 0.02605 0.03227 0.02334 
 7 3 0.568 0.01405 0.01166 0.01070 -0.00372 0.02049 0.02048 0.03033 0.01906 
 8 3 0.568 0.01093 0.00760 0.00677 -0.00407 0.01889 0.01858 0.02466 0.01782 
 9 3 0.568 0.01719 0.01321 0.02351 0.00419 0.01766 0.01768 0.02810 0.01689 
 10 3 0.568 0.01116 0.00686 0.01090 -0.00072 0.01543 0.01539 0.02155 0.01484 
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Table 2: Results of the Simulation Study of Bias and MSE for Estimates of Reliability ( 5β = ) 

(s,k) (m,n) λ  
True 

,s kR  

Bias MSE 

mle   tmmle   mom  blue mle   tmmle   mom  Blue 

(1,3) 3 1 0.679 -0.03729 0.06399 -0.06043 -0.06222 0.02985 0.03675 0.03203 0.03191 
 4 1 0.679 -0.03075 0.02073 -0.04660 -0.04923 0.02390 0.02568 0.02569 0.02496 
 5 1 0.679 -0.02406 0.00506 -0.03301 -0.03955 0.01921 0.01971 0.02086 0.02001 
 6 1 0.679 -0.01085 0.00913 -0.02158 -0.02339 0.01754 0.01785 0.01932 0.01779 
 7 1 0.679 -0.02090 -0.00839 -0.02920 -0.03285 0.01466 0.01456 0.01621 0.01514 
 8 1 0.679 -0.01616 -0.00730 -0.02300 -0.02600 0.01363 0.01366 0.01485 0.01395 
 9 1 0.679 -0.01294 -0.00683 -0.01461 -0.02135 0.01156 0.01171 0.01344 0.01193 
 10 1 0.679 -0.01121 -0.00717 -0.01504 -0.01961 0.01059 0.01079 0.01196 0.01092 

 3 2 0.822 -0.03092 0.06004 -0.05206 -0.05484 0.04099 0.04299 0.04500 0.04393 
 4 2 0.822 -0.02435 0.02197 -0.04043 -0.04170 0.03363 0.03312 0.03631 0.03562 
 5 2 0.822 -0.01856 0.00700 -0.02564 -0.03267 0.02773 0.02707 0.03037 0.02914 
 6 2 0.822 -0.00686 0.01148 -0.01558 -0.01789 0.02297 0.02252 0.02559 0.02351 
 7 2 0.822 -0.01545 -0.00441 -0.02227 -0.02664 0.02033 0.01986 0.02329 0.02109 
 8 2 0.822 -0.01658 -0.00858 -0.02290 -0.02588 0.01908 0.01865 0.02141 0.01968 
 9 2 0.822 -0.00729 -0.00207 -0.00740 -0.01488 0.01636 0.01631 0.01878 0.01685 
 10 2 0.822 -0.01074 -0.00720 -0.01480 -0.01824 0.01490 0.01506 0.01698 0.01551 

 3 3 0.827 -0.02646 0.06449 -0.04678 -0.05027 0.04365 0.04696 0.04789 0.04601 
 4 3 0.827 -0.02153 0.02471 -0.03736 -0.03874 0.03512 0.03497 0.03793 0.03697 
 5 3 0.827 -0.01658 0.00880 -0.02310 -0.03056 0.02880 0.02822 0.03174 0.03015 
 6 3 0.827 -0.00532 0.01285 -0.01374 -0.01623 0.02369 0.02327 0.02646 0.02422 
 7 3 0.827 -0.01419 -0.00325 -0.02043 -0.02525 0.02091 0.02048 0.02437 0.02170 
 8 3 0.827 -0.01565 -0.00772 -0.02176 -0.02487 0.01962 0.01919 0.02207 0.02021 
 9 3 0.827 -0.00624 -0.00106 -0.00600 -0.01373 0.01687 0.01682 0.01944 0.01736 
 10 3 0.827 -0.01006 -0.00654 -0.01399 -0.01747 0.01534 0.01551 0.01750 0.01595 

(2,4) 3 1 0.624 -0.02406 0.07671 -0.04594 -0.04758 0.02799 0.03952 0.02919 0.02861 
 4 1 0.624 -0.01996 0.03096 -0.03513 -0.03760 0.02258 0.02645 0.02366 0.02277 
 5 1 0.624 -0.01534 0.01322 -0.02336 -0.03019 0.01860 0.02014 0.02009 0.01886 
 6 1 0.624 -0.00333 0.01642 -0.01307 -0.01554 0.01730 0.01826 0.01880 0.01712 
 7 1 0.624 -0.01405 -0.00184 -0.02156 -0.02572 0.01423 0.01448 0.01565 0.01433 
 8 1 0.624 -0.01079 -0.00209 -0.01706 -0.02041 0.01334 0.01357 0.01445 0.01339 
 9 1 0.624 -0.00748 -0.00146 -0.00825 -0.01565 0.01159 0.01190 0.01356 0.01176 
 10 1 0.624 -0.00697 -0.00292 -0.01031 -0.01510 0.01060 0.01089 0.01193 0.01075 

 3 2 0.741 -0.01617 0.07984 -0.03741 -0.04005 0.04266 0.04986 0.04585 0.04388 
 4 2 0.741 -0.01203 0.03707 -0.02841 -0.02969 0.03600 0.03819 0.03784 0.03698 
 5 2 0.741 -0.00850 0.01859 -0.01538 -0.02306 0.03028 0.03095 0.03309 0.03110 
 6 2 0.741 0.00213 0.02169 -0.00628 -0.00952 0.02589 0.02629 0.02857 0.02596 
 7 2 0.741 -0.00825 0.00347 -0.01468 -0.02003 0.02249 0.02241 0.02561 0.02280 
 8 2 0.741 -0.01011 -0.00163 -0.01604 -0.01994 0.02117 0.02101 0.02369 0.02145 
 9 2 0.741 -0.00116 0.00446 -0.00042 -0.00920 0.01888 0.01902 0.02183 0.01916 
 10 2 0.741 -0.00560 -0.00168 -0.00924 -0.01348 0.01700 0.01728 0.01933 0.01741 

 3 3 0.746 -0.01288 0.08277 -0.03360 -0.03666 0.04494 0.05284 0.04826 0.04571 
 4 3 0.746 -0.00996 0.03892 -0.02618 -0.02748 0.03737 0.03969 0.03932 0.03830 
 5 3 0.746 -0.00707 0.01984 -0.01365 -0.02152 0.03127 0.03195 0.03425 0.03207 
 6 3 0.746 0.00331 0.02272 -0.00492 -0.00826 0.02660 0.02701 0.02941 0.02668 
 7 3 0.746 -0.00730 0.00434 -0.01335 -0.01898 0.02308 0.02301 0.02655 0.02340 
 8 3 0.746 -0.00942 -0.00099 -0.01522 -0.01920 0.02171 0.02154 0.02434 0.02199 
 9 3 0.746 -0.00033 0.00525 0.00062 -0.00830 0.01940 0.01954 0.02247 0.01968 
 10 3 0.746 -0.00508 -0.00118 -0.00866 -0.01290 0.01746 0.01773 0.01984 0.01787 

 

 

 

 



Rao, G.S., Kantam, RRL, Electron. J. App. Stat. Anal., Vol 3 (2010), Issue 2, 75 – 84. 

83 

4. Conclusions 
 

We conclude that in order to estimate the multicomponent stress- strength reliability the TMML 

method of estimation is very close to exact MLE method with respect to the least value for bias 

than to the other methods of estimation like BLUE and Method of Moments and BLUE method 

of estimation shows least MSE than to exact MLE, TMMLE and Method of Moments. Hence the 

suggested TMML methods of estimation with respect to bias and BLUE with respect to MSE are 

preferable than the exact MLE method and Method of Moments  show poor performance with 

respect to bias and MSE as compared with exact MLE, TMMLE and BLUE. 
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