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1 Introduction

Parameter estimation of R = P (X < Y ) where the stress X and the strength
Y are both random variables is a problem of great interest in reliability anal-
ysis. A failure occurs in an arbitrary system whenever the system strength is
lower than the stress applied to it. In the stress-strength modeling, study of
R is of importance for researchers to analyze data in different fields of study
such as engineering, biology, economics and etc. In mechanical reliability of
a system, R could be a measure of system tolerance if Y is the component
strength which is subject to a stress X. For another example, consider X as
the gas pressure inside a chamber generated by ignition of a solid propellant
and Y as the strength of the chamber. Then R represents the probability
of successful firing of the engine. In these two cases, R is indeed a measure
of system performance. It should be noted that in addition to reliability
analysis estimation of R is of broad applications in lots of research areas as
it provides a general measure of the difference between two populations. For
example, in medical diagnostics the probability P (X < Y ) is also known
as the area under the receiver operating characteristic curve, Li and Fine
(2010), Li and Ma (2011).

Considerable researches have been devoted to estimate the strength stress
parameter in statistics, starting with the pioneering work of Birnbaum (1956).
In Birnbaum (1956), the author could find a link between the traditional
Mann-Whitney statistic and R parameter. From that day forward, the es-
timation of R has been studied considering different distributions for stress
and strength parameters. Kotz, et al. (2003) presented the best pioneering
review monograph to develop such this reliability model. Some recent works
on the stress-strength model have been carried out by Raqab and Kundu
(2005), Asgharzadeh, et al. (2011), Shoaee and Khorram (2015), Mirjalili,
et al. (2016), Ahmadi and Ghafouri (2019). In spite of extensive works
to develop the stress-strength models under complete samples (Nadar, et
al. (2014), Nadar and Kizilaslan (2014), Wang, et al. (2016)), less efforts
have been made to the case of censored data (Asgharzadeh, et al. (2011),
Shoaee and Khorram (2015), Mirjalili, et al. (2016), Ahmadi and Ghafouri
(2019)). However, in many practical situations, it would be possible that
rather than complete samples just censored samples from both populations
are observed. An example was discussed by Surles and Padgett (1998, 2001),
Kundu and Gupta (2006) and Raqab and Kundu (2005). In this example,
the strengths of carbon fibers at different gauge lengths were compared by
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computing P (X < Y ), where X and Y denote the strengths of the fibre at
two different gauge lengths.

Type-I and Type-II censoring schemes are two conventional censoring
methods. In Type-I censoring, the test is finished after passing a pre-
determined time on the test and in Type-II censoring, the test is ended
after observing a pre-chosen number of failures. Unfortunately removal of
active units is prohibited during the test in both of the aforementioned cen-
soring schemes. In the progressive censoring method, removing active units
during the experiment is allowed. Among various censoring schemes in the
last decade, the widely used one is the progressive Type-II censoring that
is a combination of the Type-II and progressive censoring schemes. It can
be described as follows: Suppose N units are placed on a life test and the
experimenter would decide beforehand the quantity n, the number of failures
to be observed. At the first failure time, R1 units of N − 1 surviving units
are randomly removed from the experiment. Similarly when the second fail-
ure occurs, from the remaining N − R1 − 1 units a number of R2 units are
randomly selected and removed. Finally, at the n-th failure, all the remain-
ing surviving units Rn = N − n − R1 − . . . − Rn−1 are removed from the
experiment. Consequently, a progressive Type-II censoring method consists
of n, and (R1, . . . , Rn), such that R1 + . . . + Rn = N − n. It is clear that
this method includes the conventional Type-II right censoring scheme (when
R1 = . . . = Rn−1 = 0 and Rn = N − n) and complete sampling scheme
(when N = n and R1 = . . . = Rn = 0). Further details on the progressively
censoring method and the corresponding references are brought in a book
written by Balakrishnan and Aggarwala (2000).

Utilizing progressively Type-II censoring method, this paper studies the
inference of R = P (X < Y ) when X and Y come from two independent Ku-
maraswamy distributions (KuD) with different parameters. The probability
density function, cumulative density function and failure rate function of a
KuD with the first and second shape parameters α and λ, are respectively
defined by:

f(x) = αλxλ−1(1− xλ)α−1, 0 < x < 1, α, λ > 0, (1)
F (x) = 1− (1− xλ)α, 0 < x < 1, α, λ > 0,

H(x) =
αλxλ−1

1− xλ
, 0 < x < 1, α, λ > 0,

Herein we refer to a KuD with the pdf (1) as Ku(α, λ). Figure 1 depicts
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Figure 1. Shape of density function (right) and failure rate function (left) of KuD when
λ = 2.

the density function and the failure rate function of KuD. As shown in this
figure, KuD has an increasing failure rate function. Hence, if an empirical
study on the underlying distribution of a data set shows that the failure rate
function is increasing, the KuD could be utilized for analysis of such a data
set. The outcomes of many natural phenomena that have lower and upper
bounds could be described by the Kumaraswamy distribution, for example
atmospheric temperatures, scores obtained on a test, heights of individuals,
economic data (such as unemployment data), and etc.

Jones investigated some basic properties of this distribution Jones (2009).
Lemonte proposed an improved point estimation for this distribution Lemonte
(2011) while Mitnik presented some of its interesting newer properties Mitnik
(2013). Recently, Nadar, et al. (2013) accomplished a statistical analysis
from the Kumaraswamy distribution based on record values. Later, Nadar,
et al. (2014) studied estimation of R = P (Y < X) in case that two inde-
pendent random variables X and Y are from Kumaraswamy distributions
with different shape parameters. In some experiments, such as meteorol-
ogy, hydrology, sports and life-tests, it is plausible to make measurements
sequentially of which those measured values being smaller (or larger) than
all previous ones are kept. Such a measured data is known as “Record Data”.
Hence, the final number of available measurements is noticeably smaller than
the complete sample size. This “measurement saving” would be of impor-
tance as the measurements of the experiments are costly in case the entire
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sample was destroyed. Let X1, X2, . . . be a sequence of i.i.d. random vari-
ables. An upper record value is an observed sample Xj whose value exceeds
the values of all previous observations. Assuming X and Y are two inde-
pendent Kumaraswamy random variables with different shape parameters,
and having the first n and m upper record values observed from the X and
Y , Nadar and Kizilaslan (2014) obtain the estimation of P (X < Y ) using
the maximum likelihood and Bayesian approaches. More recently, Wang, et
al. (2016) explained many statistical inference of a random variable which
follows a Kumaraswamy distribution. This paper infers different estimations
based on complete sample not censored sample.
In the current study, we consider the inference of R = P (X < Y ) when
progressively Type-II censored samples are observed from Kumaraswamy
distributed random variables X and Y . The problem is formulated as fol-
lows: let X and Y be independent Kumaraswamy random variables with
different parameters. Two progressive censoring schemes for X and Y are
{N,n,R1, ..., Rn} and {M,m,S1, ..., Sm}, respectively. Then, {X1:n:N , ..., Xn:n:N}
and {Y1:m:M , . . . , Ym:m:M} are the progressively censored samples fromX and
Y , respectively. Now, the problem to be solved is estimation of R = P (X <
Y ) = α

α+β when the mentioned progressive censored samples are observed.
The layout of this paper is as follows. Assuming the common second

shape parameter, some approaches to estimate R are proposed in Section
2 where the ML estimation of R, asymptotic and two bootstrap confidence
intervals, Bayes estimation and the associated credible interval are provided.
Estimation of R in case of the known common second shape parameters is
discussed in Section 3. In this section MLE, uniformly minimum variance
unbiased estimator (UMVUE), the exact confidence interval, asymptotic and
two bootstrap confidence intervals, Bayes estimation and the associated cred-
ible interval of R are discussed. The general case of estimating R is studied
in Section 4 where the ML and Bayes estimations of R are proposed. Simu-
lation results based on Monte Carlo experiments and real data analysis are
reported in Section 5, and conclusion is presented in Section 6.

2 Estimation of R with Common Second Shape
Parameter

Assuming the common second shape parameter λ, for X and Y , we investi-
gate the properties of R in this section. The general case will be discussed
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in Section 4.

2.1 Maximum Likelihood Estimation of R

Let X ∼ Ku(α, λ) and Y ∼ Ku(β, λ) be independent random variables. It
is straightforward to show that the reliability function is R = P (X < Y ) =
α

α+β . Estimation of R in case of the progressive Type-II censored samples is
our purpose.

First, we have to obtain the MLEs of α, β and λ to derive the MLE of
R. Let {X1:n:N , . . . , Xn:n:N} and {Y1:m:M , . . . , Ym:m:M} be a progressively
censored sample from Ku(α, λ) and Ku(β, λ) under the progressive censor-
ing scheme {N,n,R1, R2, . . . , Rn} and {Y1:m:M , . . . , Ym:m:M}, respectively.
Hence, the likelihood function of α, β and λ is defined as

L(α, β, λ) =

[
c1

n∏

i=1

f(xi)[1− F (xi)]
Ri

]
×
[
c2

m∏

j=1

f(yj)[1− F (yj)]
Sj

]
,

where

c1 = N(N −R1 − 1) . . . (N −R1 − . . .−Rn−1 − n+ 1),

c2 =M(M − S1 − 1) . . . (M − S1 − . . .− Sm−1 −m+ 1).

The likelihood function of the observed data is:

L(data|α, β, λ) = c1c2α
nβmλn+m

(
n∏

i=1

xλ−1
i

)


m∏

j=1

yλ−1
j




×
(

n∏

i=1

(
1− xλi

)α(Ri+1)−1
)


m∏

j=1

(
1− yλj

)β(Sj+1)−1


 .

Therefore, the log-likelihood function is as follows:
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ℓ(α, β, λ) = n log(α) +m log(β) + (n+m) log(λ) + (λ− 1)

× (

n∑

i=1

log(xi) +

m∑

j=1

log(yj)) +

n∑

i=1

(
α(Ri + 1)− 1

)
log(1− xλi )

+
m∑

j=1

(
β(Sj + 1)− 1

)
log(1− yλj ) + Constant.

The maximum likelihood estimations of α, β and λ, which are respectively
denoted by α̂, β̂ and λ̂, are achieved by solving the equation below

∂ℓ

∂α
=
n

α
+

n∑

i=1

(Ri + 1) log(1− xλi ) = 0, (2)

∂ℓ

∂β
=
m

β
+

m∑

j=1

(Sj + 1) log(1− yλj ) = 0, (3)

∂ℓ

∂λ
=
n+m

λ
+

n∑

i=1

log(xi) +

m∑

j=1

log(yj)−
n∑

i=1

(
α(Ri + 1)− 1

)
xλi log(xi)

1− xλi

−
m∑

j=1

(
β(Sj + 1)− 1

)
yλj log(yj)

1− yλj
= 0.

From (2) and (3), we obtain

α̂(λ) = − n∑n
i=1(Ri + 1) log(1− xλi )

, β̂(λ) = − m∑m
j=1(Sj + 1) log(1− yλj )

,

and λ̂ can be found as the solution of the non-linear equation k(λ) = λ,
where

J. Statist. Res. Iran 16 (2019): 165–209



172 Estimation of Reliability of Stress-strength for a Kumaraswamy Distribution ...

k(λ) = (n+m)

{
n∑

i=1

log(xi)

(
−1 +

(
α(Ri + 1)− 1

)
xλi

1− xλi

)

+
m∑

j=1

log(yj)

(
−1 +

(
β(Sj + 1)− 1

)
yλj

1− yλj

)


−1

.

Because, λ̂ is a fixed point solution of the above non-linear equation, it can
be iteratively obtained as k(λ(j)) = λ(j+1), where λ(j) is the value of λ̂ in the
j-th iteration. This iterative procedure is finished if |λ(j)−λ(j+1)| gets small
enough. Now, α̂ and β̂ can be calculated after λ̂ is obtained. Finally, the
maximum likelihood estimation of R would be

R̂ =
α̂

α̂+ β̂
. (4)

2.2 Asymptotic Confidence Interval

Here, we present some approaches to obtain the asymptotic distributions of
both θ̂ = (α̂, β̂, λ̂) and R̂. We denote the expected Fisher information matrix
of θ = (α, β, λ) as J(θ) = −E(I(θ)), where I = [Iij ], i, j = 1, 2, 3 is the
observed information matrix. According to the table of the integrals from
Gradshteyn and Ryzhik (1994) (formulae 4.253(1) and 4.261(21)), we have

J11 =
n

α2
, J22 =

m

β2
, J12 = J21 = 0,

J13 = J31 =
α

λ

n∑

i=1

(Ri + 1)Ci−1

×
i∑

k=1

ai,kB(2, αηk − 1)[ψ(2)− ψ(αηk + 1)], for αηk > 1
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J23 = J32 =
β

λ

m∑

j=1

(Sj + 1)C ′
j−1

×
j∑

k=1

a′j,kB(2, βη′k − 1)[ψ(2)− ψ(βη′k + 1)], for βη′k > 1

J33 =
n+m

λ2
+
α

λ2

n∑

i=1

(α(Ri + 1)− 1)Ci−1

i∑

k=1

ai,kB(2, αηk − 2)

× {ψ′(2)− ψ′(αηk) + [ψ(2)− ψ(αηk)]
2}

+
β

λ2

m∑

j=1

(β(Sj + 1)− 1)C ′
j−1

j∑

k=1

a′j,kB(2, βη′k − 2)

× {ψ′(2)− ψ′(βη′k) + [ψ(2)− ψ(βη′k)]
2} for αηk, βη′k > 2,

where ψ(x) = d
dxΓ(x), ψ′(x) = d2

dx2Γ(x), B(x, y) = Γ(x)Γ(y)
Γ(x+y) , ηd = n − d +

1 −∑n
l=dRl, η′d = m − d + 1 −∑m

l=d Sl, Ci−1 =
∏i

d=1 ηd, C ′
j−1 =

∏j
d=1 η

′
d,

ai,d =
∏d

l=1,l ̸=i
1

ηl−ηi
, a′j,d =

∏d
l=1,l ̸=j

1
η′l−η′i

(for more details see Balakrishnan
and Aggarwala (2000)).

Theorem 1. As n→ ∞ and m→ ∞ then

[
√
n(α̂− α)

√
m(β̂ − β)

√
n(λ̂− λ)]T

D−→ N3(0,A
−1(α, β, λ)),

where A(α, β, λ) and A−1(α, β, λ) are symmetric matrices and

A(α, β, λ) =




a11 0 a13

a22 a23

a33


 ,

A−1(α, β, λ) =
1

|A(α, β, λ)|




b11 b12 b13

b22 b23

b33


 ,
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in which

a11 = lim
n,m→∞

J11
n
, a13 = lim

n,m→∞
J13
n
, a22 = lim

n,m→∞
J22
m
,

a23 = lim
n,m→∞

J23√
nm

, a33 = lim
n,m→∞

J33
n
,

and |A(α, β, λ)| = a11a22a33 − a11a
2
23 − a213a22,

b11 = a22a33 − a223, b12 = a13a23, b13 = −a13a22,
b22 = a11a33 − a213, b23 = −a11a23, b33 = a11a22.

Proof. Following the asymptotic normality of the MLE, the theorem is
proved.

Theorem 2. As n,m→ ∞, and n/m→ p then

√
n(R̂−R)

D−→ N(0, B),

where
B =

β2b11 + α2pb22 − 2αβ
√
pb12

|A(α, β, λ)|(α+ β)4
.

Proof. We can easily show that E(
√
n(R̂ − R)) → 0 as n,m → ∞, and

n/m→ p and that

V ar(
√
n(R̂−R)) = E(

√
n(R̂−R))2

= E

{
1

(α̂+ β̂)2(α+ β)2

[
β2[

√
n(α̂− α)]2 + α2(n/m)[

√
m(β̂ − β)]2

− 2αβ
√
n/m[

√
n(α̂− α)

√
m(β̂ − β)]

]}
.

As n,m→ ∞, and n/m→ p,

V ar(
√
n(R̂−R)) → B =

β2b11 + α2pb22 − 2αβ
√
pb12

|A(α, β, λ)|(α+ β)4
,

employing Theorem 2, the consistency and asymptotic normality of MLE are
obtained.
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From Theorem 2, the asymptotic confidence interval of R is constructed.
Moreover, utilizing the maximum likelihood estimations of α, β and λ, B is
estimated. Hence, a 100(1 − γ)% asymptotic confidence interval for R is as
follows:

(R̂− z1− γ
2

√
B̂√
n
, R̂+ z1− γ

2

√
B̂√
n
),

where zγ is 100γ-th percentile of N(0, 1).

2.3 Confidence Interval Based on Bootstrap Procedures
As the sampling distribution of R̂ is not available in case λ is unknown, the
bootstrapping approach can be an alternative method instead of the one de-
scribed in the Section 2.2 to develop an approximated confidence interval of
the parameter R. Furthermore, it is obvious that in case of small sample sizes
the performance of asymptotic confidence intervals gets degraded. Hence,
based on the non-parametric bootstrap method two confidence intervals are
proposed: (i) bootstrap-p method, which is referred to as Boot-p method
and is originated from the basic idea of Efron (1982) and (ii) bootstrap-t
method, which is referred to as Boot-t method, and is originated from the
idea of Hall (1988).

(i) Boot-p Method

1. Generate a bootstrap sample of size n, {x∗1, . . . , x∗n} from {x1, . . . , xn}
and generate a bootstrap sample of sizem, {y∗1, . . . , y∗m} from {y1, . . . , ym}.
Based on {x∗1, . . . , x∗n} and {y∗1, . . . , y∗m}, calculate the bootstrap esti-
mation of R that is R̂∗, utilizing (4).

2. Iterate 1 NBOOT times.

3. Let G∗(x) = P (R̂∗ ≤ x) be the cumulative distribution function of R̂∗.
Define R̂Bp(x) = G∗−1(x) for a given x. The 100(1 − γ)% confidence
interval of R is approximately obtained by:

(R̂Bp(
γ

2
), R̂Bp(1−

γ

2
)).

(ii) Boot-t Method

1. From the samples {x1, . . . , xn} and {y1, . . . , ym}, compute R̂.
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2. Same as in Boot-p method, first generate bootstrap sample {x∗1, . . . , x∗n}
and {y∗1, . . . , y∗m} and then calculate R̂∗, the bootstrap estimation of
R. Also, compute the statistic:

T ∗ =

√
n(R̂∗ − R̂)√
V (R̂∗)

.

Compute V (R̂∗) using Theorem 2.

3. Iterate 1 and 2 NBOOT times.

4. Let H(x) = P (T ∗ ≤ x) be the cumulative distribution function of T ∗.
For a given x, let

R̂Bt(x) = R̂+ n−
1
2H−1(x)

√
V (R̂).

The 100(1 − γ)% confidence interval of R is approximately obtained
by:

(R̂Bt(
γ

2
), R̂Bt(1−

γ

2
)).

2.4 Bayes Estimation of R

Assuming the parameters α, β and λ are random variables, in this section we
develop the Bayesian inference of R. We mainly discuss Bayes estimations
and the associated credible intervals of R. Also, let suppose the priors of α,
β and λ are independent gamma distributions as follows:

π1(α) ∝ αa1−1e−b1α, α > 0, a1 > 0, b1 > 0,

π2(β) ∝ βa2−1e−b2β, β > 0, a2 > 0, b2 > 0,

π3(λ) ∝ λa3−1e−b3λ, λ > 0, a3 > 0, b3 > 0.

Given the observed sample, the joint posterior density function of α, β and
λ is

π(α, β, λ|data) = L(data|α, β, λ)π1(α)π2(β)π3(λ)∫∞
0

∫∞
0

∫∞
0 L(data|α, β, λ)π1(α)π2(β)π3(λ)dαdβdλ

. (5)

From (5), it is obvious that the Bayes estimate will not be analytically ob-
tained. Consequently, we utilize the Gibbs and Metropolis sampling methods
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to calculate the Bayes estimation and the associated credible interval of R.
The posterior pdfs of α and β can be obtained as:

α|β, λ, data ∼ Γ(n+ a1, b1 +
n∑

i=1

(Ri + 1) log(
1

1− xλi
)),

β|α, λ, data ∼ Γ(m+ a2, b2 +

m∑

j=1

(Sj + 1) log(
1

1− yλj
)),

and

π(λ|α, β, data) ∝ λn+m+a3−1e−b3λ

(
n∏

i=1

xλ−1
i

1− xλi

)


m∏

j=1

yλ−1
j

1− yλj


 .

Because λ has an unknown posterior pdf, to generate random numbers from
the posterior pdf of λ, the Metropolis-Hastings method is employed. There-
fore, the Gibbs sampling’s algorithm is as follows:

1. Start with an initial guess (α(0), β(0), λ(0)).

2. Set t = 1.

3. Generate λ(t) from π(λ|α(t−1), β(t−1), data).

4. Generate α(t) from Γ(n+ a1, b1 +
∑n

i=1(Ri + 1) log( 1

1−x
λ(t−1)
i

)).

5. Generate β(t) from Γ(m+ a2, b2 +
∑m

j=1(Sj + 1) log( 1

1−y
λ(t−1)
j

)).

6. Compute R(t) =
α(t)

α(t)+β(t)
.

7. Set t = t+ 1.

8. Iterate 3-7, T times.

As a result, the mean and variance of the posterior pdf ofR are approximately
given by:

Ê(R|data) = 1

T

T∑

t=1

R(t), V̂ ar(R|data) = 1

T

T∑

t=1

(R(t) − Ê(R|data))2.
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Employing T and R values and utilizing the technique presented by Chen
and Shao (1999), a 100(1 − γ)% HPD credible interval can be constructed
as
(
R[ γ

2
T ], R[(1− γ

2
)T ]

)
, where R[ γ

2
T ] and R[(1− γ

2
)T ] are the [γ2T ]-th smallest

integer and the [(1− γ
2 )T ]-th smallest integer of {R(t) = 1, 2, . . . , T}, respec-

tively.

3 Estimation of R in Case of Known λ

Now the estimation of R in case of known λ is presented.

3.1 Maximum Likelihood Estimation of R

Let X ∼ Ku(α, λ) and Y ∼ Ku(β, λ) be independent random variables. The
purpose is estimating R for progressive Type-II censored data drawn from
both random variables when the common second shape parameter of KuD is
known. Based on Section 3, it is clear that the MLE of R will be R̂ = α̂

α̂+β̂
,

where

α̂ = − n∑n
i=1(Ri + 1) log(1− xλi )

, β̂ = − m∑m
j=1(Sj + 1) log(1− yλj )

.

Therefore

R̂ML =
n
∑m

j=1(Sj + 1) log(1− yλj )

n
∑m

j=1(Sj + 1) log(1− yλj ) +m
∑n

i=1(Ri + 1) log(1− xλi )
. (6)

With the same method in Section 2.2,
√
n(R̂ML −R)

D−→ N(0, C) where

C =
α2β2(1 + p)

(α+ β)4
, (7)

in which p is the limit of n/m. Hence, a 100(1− γ)% asymptotic confidence

interval for R is as (R̂ML− z1− γ
2

√
Ĉ√
n
, R̂ML+ z1− γ

2

√
Ĉ√
n
), where zγ is 100γ-th

percentile of N(0, 1). Based on the asymptotic distribution of R, the Boot-p
and Boot-t intervals of R can be presented. As the bootstrap procedures are
very similar to those of indicated in Section 2.3, we omit them. We remind
that in Boot-p and Boot-t methods, R̂∗ and V (R̂∗), when λ is known are
obtained from (6) and (7), respectively.

© 2019, SRTC Iran



A. Kohansal and R. Kazemi 179

3.2 UMVUE of R

In this section, we derive the UMVUE of R. Let {X1:n:N , . . . , Xn:n:N} and
{Y1:m:M , . . . , Ym:m:M} be two progressively censored samples from Ku(α, λ)
and Ku(β, λ) under the progressive schemes {N,n,R1, R2, . . . , Rn} and
{Y1:m:M , . . . , Ym:m:M}, respectively. The joint pdf of X1:n:N , . . . , Xn:n:N is

fX1:n:N ,...,Xn:n:N
(x1, . . . , xn) = c1(αλ)

n

(
n∏

i=1

xλ−1
i

1− xλi

)
eα

∑n
i=1(Ri+1) log(1−xλ

i ),

(8)

where 0 < x1 < . . . < xn < 1. It is immediate from (8) that U =
−∑n

i=1(Ri + 1) log(1− xλi ) is the complete sufficient statistics for α when λ
is known. It is clear that

X∗
i:n:N = − log(1−Xλ

i:n:N ), i = 1, . . . , n,

be a progressive censored sample from an exponential distribution with mean
α−1. Let

Z1 = NX∗
1:n:N ,

Z2 = (N −R1 − 1)(X∗
2:n:N −X∗

1:n:N ),

...
Zn = (N −R1 − . . .−Rn−1 − n+ 1)(X∗

n:n:N −X∗
n−1:n:N ).

From Cao and Cheng (2006), we get that Z1, . . . , Zn are independent and
identically distributed exponential random variables with mean α−1. More-
over U =

∑n
i=1 Zi =

∑n
i=1(Ri +1)X∗

i:n:N has a gamma distribution with the
shape parameter n and the scale parameter α, in symbols U ∼ Γ(n, α), i.e.
it has the pdf

fU (u) =
αn

Γ(n)
un−1e−αu, u > 0. (9)

Lemma 1. Let Y ∗
j:m:M = − log(1 − Y λ

j:m:M ) and V =
∑m

j=1(Sj + 1)Y ∗
j:m:M

.The conditional pdf of X∗
1:n:N given U = u, is

fX∗
1:n:N |U=u(x) = N(n− 1)

(u−Nx)n−2

un−1
, 0 < x < u/N,
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and the conditional pdf of Y ∗
1:m:M given V = v, is

fY ∗
1:m:M |V=v(y) =M(m− 1)

(v −My)m−2

vm−1
, 0 < y < v/M.

Proof. Here, we prove the first part, the second part follows a similar pro-
cedure to be proved. Note that

fX∗
1:n:N |U=u(x) =

fX∗
1:n:N ,U (x, u)

fU (u)
,

where fX∗
1:n:N ,U (x, u) is the joint pdf of X∗

1:n:N and U and fU (u) is the pdf
of U . When λ is known, U is a complete sufficient statistics for α. Suppose
we denote W =

∑n
i=2 Zi then clearly W and Z1 are independent. The joint

pdf of X∗
1:n:N and U can be easily obtained from the joint pdf of W and Z1,

using the the transformation Z1 = NX∗
1:n:N and U = W + Z1. Finally the

result is found using (9). □

Theorem 3. The UMVUE of R, R̃, is:

R̃ =





1−
n−1∑
k=0

(−1)k( vu)
k (n−1

k )
(m+k−1

k )
if v < u,

m−1∑
k=0

(−1)k(uv )
k (m−1

k )
(n+k−1

k )
if v > u.

(10)

where n,m ≥ 2, and U and V are respectively complete sufficient statistics
for α and β, as mentioned before.

Proof. See Appendix B.

3.3 Exact Confidence Interval

In this section, we derive the exact confidence interval of R. So, let {X1:n:N ,
. . . , Xn:n:N} and {Y1:m:M , . . . , Ym:m:M} be a progressively censored sample
from Ku(α, λ) and Ku(β, λ) under the progressive censoring scheme
{N,n,R1, R2, . . . , Rn} and {Y1:m:M , . . . , Ym:m:M}, respectively. Let X∗∗

i:n:N =
−α log(1 − Xλ

i:n:N ), i = 1, . . . , n (or Y ∗∗
j:m:M = −β log(1 − Y λ

j:m:M ), j =
1, . . . ,m). It is easy to see that X∗∗

i:n:N , i = 1, . . . , n (or Y ∗∗
j:m:M , j =

© 2019, SRTC Iran



A. Kohansal and R. Kazemi 181

1, . . . ,m) is a progressive censoring sample from a standard exponential dis-
tribution. Let us consider the following transformations:

Z∗
1 = NX∗∗

1:n:N , Z
∗
i = [N −

i−1∑

k=1

(Rk + 1)](X∗∗
i:n:N −X∗∗

i−1:n:N ), i = 2, . . . , n,

D∗
1 =MY ∗∗

1:m:M , D
∗
j = [M −

j−1∑

k=1

(Sk + 1)](Y ∗∗
j:m:M − Y ∗∗

j−1:m:M ), j = 2, . . . ,m.

From Cao and Cheng (2006), we get that Z∗
1 , . . . , Z

∗
n (or D∗

1, . . . , D
∗
m) are

independent and identically distribution as standard exponential.
Let VX = 2Z∗

1 and UX = 2
∑n

i=2 Z
∗
i (or VY = 2D∗

1 and UY = 2
∑m

j=2D
∗
j ).

Then VX and UX (or VY and UY ) are independent random variables and

VX ∼ χ2
(2) and UX ∼ χ2

(2n−2) (or VY ∼ χ2
(2) and UY ∼ χ2

(2m−2)).

Lemma 2. Let TX(λ) = UX
(n−1)VX

, T1 = UX + VX , TY (λ) = UY
(m−1)VY

and
T2 = UY + VY . We can find that

TX(λ) ∼ F (2n−2, 2), T1 ∼ χ2(2n), TY (λ) ∼ F (2m−2, 2) and T2 ∼ χ2(2m).

It is obvious that TX(λ) and TY (λ) are independent. Furthermore, Johnson,
et al. (1994) indicated that TX(λ) and T1 (or TY (λ) and T2) are independent.
□

Lemma 3. TX(λ) (or TY (λ)) is strictly decreasing in λ.

Proof. See Appendix C.

Lemma 4. When λ is known, the MLE of R can be obtained as

R̂ML =
1

1 + mT1/α
nT2/β

.

It is obvious that T1 and T2 are independent. Alternatively, TX(λ), TY (λ)
and R̂ML are independent. Also, by using Lemma 2, we have

R̂ML =
1

1 + β
αF

, or F =
R

1−R
.
1− R̂ML

R̂ML

,
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where F has Fisher distribution with (2n, 2m) degrees of freedom, in symbols
F ∼ F (2n, 2m). □

Theorem 4. Suppose that {X1:n:N , . . . , Xn:n:N} be a progressively censored
sample from Ku(α, λ) and {Y1:m:M , . . . , Ym:m:M} be a progressively censored
sample from Ku(β, λ). Then

(i) for any 0 < γ < 1,
(
max

{
T−1
X (F(1+

√
1−γ)/2(2n− 2, 2)), T−1

Y (F(1+
√
1−γ)/2(2m− 2, 2))

}
,

min
{
T−1
X (F(1−√

1−γ)/2(2n− 2, 2)), T−1
Y (F(1−√

1−γ)/2(2m− 2, 2))
})

is a 100(1 − γ)% confidence interval for λ, where Fγ(p, q) is 100γ-th
percentile of F (p, q).

(ii) for any 0 < γ < 1, a 100(1 − γ)% joint confidence region for (λ,R) is
determined by the following inequalities





max
{
T−1
X (F(1+ 4√1−γ)/2(2n− 2, 2)), T−1

Y (F(1+ 4√1−γ)/2(2m− 2, 2))
}
≤ λ

≤ min
{
T−1
X (F(1− 4√1−γ)/2(2n− 2, 2)), T−1

Y (F(1− 4√1−γ)/2(2m− 2, 2))
}
,

1

1+
1−R̂ML
R̂ML

F1−(1−√
1−γ)/2(2m,2n)

≤ R ≤ 1

1+
1−R̂ML
R̂ML

F1−(1+
√

1−γ)/2(2m,2n)
.

Proof. See Appendix D.

3.4 Bayes Estimation of R

Assuming that λ is known and α and β are both random variables, we derive
Bayes estimation of R in this section. Moreover, we consider two independent
gamma distributions with the parameters (a1, b1) and (a2, b2) as two priors
for α and β, respectively. It can be shown that α and β have the posterior
pdfs Γ(n + a1, b1 + A1(x)) and Γ(m + a2, b2 + A2(y)), respectively, where
A1(x)) = T1/(2α) and A2(y)) = T2/(2β). Considering the independence of
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priors, the posterior pdf of R turn out to be

fR(r) = S
rn+a1−1(1− r)m+a2−1

[r(b1 +A1(x)) + (1− r)(b2 +A2(y))]
n+m+a1+a2

, 0 < r < 1,

where

S =
Γ(n+m+ a1 + a2)

Γ(n+ a1)Γ(m+ a2)
(b1 +A1(x))

n+a1(b2 +A2(y))
m+a2 .

Under the squared error loss function, we are not able to obtain a closed
form for the Bayes estimation of R, so it would be approximated by Lindley
method Lindley (1980). Alternatively, utilizing the approximation of Lindley
(1980) and the idea of Ahmad, et al. (1997), under the squared error loss
function the Bayes estimation of R, R̂BS , can be approximated by

R̂BS = R̆

{
1+

ᾰR̆2

β̆2(m+ a2 − 1)(n+ b1 − 1)

[
ᾰ(n+ a1 − 1)− β̆(m+ a2 − 2)

]}
,

(11)
where

R̆ =
ᾰ

ᾰ+ β̆
, ᾰ =

n+ a1 − 1

b1 +A1(x)
, and β̆ =

m+ a2 − 1

b2 +A2(y)
.

The 100(1 − γ)% Bayesian interval for R is (L,U) in which L is the lower
and U is the upper bound, satisfying

P [R ≤ L|data] = γ

2
, and P [R ≤ U |data] = 1− γ

2
. (12)

4 Estimation of R in General Case

Now, we investigate estimations of R in case of different shape parameters.

4.1 Maximum Likelihood Estimation of R

LetX ∼ Ku(α, λ1) and Y ∼ Ku(β, λ2) be independent random variables.Therefore,
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R = P (X < Y ) =

∫ 1

0
fY (y)P (X < Y |Y = y)dy

=

∫ 1

0
βλ2y

λ2−1(1− yλ2)β−1(1− (1− yλ1)α)dy

= 1−
∫ 1

0
βλ2y

λ2−1(1− yλ2)β−1(1− yλ1)αdy.

Obviously, R cannot be expressed in a closed form,accordingly numerical
computation have to be performed for any inference about R. To obtain the
maximum likelihood estimation of R, we proceed as follows. Let {X1:n:N , . . . ,
Xn:n:N} and {Y1:m:M , . . . , Ym:m:M} be a progressively censored sample from
Ku(α, λ) and Ku(β, λ) under the progressive censoring scheme {N,n,R1, R2,
. . . , Rn} and {Y1:m:M , . . . , Ym:m:M}, respectively. Therefore, the log-likelihood
function of the observed data is

ℓ(α, β, λ1, λ2) = n log(α) +m log(β) + n log(λ1)

+m log(λ2) + (λ1 − 1)

n∑

i=1

log(xi)

+ (λ2 − 1)
m∑

j=1

log(yj) +
n∑

i=1

(
α(Ri + 1)− 1

)
log(1− xλ1

i )

+
m∑

j=1

(
β(Sj + 1)− 1

)
log(1− yλ2

j ) + Constant.

The MLEs of α and β say α̂ and β̂, respectively, are

α̂(λ1) = − n∑n
i=1(Ri + 1) log(1− xλ1

i )
, β̂(λ2) = − m∑m

j=1(Sj + 1) log(1− yλ2
j )

.

The MLEs of λ1 and λ2 say λ̂1 and λ̂2, are obtained by solving the
following nonlinear equations
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k1(λ1) = −n
{

n∑

i=1

log(xi)

(
−1 +

(
α(Ri + 1)− 1

)
xλ1
i

1− xλ1
i

)}−1

,

k2(λ2) = −m





m∑

j=1

log(yj)

(
−1 +

(
β(Sj + 1)− 1

)
yλ2
j

1− yλ2
j

)


−1

.

Using the invariance property of the MLEs, the MLE of R becomes

R = 1−
∫ 1

0
β̂λ̂2y

λ̂2−1(1− yλ̂2)β̂−1(1− yλ̂1)α̂dy.

4.2 Asymptotic Confidence Interval

Similar to the approach in Section 2.2, the asymptotic distribution of θ̂ =
(α̂, β̂, λ̂1, λ̂2) is obtained in this section. The expected Fisher information
matrix of θ = (α, β, λ1, λ2) is denoted as J(θ) = −E(I(θ)), in which I(θ) =
[Iij ], i, j = 1, 2, 3, 4 is the observed information matrix. The elements of
J(θ) and asymptotic normality of the MLEs are given in Appendix A.

4.3 Bayes Estimation of R

Now assuming that the parameters α, β, λ1 and λ2 are random variables, we
draw the Bayesian inference of R. The Bayes estimations and the associated
credible intervals of R are mainly discussed. Let suppose the priors of α, β,
λ1 and λ2 are independent gamma distributions as:

π1(α) ∝ αa1−1e−b1α, α > 0, a1 > 0, b1 > 0,

π2(β) ∝ βa2−1e−b2β , β > 0, a2 > 0, b2 > 0,

π3(λ1) ∝ λa3−1
1 e−b3λ1 , λ1 > 0, a3 > 0, b3 > 0,

π4(λ2) ∝ λa4−1
2 e−b4λ2 , λ2 > 0, a4 > 0, b4 > 0,

respectively. The reasons, for choosing the gamma priors, can be explained
as follows. The range of α, β, λ1, λ2 are positive. Also, because the full
conditional distributions of α and β, given λ1, λ2 and data, are gamma dis-
tributions, so, they are conjugated priors. Finally, by selecting these gamma
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priors, the calculations become a little easier. The joint posterior density
function of α, β, λ1 and λ2 is defined by

π(α, β, λ1, λ2|data) =
L(data|α, β, λ1, λ2)π1(α)π2(β)π3(λ1)π4(λ2)∫∞

0

∫∞
0

∫∞
0

∫∞
0 L(data|α, β, λ1, λ2)π1(α)π2(β)π3(λ1)π4(λ2)dαdβdλ1dλ2

.

It is obvious that the Bayes estimate will not be analytically computed.
Therefore, to obtain the Bayes estimation and the associated credible interval
of R, we employ the Gibbs and Metropolis sampling methods. The posterior
pdfs of α and β are:

α|β, λ1, λ2, data ∼ Γ(n+ a1, b1 +
n∑

i=1

(Ri + 1) log(
1

1− xλ1
i

)),

β|α, λ1, λ2, data ∼ Γ(m+ a2, b2 +

m∑

j=1

(Sj + 1) log(
1

1− yλ2
j

)),

and

π(λ1|α, β, λ2, data) ∝ λn+a3−1
1 e−b3λ1

(
n∏

i=1

xλ1−1
i

1− xλ1
i

)
,

π(λ2|α, β, λ1, data) ∝ λm+a4−1
2 e−b4λ2




m∏

j=1

yλ2−1
j

1− yλ2
j


 .

Because λ1 and λ2 have the unknown posterior pdfs, for generating random
numbers from posterior pdfs of λ1 and λ2 the Metropolis-Hastings approach
is employed. Then, the Gibbs sampling’s algorithm would be:

1. Begin with an initial guess (α(0), β(0), λ1(0), λ2(0)).

2. Set t = 1.

3. Generate λ1(t) from π(λ1|α(t−1), β(t−1), λ2(t−1), data).

4. Generate λ2(t) from π(λ2|α(t−1), β(t−1), λ1(t−1), data).

5. Generate α(t) from Γ(n+ a1, b1 +
∑n

i=1(Ri + 1) log( 1

1−x
λ1(t−1)
i

)).
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6. Generate β(t) from Γ(m+ a2, b2 +
∑m

j=1(Sj + 1) log( 1

1−y
λ2(t−1)
j

)).

7. ComputeR(t) = 1−
∫ 1
0 β(t)λ2(t)y

λ2(t)−1(1−yλ2(t))β(t)−1(1−yλ1(t))α(t)dy.

8. Set t = t+ 1.

9. Iterate 3-8, T times.

Accordingly, the mean and the variance of posterior of R are approximately
given by

Ê(R|data) = 1

T

T∑

t=1

R(t), V̂ ar(R|data) = 1

T

T∑

t=1

(R(t) − Ê(R|data))2.

Employing the technique presented by Chen and Shao (1999), and using
T and R values a 100(1 − γ)% HPD credible interval can be constructed
as
(
R[ γ

2
T ], R[(1− γ

2
)T ]

)
, where R[ γ

2
T ] and R[(1− γ

2
)T ] are the [γ2T ]-th smallest

integer and the [(1− γ
2 )T ]-th smallest integer of {R(t) = 1, 2, . . . , T}, respec-

tively.

5 Data Analysis and Comparison Study
For comparative purposes, some experiments are conducted in this section
using Monte Carlo methods and real data analysis.

5.1 Numerical Results and Discussions
Now, considering different progressive censoring schemes we make some Monte
Carlo simulations for performance comparison of different methods. Three
cases have been considered here to draw inference on R. First case is as-
suming unknown common shape parameter λ. Second, the common shape
parameter λ is assumed known. Third the second shape parameters λ1 and
λ2 are both unknown.

For the first case, that is the unknown common second shape param-
eter λ, we compare performances of the presented estimations in terms of
the mean square errors (MSE). Moreover, different confidence intervals are
compared together in the sense of average confidence lengths, and coverage
probabilities. Different parameter values, hyper parameters and censored
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sampling schemes have been used in the simulations. Four sets of parameter
values are used to evaluate the ML and Bayes estimators that are Θ1 = (α =
2, β = 2, λ = 1.5), Θ2 = (α = 2, β = 2, λ = 2), Θ3 = (α = 2, β = 2, λ = 2.5)
and Θ4 = (α = 3.7597, β = 1.9016, λ = 2.5852). It is notable that Θ4 is the
values to the estimated parameters of the real data which considered in the
Section 5.2. Three priors are assumed to evaluate the Bayes estimations and
HPD intervals that are

Prior 1: aj = 0, bj = 0, j = 1, 2, 3,
Prior 2: aj = 1, bj = 2, j = 1, 2, 3,
Prior 3: aj = 2, bj = 3, j = 1, 2, 3.

Prior 1 is a non-informative prior and Prior 2 and Prior 3 are informative
ones. Furthermore, three censored sampling schemes are employed based on
the following:

r1 : R2k =
N − n

n
− 1, R2k−1 =

N − n

n
− 1, k = 1, . . . ,

n

2
,

r2 : R2k =
2(N − n)

n
, R2k−1 = 0, k = 1, . . . ,

n

2
,

r3 : R1 = · · · = Rn =
N − n

n
.

To see the effect of censoring scheme on the precision of the stress-strength
parameter, we obtain the results based on the above schemes and (n,N) =
(10, 40), (20, 40). The average biases, and MSEs of different estimators of R
over 1000 repetitions are reported in Table 1. In the simulations of bootstrap
methods, we have used 250 re-sampling to compute the confidence intervals.
Considering 1000 sampling (T = 1000), the Bayes estimations and the asso-
ciated credible intervals have been obtained. Comparing MSEs in Table 1
indicates performance of ML estimator is comparable to the Bayes estima-
tor. Also, we observe that the Bayes estimates perform better than the ML
estimates. Moreover, in Bayesian estimates, informative Priors 2 and 3 have
better performance than non-informative ones, so that Prior 3 is the best
estimate in terms of MSEs. Moreover, the 95% asymptotic confidence in-
tervals of R have been computed in the sense of asymptotic distribution of the
ML estimation. We also computed the Boot-p, Boot-t and the HPD credible
intervals. The experimental results are presented in Table 2. In all cases,
the nominal level of 0.95 for the confidence intervals is considered. From
Table 2, it is observed that the bootstrap confidence intervals are the worst
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confidence intervals, so that they have the largest average lengths and small-
est coverage probabilities. Also, comparing different parameter values and
censored sampling methods shows the HPD credible intervals have the best
performance based on average lengths and coverage probabilities. Moreover,
in Bayesian inference, the performance of HPD credible intervals obtained
by the informative priors is better than non-informative ones, so that the
smallest average lengths with the largest coverage probabilities belongs to
Prior 3. The second best confidence interval is the asymptotic confidence
interval of MLE. In addition, when we calculated the T ∗ statistics, we could
not do re-center the bootstrap resamples. So, it is observed that Boot-p
confidence intervals perform better than the Boot-t confidence intervals (see
Baklizi (2007), for more details).

Considering the case that the common second shape parameter is known,
the ML and UMVU estimations of R using (6) and (10) are obtained. We also
provide the asymptotic confidence intervals and two non-parametric boot-
strap intervals. As there is no prior information about R, for computing the
Bayes estimates using the non-informative prior i.e a1 = b1 = a2 = b2 = 0
is preferred. We obtain Bayes estimations by implementing the same prior
distributions, based on Lindley approximation in accordance with (11). Fur-
thermore, using (12) the Bayesian interval based on Lindley approximation
is obtained. The average biases and MSEs resulted from 1000 repetitions
are stated in Table 3. According to this table, we observe that Bayes esti-
mate has the best performance, based on MSEs and the MSEs of UMVUE
is greater than the MLE. As we know, the UMVUE gives the best estima-
tor in the class of unbiased estimators. But, in the case of study, MLE
tries to minimize the MSE which is the sum of squared bias and variance
of the estimator. Thus, the MLE has lower MSE value than the UMVUE
since it has significant decrease in the variance as compared to the increment
in the bias value. Comparing different confidence intervals shows that the
bootstrap and Bayesian intervals are the worst and best confidence intervals,
respectively, based on the average lengths and coverage probabilities. The
second best confidence interval is the asymptotic confidence interval of MLE.
In addition, it is observed that Boot-p confidence intervals perform better
than the Boot-t confidence intervals.

In the third case when λ1 and λ2 are different and unknown, R is esti-
mated using the MLE and Bayes approaches. To compare the MLEs and
Bayes estimations, four sets of parameter values are used as Θ5 = (α =
2, β = 2, λ1 = 1.5, λ2 = 1.5), Θ6 = (α = 2, β = 2, λ1 = 1.5, λ2 = 2),
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Θ7 = (α = 2, β = 2, λ1 = 1.5, λ2 = 2.5) and Θ8 = (α = 3.5653, β =
2.0019, λ1 = 2.4854, λ2 = 2.7233). It is notable that Θ8 is the values to the
estimated parameters of the real data which considered in the Section 5.2.
The Bayes estimations and HPD credible intervals are computed based on
three priors as follows:

Prior 4: aj = 0, bj = 0, j = 1, 2, 3, 4,
Prior 5: aj = 1, bj = 2, j = 1, 2, 3, 4,
Prior 6: aj = 2, bj = 3, j = 1, 2, 3, 4.

In Table 4, we bring the average biases and MSEs of the different estimations
of R obtained over 1000 repetitions. In this table, the average lengths, and
the associated coverage probabilities are presented. The nominal level for the
credible intervals is 0.95. According to Table 4, the MLE is comparable to
the Bayes estimation in the sense of MSEs. Moreover, in Bayesian estimates,
informative Priors 5 and 6 have better performance than non-informative
ones, so that Prior 6 is the best estimate in terms of MSEs. Comparing the
HPD credible intervals presents that the performance of HPD intervals ob-
tained by the informative priors is better than non-informative ones, so that
the smallest average lengths with the largest coverage probabilities belongs
to Prior 6.

As a fact, form Tables 1, 3 and 4 it is observed that, in all cases, for fixed
N , with increasing n, in all cases, the MSEs of all estimations decrease. The
reason of this is that with the decreasing amount of censored data, more in-
formation is gathered, and it makes the results more accurate. Furthermore,
from Tables 2, 3 and 4, for fixed N , with increasing n, it is observed that, in
all cases, the coverage probabilities increase, and the corresponding average
confidence lengths decrease.

5.2 Data Analysis

Here, an analysis on a real strength data set, which was reported in Badar
and Priest (1982) by Badar and Priest, is brought. In this data set, strengths
of single carbon fibers, which measured in GPA, are presented. Single fibers
were tested under tension at gauge lengths of 10mm (Data Set 1) and 20mm
(Data Set 2). Several authors analyzed these data sets that are presented
in Tables 5 and Table 6, respectively. By two independent works of Surles
and Padgett (1998, 2001), Raqab and Kundu (2005), it has been shown
that a generalized Rayleigh distribution performs quite well for these data
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Table 1. Biases and MSEs of the ML and Bayes estimations of R.
(n,N) Θj C.S MLE Prior 1 Prior 2 Prior 3

| Bias | MSE | Bias | MSE | Bias | MSE | Bias | MSE
(r1, r1) 0.0026 0.0224 0.0065 0.0160 0.0028 0.0141 0.0030 0.0121
(r2, r2) 0.0060 0.0227 0.0097 0.0161 0.0092 0.0141 0.0036 0.0110

Θ1 (r3, r3) 0.0002 0.0204 0.0046 0.0161 0.0052 0.0134 0.0027 0.0124
(r1, r2) 0.0032 0.0227 0.0031 0.0156 0.0035 0.0140 0.0089 0.0112
(r1, r3) 0.0090 0.0219 0.0017 0.0160 0.0042 0.0140 0.0058 0.0109
(r2, r3) 0.0084 0.0203 0.0078 0.0153 0.0034 0.0132 0.0042 0.0110
(r1, r1) 0.0089 0.0208 0.0081 0.0161 0.0039 0.0132 0.0053 0.0117
(r2, r2) 0.0048 0.0216 0.0076 0.0150 0.0086 0.0137 0.0076 0.0114

Θ2 (r3, r3) 0.0046 0.0229 0.0064 0.0154 0.0049 0.0144 0.0021 0.0112
(r1, r2) 0.0015 0.0229 0.0048 0.0151 0.0055 0.0135 0.0010 0.0122
(r1, r3) 0.0010 0.0205 0.0019 0.0151 0.0034 0.0139 0.0008 0.0117

(10,40) (r2, r3) 0.0089 0.0229 0.0095 0.0162 0.0069 0.0133 0.0032 0.0116
(r1, r1) 0.0016 0.0229 0.0015 0.0160 0.0031 0.0141 0.0054 0.0123
(r2, r2) 0.0097 0.0215 0.0037 0.0155 0.0056 0.0134 0.0030 0.0111

Θ3 (r3, r3) 0.0040 0.0224 0.0068 0.0164 0.0035 0.0138 0.0032 0.0120
(r1, r2) 0.0040 0.0204 0.0064 0.0151 0.0099 0.0140 0.0017 0.0120
(r1, r3) 0.0033 0.0213 0.0015 0.0157 0.0020 0.0143 0.0068 0.0113
(r2, r3) 0.0008 0.0227 0.0081 0.0156 0.0023 0.0144 0.0067 0.0116
(r1, r1) 0.0040 0.0224 0.0020 0.0161 0.0083 0.0138 0.0049 0.0107
(r2, r2) 0.0033 0.0229 0.0006 0.0162 0.0100 0.0132 0.0023 0.0106

Θ4 (r3, r3) 0.0064 0.022 0.0039 0.0153 0.0008 0.0132 0.0016 0.0116
(r1, r2) 0.0074 0.0201 0.0040 0.0157 0.0015 0.0134 0.0008 0.0121
(r1, r3) 0.0100 0.0225 0.0028 0.0157 0.0008 0.0143 0.0074 0.0124
(r2, r3) 0.0066 0.0228 0.0093 0.0160 0.0054 0.0134 0.0047 0.0108
(r1, r1) 0.0093 0.0151 0.0086 0.0122 0.0036 0.0106 0.0036 0.0086
(r2, r2) 0.0012 0.0149 0.0036 0.0134 0.0057 0.0101 0.0076 0.0072

Θ1 (r3, r3) 0.0076 0.0140 0.0006 0.0120 0.0006 0.0104 0.0088 0.0077
(r1, r2) 0.0034 0.0147 0.0031 0.0132 0.0093 0.0102 0.0029 0.0080
(r1, r3) 0.0062 0.0143 0.0018 0.0132 0.0065 0.0103 0.0004 0.0093
(r2, r3) 0.0026 0.0156 0.0064 0.0133 0.0044 0.0104 0.0028 0.0070
(r1, r1) 0.0008 0.0146 0.0044 0.0121 0.0005 0.0106 0.0009 0.0071
(r2, r2) 0.0096 0.0151 0.0094 0.0126 0.0069 0.0101 0.0029 0.0075

Θ2 (r3, r3) 0.0069 0.0143 0.0006 0.0124 0.0032 0.0114 0.0009 0.0088
(r1, r2) 0.0071 0.0152 0.0035 0.0132 0.0021 0.0114 0.0044 0.0090
(r1, r3) 0.0029 0.0145 0.0079 0.0126 0.0062 0.0107 0.0004 0.0088

(20,40) (r2, r3) 0.0025 0.0153 0.0022 0.0134 0.0048 0.0107 0.0099 0.0083
(r1, r1) 0.0062 0.0154 0.0056 0.0123 0.0051 0.0105 0.0056 0.0085
(r2, r2) 0.0014 0.0155 0.0015 0.0124 0.0083 0.0114 0.0079 0.0078

Θ3 (r3, r3) 0.0004 0.0149 0.0082 0.0122 0.0046 0.0106 0.0078 0.0091
(r1, r2) 0.0076 0.0142 0.0047 0.0122 0.0053 0.0102 0.0087 0.0075
(r1, r3) 0.0018 0.0145 0.0069 0.0133 0.0062 0.0112 0.0019 0.0089
(r2, r3) 0.0055 0.0158 0.0044 0.0129 0.0043 0.0106 0.0010 0.0075
(r1, r1) 0.0023 0.0143 0.0012 0.0128 0.0082 0.0104 0.0027 0.0080
(r2, r2) 0.0017 0.0157 0.0005 0.0122 0.0015 0.0106 0.0053 0.0088

Θ4 (r3, r3) 0.0050 0.0151 0.0009 0.0133 0.0037 0.0101 0.0026 0.0092
(r1, r2) 0.0042 0.0160 0.0075 0.0129 0.0009 0.0102 0.0054 0.0072
(r1, r3) 0.0023 0.0142 0.0004 0.0125 0.0015 0.0114 0.0087 0.0096
(r2, r3) 0.0047 0.0149 0.0089 0.0128 0.0029 0.0114 0.0095 0.0092
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Table 2. Average length and coverage probability for estimations of R.
(n,N) Θj C.S Bayes Boot-t Boot-p MLE

Prior 1 Prior 2 Prior 3
(r1, r1) 0.4331(0.947) 0.4175(0.953) 0.4175(0.957) 0.5744(0.936) 0.4928(0.941) 0.4421(0.944)
(r2, r2) 0.4341(0.948) 0.4183(0.952) 0.4183(0.956) 0.5573(0.934) 0.4888(0.940) 0.4592(0.945)

Θ5 (r3, r3) 0.4263(0.949) 0.4182(0.953) 0.4182(0.957) 0.5779(0.938) 0.4705(0.942) 0.4401(0.946)
(r1, r2) 0.4341(0.948) 0.4143(0.950) 0.4143(0.958) 0.5605(0.937) 0.4835(0.942) 0.4555(0.945)
(r1, r3) 0.4313(0.947) 0.4172(0.950) 0.4172(0.958) 0.5559(0.935) 0.4765(0.940) 0.4563(0.946)
(r2, r3) 0.4260(0.949) 0.4119(0.953) 0.4119(0.957) 0.5575(0.937) 0.5018(0.941) 0.4574(0.943)
(r1, r1) 0.4278(0.948) 0.4178(0.953) 0.4178(0.957) 0.5685(0.937) 0.4824(0.943) 0.4417(0.945)
(r2, r2) 0.4305(0.949) 0.4104(0.953) 0.4104(0.958) 0.5642(0.938) 0.4911(0.943) 0.4480(0.945)

Θ6 (r3, r3) 0.4346(0.947) 0.4130(0.952) 0.4130(0.958) 0.5605(0.937) 0.4766(0.940) 0.4452(0.944)
(r1, r2) 0.4346(0.948) 0.410590.953) 0.4105(0.958) 0.5749(0.936) 0.4941(0.942) 0.4560(0.944)
(r1, r3) 0.4266(0.947) 0.4111(0.951) 0.4111(0.9570 0.5676(0.934) 0.4805(0.940) 0.4486(0.946)

(10,40) (r2, r3) 0.4347(0.948) 0.419190.952) 0.4191(0.957) 0.5665(0.934) 0.4962(0.943) 0.4582(0.945)
(r1, r1) 0.4346(0.948) 0.4176(0.951) 0.4176(0.957) 0.5775(0.936) 0.4976(0.941) 0.4436(0.943)
(r2, r2) 0.4299(0.949) 0.4135(0.951) 0.4135(0.958) 0.5586(0.938) 0.4999(0.942) 0.4453(0.945)

Θ7 (r3, r3) 0.4330(0.948) 0.4205(0.953) 0.4205(0.959) 0.5727(0.938) 0.4880(0.943) 0.4429(0.946)
(r1, r2) 0.4264(0.947) 0.4104(0.953) 0.4104(0.957) 0.5726(0.935) 0.4734(0.940) 0.4427(0.945)
(r1, r3) 0.4292(0.948) 0.41489(0.952) 0.4148(0.958) 0.5614(0.938) 0.47929(0.941) 0.4574(0.946)
(r2, r3) 0.4342(0.947) 0.4142(0.952) 0.4142(0.958) 0.5670(0.937) 0.5065(0.940) 0.4516(0.944)
(r1, r1) 0.4329(0.948) 0.4184(0.952) 0.4184(0.957) 0.5523(0.934) 0.4761(0.942) 0.4510(0.945)
(r2, r2) 0.4346(0.948) 0.4187(0.953) 0.4187(0.958) 0.5516(0.934) 0.5030(0.943) 0.4429(0.946)

Θ8 (r3, r3) 0.4316(0.948) 0.4121(0.953) 0.4121(0.957) 0.5659(0.938) 0.4915(0.943) 0.4571(0.946)
(r1, r2) 0.4254(0.949) 0.4154(0.954) 0.4154(0.958) 0.5734(0.936) 0.5098(0.941) 0.4524(0.945)
(r1, r3) 0.4335(0.949) 0.4149(0.954) 0.4149(0.957) 0.5780(0.936) 0.4731(0.940) 0.4470(0.945)
(r2, r3) 0.4343(0.948) 0.4171(0.951) 0.4171(0.958) 0.5539(0.935) 0.4877(0.941) 0.4503(0.944)
(r1, r1) 0.3980(0.953) 0.3758(0.957) 0.3349(0.961) 0.4717(0.941) 0.4320(0.947) 0.4161(0.950)
(r2, r2) 0.3915(0.955) 0.3706(0.957) 0.3344(0.960) 0.4752(0.941) 0.4352(0.945) 0.4115(0.952)

Θ5 (r3, r3) 0.3948(0.952) 0.3723(0.957) 0.3345(0.961) 0.4860(0.940) 0.4367(0.946) 0.4037(0.949)
(r1, r2) 0.3925(0.953) 0.3735(0.959) 0.3331(0.960) 0.4706(0.943) 0.4436(0.945) 0.4048(0.950)
(r1, r3) 0.3937(0.953) 0.3782(0.957) 0.3351(0.962) 0.4886(0.940) 0.4327(0.944) 0.4177(0.948)
(r2, r3) 0.3948(0.950) 0.3702(0.958) 0.3351(0.961) 0.4846(0.942) 0.4444(0.946) 0.4006(0.949)
(r1, r1) 0.3983(0.950) 0.3704(0.957) 0.3382(0.962) 0.4798(0.942) 0.4321(0.945) 0.4098(0.948)
(r2, r2) 0.3910(0.951) 0.3717(0.956) 0.3379(0.962) 0.4816(0.941) 0.4431(0.946) 0.4034(0.949)

Θ6 (r3, r3) 0.4081(0.952) 0.3765(0.958) 0.3364(0.960) 0.4747(0.942) 0.4399(0.945) 0.4196(0.950)
(r1, r2) 0.4089(0.951) 0.3773(0.958) 0.3338(0.962) 0.4792(0.941) 0.4456(0.944) 0.4143(0.949)
(r1, r3) 0.3998(0.953) 0.3765(0.958) 0.3381(0.960) 0.4893(0.940) 0.4443(0.944) 0.4100(0.950)

(20,40) (r2, r3) 0.3998(0.953) 0.3745(0.956) 0.3353(0.962) 0.4809(0.943) 0.4481(0.947) 0.4094(0.949)
(r1, r1) 0.3968(0.952) 0.3755(0.958) 0.3335(0.961) 0.4804(0.942) 0.4478(0.946) 0.4012(0.948)
(r2, r2) 0.4080(0.950) 0.3730(0.957) 0.3394(0.962) 0.4746(0.943) 0.4367(0.946) 0.4136(0.949)

Θ7 (r3, r3) 0.3974(0.952) 0.3774(0.958) 0.3388(0.961) 0.4798(0.942) 0.4440(0.947) 0.4008(0.951)
(r1, r2) 0.3922(0.952) 0.3719(0.959) 0.3355(0.962) 0.4825(0.943) 0.4340(0.947) 0.4014(0.949)
(r1, r3) 0.4056(0.953) 0.3769(0.957) 0.3362(0.961) 0.4836(0.942) 0.4306(0.945) 0.4104(0.951)
(r2, r3) 0.3978(0.953) 0.3718(0.958) 0.3359(0.962) 0.4779(0.943) 0.4449(0.947) 0.4019(0.951)
(r1, r1) 0.3948(0.951) 0.3737(0.956) 0.3321(0.963) 0.4773(0.940) 0.4400(0.946) 0.4164(0.948)
(r2, r2) 0.3981(0.950) 0.3763(0.957) 0.3330(0.960) 0.4898(0.941) 0.4396(0.947) 0.4164(0.949)

Θ8 (r3, r3) 0.3919(0.952) 0.3778(0.956) 0.3347(0.961) 0.4708(0.943) 0.4481(0.946) 0.4144(0.950)
(r1, r2) 0.3926(0.952) 0.3708(0.958) 0.3323(0.962) 0.4877(0.942) 0.4422(0.945) 0.4030(0.949)
(r1, r3) 0.4088(0.953) 0.3793(0.957) 0.3384(0.960) 0.4883(0.942) 0.4424(0.947) 0.4132(0.948)
(r2, r3) 0.4091(0.951) 0.3778(0.957) 0.3319(0.963) 0.4859(0.942) 0.4472(0.946) 0.4104(0.948)
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Table 5. Real data set 1
Data set 1

1.901 2.132 2.203 2.228 2.257 2.350 2.361 2.396 2.397 2.445
2.454 2.474 2.518 2.522 2.525 2.532 2.575 2.614 2.616 2.618
2.626 2.659 2.675 2.738 2.740 2.856 2.917 2.928 2.937 2.937
2.977 2.996 3.030 3.125 3.139 3.145 3.220 3.223 3.235 3.243
3.264 3.272 3.294 3.332 3.346 3.377 3.408 3.435 3.493 3.501
3.537 3.554 3.562 3.628 3.852 3.871 3.886 3.971 4.024 4.027
4.225 4.395 5.020

Transformed data
0.128 0.202 0.225 0.233 0.242 0.272 0.276 0.287 0.287 0.302
0.305 0.312 0.326 0.327 0.328 0.330 0.344 0.357 0.357 0.358
0.360 0.371 0.376 0.396 0.397 0.434 0.454 0.457 0.460 0.460
0.473 0.479 0.490 0.521 0.525 0.527 0.551 0.552 0.556 0.558
0.565 0.568 0.575 0.587 0.591 0.601 0.611 0.620 0.638 0.641
0.653 0.658 0.661 0.682 0.754 0.760 0.764 0.792 0.809 0.810
0.873 0.928 1.128

sets. Kundu and Gupta (2006) could fit two-parameter Weibull distribu-
tions with a common shape parameter to both data sets after subtracting
0.75 from all points of the data sets. We analyze the data after applying the
transformation y = (x− a)/(xmax − xmin) on both data sets, where a = 1.5
and 1 are selected for the first and second data set, respectively. After re-
moving the extreme values that are greater than one (extreme values > 1),
the estimated parameters, for the first data set, are α̂ = 3.5653, λ̂ = 2.4854
and for the second data set are β̂ = 2.0019, λ̂ = 2.7233. To compare differ-
ent fitted distributions, we utilize the well-known information-based criteria,
that are Akaike Information Criterion (AIC), Schawarz Bayesian Informa-
tion Criterion (BIC) and Hannan-Quinn Criterion (HQC) ,whose values are
given in Table 7. As shown in Table 7, the Kumaraswamy distribution is
preferred over the other two distributions. For the Kumaraswamy distri-
bution, the Kolmogorov-Smirnov distances are 0.0900 and 0.0536 and the
associated p-values are 0.6966 and 0.9914 (p-values > 0.2), in the first and
second data sets, respectively. It shows that the Kumaraswamy distribution
fits adequately to the transformed data sets. Also, for both data sets, the
PP-plots are given in Figure 2.

Because the two second shape parameters are not very different, we as-
sume that the two parameters are approximately equal. Based on the com-
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Table 6. Real data set 2
Data set 2

1.312 1.314 1.479 1.552 1.700 1.803 1.861 1.865 1.944 1.958
1.966 1.997 2.006 2.021 2.027 2.055 2.063 2.098 2.140 2.179
2.224 2.240 2.253 2.270 2.272 2.274 2.301 2.301 2.359 2.382
2.382 2.426 2.434 2.435 2.478 2.490 2.511 2.514 2.535 2.554
2.566 2.570 2.586 2.629 2.633 2.642 2.648 2.684 2.697 2.726
2.770 2.773 2.800 2.809 2.818 2.821 2.848 2.880 2.954 3.012
3.067 3.084 3.090 3.096 3.128 3.233 3.433 3.585 3.585

Transformed data
0.137 0.138 0.210 0.242 0.307 0.353 0.378 0.380 0.415 0.421
0.424 0.438 0.442 0.449 0.451 0.464 0.467 0.483 0.501 0.518
0.538 0.545 0.551 0.558 0.559 0.560 0.572 0.572 0.597 0.608
0.608 0.627 0.630 0.631 0.650 0.655 0.664 0.666 0.675 0.683
0.688 0.690 0.697 0.716 0.718 0.722 0.725 0.740 0.746 0.759
0.778 0.780 0.791 0.795 0.799 0.801 0.813 0.827 0.859 0.885
0.909 0.916 0.919 0.922 0.936 0.982 1.070 1.137 1.137
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Figure 2. The PP-plots for the first (left) and second (right) data.

Table 7. The values of AIC, BIC and HQC for different fitted distributions.
Distribution Data set 1 Data set 2

AIC BIC HQC AIC BIC HQC
generalized Rayleigh 115.9340 120.2202 128.5065 105.7568 110.2251 118.6933

Weibull 124.3049 128.5912 136.8774 101.5606 106.0288 114.4970
Kumaraswamy 75.9262 80.1805 88.4348 81.0754 76.6961 68.3168
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plete data set, the proposed iterative procedure is used to compute the MLE.
In Figure 3, the profile log-likelihood function of λ is depicted. Because this
function is unimodal, it has an unique maximum. Consequently, we begin
the iterative procedure at the maximum with the initial values of λ = 2.5800.
By this initial value, MLEs of λ, α and β are (2.5852, 3.7597, 1.9016) and the
ML estimation of R is 0.6640. Also, the associated 95% confidence interval
is (0.5852, 0.7429). Regarding the improper priors, the Bayes estimation of
R is 0.6632 and the associated 95% credible interval is (0.5866, 0.7381).
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Figure 3. The profile log-likelihood function of λ.

As a final illustrative experiment, two different progressively censored
samples were produced. Scheme 1: R = [10, 0, 10, 0, 10, 0, 10, 0, 12, 0], S =
[10, 0, 10, 0, 10, 0, 10, 0, 12, 4] and Scheme 2: R = [11, 11, 13, 11, 11], S =
[12, 12, 13, 12, 12]. The progressive censored schemes and the related progres-
sive censored samples are given in Table 8. Using the Scheme 1, the MLE (by
means of the profile log-likelihood function) and Bayes estimate are 0.5887
and 0.6993, respectively. The corresponding 95% asymptotic confidence in-
terval is (0.3768, 0.8006) and the corresponding 95% HPD credible interval
is (0.4991, 0.8542). Using the Scheme 2, the ML and Bayes estimations are
0.5656 and 0.5803. Moreover the associated 95% asymptotic confidence in-
terval is (0.2632, 0.8679) and the associated 95% HPD credible interval is
(0.2920, 0.8378). Obviously, the resulted estimations employing the Scheme
1, are more correlated with the estimates in complete sample case compared
to the Scheme 2.

Additionally, we evaluate the case of different second shape parameters.
The ML estimation of R is 0.6752 considering the complete data set, and
with using the improper priors, the Bayes estimation of R is 0.5682 and
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Table 8. The progressive censored schemes and the related progressive censored samples.
Scheme 1: R = [10, 0, 10, 0, 10, 0, 10, 0, 12, 0], S = [10, 0, 10, 0, 10, 0, 10, 0, 12, 4]

Censored samples X 0.128 0.202 0.225 0.233 0.242 0.272 0.276 0.287 0.287 0.928
Y 0.137 0.138 0.210 0.242 0.307 0.353 0.378 0.380 0.415 0.982
Scheme 2: R = [11, 11, 13, 11, 11], S = [12, 12, 13, 12, 12]

Censored samples X 0.128 0.202 0.225 0.233 0.928
Y 0.137 0.138 0.210 0.242 0.982

Table 9. The progressive censored schemes, the related progressive censored samples and different parameter estimations.
Scheme 1: R = [10, 0, 10, 0, 10, 0, 10, 0, 12, 0], S = [10, 0, 10, 0, 10, 0, 10, 0, 12, 4]

Censored samples X 0.225 0.272 0.276 0.287 0.457 0.460 0.638 0.641 0.809 0.810
Y 0.210 0.380 0.442 0.467 0.538 0.551 0.572 0.688 0.716 0.919

MLE Bayes
Same unknown λ R̂ = 0.5619 C.I=(0.3463, 0.7774) R̂ = 0.5700 C.I=(0.3471, 0.7420)

Different unknown λ R̂ = 0.5852 - R̂ = 0.5358 C.I=(0.3309, 0.6844)

Scheme 2: R = [11, 11, 13, 11, 11], S = [12, 12, 13, 12, 12]

Censored samples X 0.344 0.396 0.551 0.641 0.873
Y 0.138 0.597 0.630 0.778 0.813

MLE Bayes
Same unknown λ R̂ = 0.5331 C.I=(0.2247, 0.8416) R̂ = 0.5595 C.I=(0.2491, 0.8309)

Different unknown λ R̂ = 0.5054 - R̂ = 0.6015 C.I=(0.2560, 0.8595)

the associated 95% credible interval is (0.4831, 0.6522). Moreover, the ML
and Bayes estimations of R, using the Scheme 1, are respectively 0.5684 and
0.5358 and the associated 95% HPD credible interval is (0.3309, 0.6844). In
the same way, the ML and Bayes estimations of R, using the Scheme 2, are
respectively 0.5342 and 0.6052 and the associated 95% HPD credible interval
is (0.2829, 0.8625).

Because the test units are randomly removed at each failure time in the
progressively Type-II censoring scheme, we implement the same progressively
censoring schemes with different censoring samples. The new generated pro-
gressive censored samples and the new results are given in Table 9. Table
9 and the other results in this section, shows that, based on the Scheme 2,
point and interval estimates perform worse than the point and interval esti-
mates based on Scheme 1. In fact, we observe that the resulted estimations
employing the Scheme 1, are more correlated with the estimates in complete
sample case compared to the Scheme 2. Also, the different interval lengths,
based on Scheme 2 is greater than the ones, based on Scheme 1. Therefore,
with increasing the censoring data, we miss some useful information.
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6 Conclusions

In the current study, we proposed some approaches for estimation of the
stress-strength parameter for KuD assuming progressive Type-II censoring
scheme. For performance comparisons of the proposed estimators, Monte
Carlo simulations and real data analysis have been provided. Three cases
have been considered, first the common second shape parameter is assumed
unknown, second it is assumed known, and finally the general case is studied
where the second shape parameters are different and unknown. In case of
the unknown common second shape parameter, different methods for esti-
mating R = P (X < Y ) have been presented. We observed that the MLE of
R can not be obtained in a closed form, so an algorithm is applied to com-
pute it iteratively. Moreover, we achieved the asymptotic confidence interval
using Fisher information matrix. It was demonstrated that in case of rather
small sample sizes, the asymptotic confidence intervals perform quite well.
Additionally, two proposed bootstrap confidence intervals have performed
quite satisfactory. By means of the Gibbs sampling technique, the Bayes
estimation of R and the corresponding credible interval have been achieved.
We observed that the MLE is comparable to the Bayes estimation in the
sense of the resulted biases and MSEs. Also, in case of the known second
shape parameter, MLE, UMVUE, exact confidence interval of R and differ-
ent Bayes estimators have been computed. We observed that MLE provides
the smallest biases, and MSEs and the UMVUEs are the best second estima-
tors, respectively. Also, the Lindley approximation behaves quite differently
from the other estimation strategies. Assuming all four shape parameters
are unknown and different, the ML and Bayes estimations of R have been
also studied. In this case numerical computation is utilized to infer about R,
as R cannot be obtained in a closed form. The Bayes estimation of R and
the associated credible interval were obtained utilizing the Gibbs sampling
method. The simulation results show that the MLE lead to a comparable
performance with the Bayes estimation in the sense of biases and MSEs.

This study has the potential to be employed in the context of reliability
theory and censored data analysis. For future work, the proposed progressive
censored scheme can be extended to the progressive hybrid KuD and adaptive
progressive hybrid censored KuD.
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Appendix A

The elements of J(θ) are as follows:

J11 =
n

α2
, J22 =

m

β2
, J12 = J21 = 0,

J14 = J41 = 0, J23 = J32 = 0, J34 = J43 = 0,

J13 = J31 =
α

λ1

n∑

i=1

(Ri + 1)Ci−1

i∑

k=1

ai,kB(2, αηk − 1)[ψ(2)− ψ(αηk + 1)],

for αηk > 1

J24 = J42 =
β

λ2

m∑

j=1

(Sj + 1)C ′
j−1

j∑

k=1

a′j,kB(2, βη′k − 1)[ψ(2)− ψ(βη′k + 1)],

for βη′k > 1

J33 =
n

λ21
+
α

λ21

n∑

i=1

(α(Ri + 1)− 1)Ci−1

i∑

k=1

ai,kB(2, αηk − 2)

× {ψ′(2)− ψ′(αηk) + [ψ(2)− ψ(αηk)]
2} for αηk > 2,

J44 =
m

λ22
+

β

λ22

m∑

j=1

(β(Sj + 1)− 1)C ′
j−1

j∑

k=1

a′j,kB(2, βη′k − 2)

× {ψ′(2)− ψ′(βη′k) + [ψ(2)− ψ(βη′k)]
2} for βη′k > 2.

Theorem 5. As n→ ∞ and m→ ∞ then

[
√
n(α̂−α)

√
m(β̂−β)

√
n(λ̂1−λ1)

√
m(λ̂2−λ2)]T D−→ N4(0,A

−1(α, β, λ1, λ2)),

where A(α, β, λ1, λ2) and A−1(α, β, λ1, λ2) are symmetric matrices and

A(α, β, λ1, λ2) = [aij ], A−1(α, β, λ1, λ2) =
[bij ]

|A(α, β, λ1, λ2)|
,
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in which

a11 = lim
n,m→∞

J11
n
, a13 = lim

n,m→∞
J13
n
, a22 = lim

n,m→∞
J22
m
, a12 = 0, a14 = 0,

a24 = lim
n,m→∞

J24
m
, a33 = lim

n,m→∞
J33
n
, a44 = lim

n,m→∞
J44
m
, a23 = 0, a34 = 0,

and |A(α, β, λ1, λ2)| = a11a22a33a44 + a213a
2
24 − a11a

2
24a33 − a213a22a44,

b11 = a22a33a44 − a224a33, b12 = 0, b13 = a13a
2
24 − a13a22a44, b14 = 0,

b22 = a11a33a44 − a213a44, b23 = 0, b24 = a213a24 − a11a24a33,

b33 = a11a22a44 − a11a
2
24, b34 = 0,

b44 = a11a22a33 − a213a22.

Proof. Following the asymptotic normality of the MLE, the theorem is
proved. □

Appendix B

Proof of Theorem 3: Observe that X∗
1:n:N and Y ∗

1:m:M follow an exponential
distribution with mean (Nα)−1 and (Mβ)−1, respectively. Then,

ϕ(X∗
1 , Y

∗
1 ) =





1 if MY ∗
1:m:M > NX∗

1:n:N ,

0 if MY ∗
1:m:M < NX∗

1:n:N ,

is an unbiased estimation of R. So,

R̃ = E[ϕ(X∗
1 , Y

∗
1 )|U = u, V = v] =

∫∫

A
fX∗

1 |U=u(x)fY ∗
1 |V=v(y)dxdy,

where A = {(x, y) : 0 < x < u/N, 0 < y < v/M,Nx < My}, fX∗
1 |U=u(x) and

fY ∗
1 |V=v(y) are the same as defined in Lemma 1. For v < u
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R̃ =
N(n− 1)

un−1

M(m− 1)

vm−1

∫ v/M

0

∫ My/N

0
(u−Nx)n−2(v −My)m−2dxdy

= 1− M(m− 1)

un−1vm−1

∫ v/M

0
(v −My)m−2(u−My)n−1dy {Put : My

v
= t}

= 1− (m− 1)

∫ 1

0
(1− t)m−2(1− vt

u
)n−1dt

= 1− (m− 1)

∫ 1

0
(1− t)m−2

n−1∑

k=0

(−1)k
(
n− 1

k

)
(
vt

u
)kdt

= 1−
n−1∑

k=0

(−1)k(
v

u
)k

(
n−1
k

)
(
m+k−1

k

) .

Similarly for v > u

R̃ =
N(n− 1)

un−1

M(m− 1)

vm−1

∫ u/N

0

∫ v/M

Nx/M
(u−Nx)n−2(v −My)m−2dydx

=
N(n− 1)

un−1vm−1

∫ u/N

0
(u−Nx)n−2(v −Nx)m−1dx {Put : Nx

u
= t}

= (n− 1)

∫ 1

0
(1− t)n−2(1− ut

v
)m−1dt

= (n− 1)

∫ 1

0
(1− t)n−2

m−1∑

k=0

(−1)k
(
m− 1

k

)
(
ut

v
)kdt

=

m−1∑

k=0

(−1)k(
u

v
)k
(
m−1
k

)
(
n+k−1

k

) . □

Appendix C

Proof of Lemma 3: Let ξ(λ) =
log(1−aλi )

log(1−aλ1 )
: 0 < a1 < ai < 1 , i = 2, . . . , n.

This function is strictly decreasing in λ since the first derivative of ξ(λ) is
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dξ(λ)

dλ
=

1

log2(1− aλ1)

[
− log(1− aλ1)

aλi log(ai)

1− aλi
+ log(1− aλi )

aλ1 log(a1)

1− aλ1

]

=
−1

log2(1− aλ1)

[
log(

1

1− aλ1
)
aλi log(

1
ai
)

1− aλi
− log(

1

1− aλi
)
aλ1 log(

1
a1
)

1− aλ1

]

<
−1

log2(1− aλ1)

[
log(

1

1− aλi
)
aλi log(

1
a1
)

1− aλi
− log(

1

1− aλi
)
aλ1 log(

1
a1
)

1− aλ1

]

=
−1

log2(1− aλ1)
log(

1

1− aλi
) log(

1

a1
)

[
aλi

1− aλi
− aλ1

1− aλ1

]
< 0.

Moreover, after simplifying TX(λ), this expression becomes

TX(λ) =
UX

(n− 1)VX
=

∑n
i=1 Z

∗
i − Z∗

1

(n− 1)Z∗
1

=
1

N(n− 1)

n∑

i=1

(Ri + 1)
log(1−Xλ

i:n:N )

log(1−Xλ
1:n:N )

− 1

n− 1
.

Hence, it is easy to see that TX(λ) is a strictly decreasing function of λ. □

Appendix D

Proof of Theorem 4:

(i) By using Lemma 2 and Lemma 3, we have

1− γ =
√

1− γ.
√

1− γ

= P
[
F(1−√

1−γ)/2(2n− 2, 2) ≤ TX(λ) ≤ F(1+
√
1−γ)/2(2n− 2, 2)

]

× P
[
F(1−√

1−γ)/2(2m− 2, 2) ≤ TY (λ) ≤ F(1+
√
1−γ)/2(2m− 2, 2)

]
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= P
[
F(1−√

1−γ)/2(2n− 2, 2) ≤ TX(λ) ≤ F(1+
√
1−γ)/2(2n− 2, 2),

F(1−√
1−γ)/2(2m− 2, 2) ≤ TY (λ) ≤ F(1+

√
1−γ)/2(2m− 2, 2)

]

= P
[
T−1
X (F(1+

√
1−γ)/2(2n− 2, 2)) ≤ λ ≤ T−1

X (F(1−√
1−γ)/2(2n− 2, 2)),

T−1
Y (F(1+

√
1−γ)/2(2m− 2, 2)) ≤ λ ≤ T−1

Y (F(1−√
1−γ)/2(2m− 2, 2))

]

= P
[
max

{
T−1
X (F(1+

√
1−γ)/2(2n− 2, 2)), T−1

Y (F(1+
√
1−γ)/2(2m− 2, 2))

}
≤ λ

≤ min
{
T−1
X (F(1−√

1−γ)/2(2n− 2, 2)), T−1
Y (F(1−√

1−γ)/2(2m− 2, 2))
}]

.

(ii) By using Lemma 2, Lemma 3 and Lemma 4, we have

1− γ = 4
√

1− γ. 4
√

1− γ.
√

1− γ

= P
[
F(1− 4√1−γ)/2(2n− 2, 2) ≤ TX(λ) ≤ F(1+ 4√1−γ)/2(2n− 2, 2)

]

× P
[
F(1− 4√1−γ)/2(2m− 2, 2) ≤ TY (λ) ≤ F(1+ 4√1−γ)/2(2m− 2, 2)

]

× P
[
F(1−√

1−γ)/2(2n, 2m) ≤ F ≤ F(1+
√
1−γ)/2(2n, 2m)

]

= P
[
F(1− 4√1−γ)/2(2n− 2, 2) ≤ TX(λ) ≤ F(1+ 4√1−γ)/2(2n− 2, 2),

F(1− 4√1−γ)/2(2m− 2, 2) ≤ TY (λ) ≤ F(1+ 4√1−γ)/2(2m− 2, 2),

F(1−√
1−γ)/2(2n, 2m) ≤ R

1−R
.
1− R̂ML

R̂ML

≤ F(1+
√
1−γ)/2(2n, 2m)

]

= P
[
T−1
X (F(1+ 4√1−γ)/2(2n− 2, 2)) ≤ λ ≤ T−1

X (F(1− 4√1−γ)/2(2n− 2, 2)),

T−1
Y (F(1+ 4√1−γ)/2(2m− 2, 2)) ≤ λ ≤ T−1

Y (F(1− 4√1−γ)/2(2m− 2, 2)),

F1−(1+
√
1−γ)/2(2m, 2n) ≤

1−R

R
.
R̂ML

1− R̂ML

≤ F1−(1−√
1−γ)/2(2m, 2n)

]
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= P
[
max

{
T−1
X (F(1+ 4√1−γ)/2(2n− 2, 2)), T−1

Y (F(1+ 4√1−γ)/2(2m− 2, 2))
}
≤ λ

≤ min
{
T−1
X (F(1− 4√1−γ)/2(2n− 2, 2)), T−1

Y (F(1− 4√1−γ)/2(2m− 2, 2))
}
,

1

1 + 1−R̂ML

R̂ML
F1−(1−√

1−γ)/2(2m, 2n)
≤ R ≤ 1

1 + 1−R̂ML

R̂ML
F1−(1+

√
1−γ)/2(2m, 2n)

]
. □
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