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Abstract

The control algorithms used in high performance AC drives require the knowledge of rotor

position and, in the case of speed regulation, also of speed. Since in many applications rotational

transducers cannot be installed, their reconstruction is needed. The use of observers is stymied

by the fact that the dynamics of electrical machines are highly nonlinear and does not belong to

the class studied by the nonlinear control community. In this paper solutions to both problems,

which are particularly tailored for the widely popular permanent magnet synchronous motors,
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are provided. A key step for the design of both observers is the choice of a suitable set of

coordinates. The position observer is a standard gradient search whose detailed analysis reveals

outstanding (global asymptotic) stability properties. Furthermore, the analysis clearly exhibits the

interplay between rotor speed and the gain of the gradient search—that (essentially) determines

its convergence rate. The position observer is a simple two–dimensional nonlinear system, hence

is easily implementable. The speed observer is designed following the immersion and invariance

technique and is also shown to be globally convergent. Simulation and experimental results of the

position observer, used together with a classical field–oriented control algorithm, are presented.

1 Introduction

Vector control methods are the standard for regulation of electrical motors in high performance

applications. As is well–known, they require precise knowledge of the motors mechanical coordinates,

in particular the rotor position. Furthermore, for speed regulation tasks, rotor speed should also be

reconstructed. Rotational transducers and their associated digital or analogue circuits add extra

costs and are often complex and rather fragile. Moreover, their installation is physically unfeasible in

some applications like vacuum pumps, cranes and elevators [1]. For these reasons there has been an

increasing interest in industry in control schemes without rotational sensors—the so–called sensorless

control. This has triggered an intensive research activity in the last few years, both, in the industrial

electronics and in the automatic control communities. In [1, 30] a tutorial account, from the industrial

electronics viewpoint, on the topic may be found. For control–oriented readers several monographs

on modeling and (nonlinear and adaptive) control of electrical machines have appeared recently, e.g.,

[3, 6, 7, 16, 23], where some of the issues involved in the sensorless control problem are discussed.

In the control literature particular emphasis has been given to the case of induction machines—the

reader is referred to [11, 19, 21] for an overview of the recent relevant references. Some work has also

been reported on sensorless control of brush–less DC [10], stepper motors [5, 15, 29] and permanent

magnet synchronous motors (PMSMs) [25].1

In this paper we are interested in sensorless control of, and more particularly on observer de-

sign for, PMSMs. After the introduction of rare–earth magnetic materials, PMSMs rapidly gained

popularity in high–performance, variable frequency drive applications. This popularity is justified

by several advantages over commonly used motors. The absence of the external rotor excitation

eliminates losses on the rotor and makes PMSMs highly efficient. In addition, the absence of the

rotor winding renders slip rings on the rotor and brushes obsolete, and thus reduces the maintenance

1It is fair to say that the results reported in the control literature in the general topic of electrical machines have

received an—at best—lukewarm reception within the electric drives community.
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costs. New magnetic materials are capable of creating high magnetic fields which yield high power

density. This in turn implies rapid dynamic response due to high torque–to–inertia ratio.

Broadly speaking, there are three approaches to rotor position estimation of PMSMs reported

in the literature. In the first approach position information is extracted from the high–frequency

components of the electrical signals, while in the second one this is done from their fundamental

components. The third, more classical, approach implements extended Kalman filters that aim at

estimating the full state of the machine. See [12] for further details on this classification as well

as a list of relevant references. For non–salient pole PMSMs (also known as “surface mounted”

PMSMs) the second approach, which is based on the estimation of the back–emf force induced by

the permanent magnets, is the simplest and most common and is the one adopted in this paper.

It is widely recognized that back–emf estimation methods are most suitable for middle– and

high–speed applications because, relying on the fundamental components of the control signals, they

avoid the generation of torque ripple and noises, drawbacks that are intrinsic to schemes that rely on

injection of high–frequency signals or on the use of special PWM modulation patterns. On the other

hand, it is argued that they behave poorly at standstill and low–speed regimes and that they are hard

to tune and sensitive to parameter uncertainty. In [25] it is shown that position becomes unobservable

at zero speed, which clarifies the first drawback mentioned above. The two latter criticisms are also

pertinent and can be traced back to the fact that these schemes invariably rely on a mathematical

model of the PMSM. This model is obtained from a series of approximations of the highly nonlinear

first principles model, and is usually taken to be linear. Obviously, these approximations increase the

parameter sensitivity and obscure the derivations. (A notable exception to this linearization–based

approach is the pioneering work reported in [20], see also [22, 25].)

The first objective of this work is to propose a simple nonlinear back–emf based observer that

does not require knowledge of speed, is easy to tune and is highly insensitive to the motor parameters.

Essential for our work is the careful study of the motor nonlinear dynamics for which—besides the

standard linear magnetics and sinusoidal regime assumptions—no other approximation is made.2

A key step in the observer design is the choice of a suitable set of coordinates for the system,

where the existence of an algebraic constraint allows to define an auxiliary output. The use of these

coordinates was first reported in [25] where a Kazantzis–Kravaris–Luenberger observer was proposed.

In the present paper it is shown that a standard gradient search–based observer for the new output

yields an observer with the following remarkable stability properties.

2It should be mentioned that the nonlinear observation problem considered here does not fit into the class studied

by the control community.
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• The observer is a two–dimensional (nonlinear) system that does not require the knowledge of

any mechanical parameter. The only tuning gain, γ ∈ R+, is the gradient search step that

(essentially) determines the estimation speed.

• For all operation regimes, including fast–changing and zero speed, there is a globally asymptot-

ically stable (GAS) disk for the observer error equations—centered at the origin and of radius

2Φ, where Φ is the permanent magnet flux linkage.

• The zero equilibrium of the error system is locally exponentially stable if the rotor speed is

persistently exciting. Roughly speaking, this means that the speed is zero only at isolated

points.

• When the rotor speed is constant, say ω0, the situation is as follows.

– If ω0 = 0 there is a circle of stable equilibria whose domain of attraction is the whole space

R2 minus a point, which is an unstable node.

– If |ω0| ≤ γΦ2

4nP
, with nP the number of pole pairs, there are three equilibria, an unstable

focus, a saddle and a stable node at the origin, which is (almost) GAS, i.e., its domain of

attraction is the whole space R2 minus a set of measure zero.

– If |ω0| > γΦ2

4nP
, the origin is the only equilibrium and it is GAS. The “critical speed” can,

therefore, be made arbitrarily small selecting a small observer gain.

Besides the aforementioned position observer, a provably stable speed observer is also reported in the

paper. Although it is argued by practitioners that speed can be faithfully reconstructed with standard

schemes—see Section 5 for an example—its theoretical solution turned out to be quite challenging

and, to our knowledge, not available in the open literature. The speed observer that we propose,

which is designed following the immersion and invariance (I&I) approach of [3]—and, in particular,

the recent extensions of [13]—is shown to be globally exponentially convergent. Interestingly, besides

the reconstruction of the rotor speed, the observer generates a consistent estimate of the load torque,

which is assumed to be constant.

Many successful practical implementations of back–emf based estimators and sensorless controls

have been reported in the electric drives literature, e.g., [12, 20, 22, 28], where some stability analysis

is included. To the best of our knowledge, and in view of the features indicated above, the present

contribution constitutes the strongest result on this topic to date.
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Notation For general mappings S : Rn → Rq, x 7→ S we define the gradient operator ∇xS(x) :=

∂S(x)
∂x . For brevity, when clear from the context, the subindex of the operator ∇ and, in general, the

arguments of all the functions are omitted.

2 Model of the PMSM and formulation of the problems

The classical fixed–frame αβ–model of the unsaturated non–salient3 PMSM in sinusoidal regime is

given by [12, 14] the electrical dynamics

L
diαβ

dt = −Rsiαβ + ωΦ

 sin θ

− cos θ

+ vαβ (1)

and the mechanical dynamics

θ̇ = nPω

Jω̇ = τ − fω − τL

τ = nPΦ(iβ cos θ − iα sin θ)

(2)

where iαβ = [iα, iβ ]
⊤ and vαβ = [vα, vβ ]

⊤ are the stator currents and motor terminal voltages, respec-

tively, ω is the angular velocity, with 1
nP

θ the corresponding position, τ is the electromagnetic torque,

Rs is the stator resistance, nP is the number of pole pairs, τL is the load torque, J and f are the

moment of inertia and the friction constant (both normalized with nP ) and Φ is the magnetic flux.

Since rotor saliency of the PMSM is neglected, i.e., the motor is assumed to be surface–mounted,

the stator inductance L is a constant independent of the rotor position.

Two problems are considered in the paper.

P1 (Position Observer) Assume that only the electrical signals are available for measurement,

namely iαβ and vαβ , and all electrical parameters, i.e., Rs, L and Φ, are exactly known. Design

an observer that asymptotically reconstructs the rotor position 1
nP

θ for the electrical subsystem

(1).

P2 (Speed and Load Torque Observer) Assume, additionally, that θ—and consequently τ—together

with the mechanical parameters, i.e., J, f , are known, and that τL is constant. Propose an

observer that estimates ω and τL from (2).

3See Section 6 for a discussion on the case of salient PMSM.
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Remark 1 Some readers are probably more familiar with the so–called dq–model of the PMSM.

The dq–model is expressed in a rotating frame, and is obtained applying a rotation

(·)dq = e−J θ(·)αβ , J :=

 0 −1

1 0

 ,

to the αβ signals.4 This yields

L
didq
dt = −(RsI2 + ωLJ )idq −

 0

Φω

+ vdq

Jω̇ = nPΦiq − fω − τL,

(3)

where I2 is the 2 × 2 identity matrix. Field–oriented control schemes are designed for this model,

hence the need to reconstruct θ. See Section 5.

3 Position observer

In this section the solution to the problem P1 above is presented.

3.1 An alternative representation of the electrical equations

A critical step for the position observer design is the selection of a suitable model for the PMSM that

reveals the existence of an algebraic constraint that is used to create the observer correction term.

Toward this end, the new model is expressed in terms of the motor fluxes, which are defined as

x = Liαβ +Φc(θ), (4)

where we defined the vector

c(θ) :=

 cos θ

sin θ

 = eJ θ

 1

0

 . (5)

It is clear from (4) that from the (asymptotic) reconstruction of x it is possible, with elementary

trigonometric operations, to compute θ. Therefore, in the sequel our attention is centered on the

estimation of x. Estimating the position through the estimation of the fluxes was suggested in [28],

and in [25] where the design of a Kazantzis–Kravaris–Luenberger observer is proposed.

4Recall that eJ θ =

 cos θ − sin θ

sin θ cos θ

 .
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Differentiating (4), and invoking (1), yields the well–known equation (stemming from Faraday’s,

Ohm’s and Kirchhoff’s voltage laws)

ẋ = −Rsiαβ + vαβ ,

where we underscore the fact that the right hand side is measurable. Moreover, from (4) and the

fact that |c(θ)| = 1 it is trivial to see that

|x− Liαβ |2 = Φ2,

where, again, we make the (obvious) observation that the right hand side is measurable. We can

thus express the system dynamics in the form

ẋ = y12

y3 = ~(x, t), (6)

where

y12 := −Rsiαβ + vαβ

~(x, t) := |x− Liαβ(t)|2 (7)

3.2 Proposed observer and error equations

A natural candidate for an observer for a system of the form (6) is a standard gradient search, that

tries to minimize the error (y3 − ~(x̂, t))2, i.e., an observer of the form,

˙̂x = y12 +
γ

4
∇x̂~(x̂, t)[y3 − ~(x̂, t)], (8)

where γ
4 > 0 is the gradient search gain.5 From (7) we get

∇x̂~(x̂, t) = 2(x̂− Liαβ).

On the other hand, recalling that y3 = Φ2, we get

y3 − ~(x̂, t) = Φ2 − |x̂− Liαβ |2.

Replacing the two expressions above in (8) yields the observer

˙̂x = y12 +
γ

2
(x̂− Liαβ)(Φ

2 − |x̂− Liαβ |2). (9)

The first contribution of the paper is the proof that this simple construction enjoys some remarkable

(local and global) stability properties, even at low speeds. To carry out the stability analysis some

suitable error equations are first derived as follows.

5The factor 1
4
is irrelevant here, and is only introduced to simplify the expressions in the sequel.
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Proposition 1 Consider the electrical equations of the PMSM’s model (6), (7) and the observer (9).

The rotated and scaled estimation error

χ =
1

Φ
e−J θ(t)(x− x̂) (10)

verifies the non–autonomous dynamical system

dχ

ds
= [Ω(s)J − σ(χ)I2]χ+

 σ(χ)

0

 , (11)

where s and Ω(s) are a new time scale and a scaled speed, defined as

dt

ds
=

2

γΦ2
, Ω(s) := −2nP

γΦ2
ω(s),

respectively, and the function σ : R2 → R is given by

σ(χ) := |χ|2 − 2χ1. (12)

Proof From (6) and (9) we get

˙̃x =
γ

2
(x̂− Liαβ)(Φ

2 − |x̂− Liαβ |2), (13)

where x̃ := x̂− x is the estimation error. Now,

x̂− Liαβ = x̃+ x− Liαβ

= x̃+Φc(θ), (14)

where (4) is used to get the second equation. Furthermore,

Φ2 − |x̂− Liαβ |2 = Φ2 − |x̃+Φc(θ)|2

= −|x̃|2 − 2Φx̃⊤c(θ),

which follows immediately from (14) and the fact that |c(θ)|2 = 1. Replacing the two expressions

above in (13) yields

˙̃x = −γ

2
[|x̃|2 + 2Φx̃⊤c(θ)][x̃+Φc(θ)] (15)

Using (10) and the definition of c(θ) in (5), one gets

|x̃|2 = Φ2|χ|2, x̃⊤c(θ) = −Φχ1, x̃+Φc(θ) = −ΦeJ θ

χ−

 1

0

 .

Replacing these expressions in (15), using (12), and grouping some terms yields

˙̃x =
γΦ3

2
σ(χ)eJ θ

χ−

 1

0

 (16)
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Now, from (10) we get χ = − 1
Φe

−J θx̃, whose derivative yields

χ̇ = − 1

Φ

[
−θ̇J e−J θx̃+ e−J θ ˙̃x

]
= −nPωJχ−

1

Φ
e−J θ ˙̃x

= −nPωJχ−
γΦ2

2
σ(χ)

χ−

 1

0


= −

[
nPωJ +

γΦ2

2
σ(χ)I2

]
χ+

γΦ2

2
σ(χ)

 1

0

 ,

where (2) and (16) are used to get the second and third equations, respectively. The proof is com-

pleted using the new time scale and the definition of Ω. 222

For ease of reference and with some obvious abuse of notation, throughout the rest of the section

the “standard” time and differentiation notations for (11), assigning d
ds ← ˙(·) and s ← t, are used.

The model (11), in explicit form, then becomes

χ̇1 = −σ(χ)(χ1 − 1)− Ω(t)χ2

χ̇2 = −σ(χ)χ2 +Ω(t)χ1

σ(χ) = |χ|2 − 2χ1. (17)

This is a (cubic) polynomial planar non–autonomous system that depends on the function Ω(t).

In Subsection 3.4 it is shown that, even in the case when Ω is constant, the system may exhibit

complex dynamic behavior, the understanding of which is essential to assess the performance of the

observer. Fortunately, it turns out that, for constant Ω, say Ω0, the system (17) is diffeomorphic

to the averaged approximation of the periodically forced van der Pol oscillator, which has received

extensive attention by the dynamic systems community (see [8, 9] and references therein). Indeed, it

is easy to see that, applying the change of coordinates (u, v) = (χ1− 1, χ2) to (17), equation (2.1.14)

of [8] is recovered, with

Ω0 = σ̃ = −γ̃,

where σ̃, γ̃ are called σ, γ, respectively, in (2.1.14) of [8]. Some of the results reported in the literature

will then be invoked in Subsection 3.4.

Remark 2 The observer (7), (9) is extremely simple and contains only one tuning parameter, γ. As

will become clear in Subsection 3.4, γ is a critical parameter that should be carefully selected.
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Remark 3 It is important to underscore that γ is conspicuously absent from the error model (11)

and the only parameter affecting the path of the error components is the normalized parameter Ω.

The constant γΦ2 is only scaling the time, i.e., controlling the speed of these paths. The smaller

γΦ2 is the slower the dynamics are.

Remark 4 The proposed observer uses the output y3, which stems from the existence of an algebraic

constraint, to create the correction term. To the best of our knowledge, the present work is the first

attempt to use this feature for observer design (or sensorless control) of PMSMs. It should be

underscored that this feature, which is available for the PMSM because of the presence of a flux

induced by the permanent magnets, is unfortunately absent in the industry standard (squirrel cage)

induction motor—for which the sensorless control problem seems harder. On the other hand, similar

algebraic constraints appear in wound–rotor synchronous and doubly–fed induction machines, and

can therefore be used for observer design. Research on this direction will be reported elsewhere.

3.3 Stability properties of the observer: Arbitrary speeds

The various outstanding properties of the observer mentioned in Section 1 are proven in this and the

next subsections, which treat the cases of arbitrary and constant speed, respectively.

Proposition 2 Consider the error model (17).

(i) The disk

{χ ∈ R2 | |χ| ≤ 2}

is a GAS set.

(ii) Assume the motor speed is bounded, i.e., |Ω(t)| ≤ ΩM . Define in the χ–plane the disk centered

at the point (1, 0) and of radius r > 0, i.e.,

D(r) := {χ ∈ R2 | (χ1 − 1)2 + χ2
2 ≤ r2}.

For each ΩM , there exists a constant rc > 1 such that the set D(rc), that contains the origin,

is GAS. Furthermore, the set

{χ ∈ R2 | |χ| ≤ 2} ∩ D(r)

is also GAS.

Proof To prove (i) define Vχ := 1
2 |χ|

2 and evaluate its derivative along the trajectories of (11)

V̇χ = −σ(χ)(|χ|2 − χ1)

= −σ(χ)[(χ1 −
1

2
)2 + χ2

2 −
1

4
]

= −[(χ1 − 1)2 + χ2
2 − 1][(χ1 −

1

2
)2 + χ2

2 −
1

4
]
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Setting the first term in brackets to zero defines a circle centered at (1, 0) of radius 1, while the

second term is also a circle centered at (12 , 0) of radius
1
2 . See Fig. 1. It is clear that if |χ| ≥ 2 both

terms are positive establishing the implication

Vχ ≥ 2 ⇒ V̇χ ≤ 0,

that proves the claim.

To prove (ii) define the function

R2(χ) = (χ1 − 1)2 + χ2
2, (18)

whose derivative, along the dynamics (17), is

dR2

dt
= 2[−σ(χ)(χ1 − 1)2 +Ωχ2 − σ(χ)χ2

2]

= 2[−(R2 − 1)R2 +Ωχ2]

≤ 2[−(R2 − 1)R2 +ΩM |R|] (19)

where the fact that σ(χ) = R2(χ)− 1 is used to get the second identity and the bound on the speed

and fact that |χ2| ≤ |R| are used to get the bound. From the inequality above one has that, if

ΩM < f0(|R|) := (|R|2 − 1)|R|,

then dR2

dt ≤ 0. From the graph of the function f0(|R|) it is clear that for each ΩM , there exists a con-

stant rc > 1 such that f0(rc) = ΩM and f0(|R|) > ΩM for all |R| > rc. Therefore, D(rc) is GAS. 222

From Point (i) of the proposition above and (10) we conclude that—for arbitrary speeds—all

trajectories of (15) are bounded and asymptotically convergence to the disk {x̃ ∈ R2 | |x̃| ≤ 2Φ}.

This result should be interpreted with caution, because the fact that the residual set for the actual

observation error x̃ reduces with smaller Φ does not mean that the estimation error for θ will also

be reduced. On the contrary, as shown by (4), the reconstruction of θ from x is ill–conditioned for

small Φ. Indeed, in the limit case when Φ = 0 the error equation (15) reduces to

˙̃x = −γ

2
|x̃|2x̃,

which ensures x̃(t) → 0. However, in this case x = Liαβ and the observer achieves asymptotic

estimation of the measurable signal Liαβ . Actually, θ is not observable if Φ = 0.

In this respect, point (ii) of the proposition is interesting, because it shows the existence of another

GAS disk centered differently but with radius depending on an upper bound on Ω—hence, depending

11
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Figure 1: Circles in the plane χ1 − χ2 of the proof of Proposition 2.

on γ, Φ and an upper bound on ω, revealing the complex interplay between these parameters.

Similarly to point (i) the interpretation of (ii) should be done with caution. Indeed, on one hand,

recall that Ω = −2nPω
γΦ2 . On the other hand, even though the form of f0(|R|) is simple, the analytic

expression for the root rc is a complex function of ΩM , hence of all the parameters ω, γ and Φ—

therefore, to give rules to tune γ or provide an estimate of rc, that would allow to compare the disks

of i) and ii) of Proposition 2, are daunting tasks. On the other hand, in Subsection 3.4 it is shown

that, when the speed is constant, there exists a simple “rule” to tune γ—from knowledge of the flux

and bounds on the speed—to avoid complex behavior, i.e., existence of multiple equilibria.

From Proposition 2 one concludes that all trajectories of the error equations enter some disks that

contain the origin. The behavior inside these disks, for arbitrary speed profiles, is difficult to predict.

However, one can prove that the zero equilibrium of the error model (17) is (locally) exponentially

stable if the speed is persistently exciting [26].

Proposition 3 The zero equilibrium of the error model (17) is exponentially stable if ω and ω̇ are

bounded and there exists constants T,∆ > 0 such that6

1

T

∫ t+T

t
ω2(s)ds ≥ ∆,

for all t ≥ 0.

6Bounds on the exponential rate of convergence, which are functions of T,∆ and γ, can be obtained from [26], see

also [18].
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Proof The linearization (at the zero equilibrium) of (17) is given by

χ̇ =

 −2 −Ω(t)

Ω(t) 0

χ,

The proof of exponential stability follows immediately from the well–known Theorem 2.6.5 of [26].

222

3.4 Stability analysis for constant speeds

It has been shown in [25] that the signals (x1, x2, ω, τL) of the PMSM model (1) can be expressed as

functions of the input and output signals (iαβ , vαβ) and their derivatives. These functions are smooth

everywhere except at the points where ω = 0, proving that the observability map can be inverted

everywhere, except at zero speed. In view of this feature of the PMSM it is of interest to study the

error dynamics at low speeds that, as expected, turns out to be the analytically involved case.

Let us first determine the equilibrium set of (17) and classify the equilibrium points using standard

linearization techniques. Although similar analysis may be found in the literature the result is given

here for the sake of completeness.

Proposition 4 Consider the system (17) and assume the motor speed is constant, i.e., Ω(t) = Ω0 ≥

0.7

i) If Ω0 = 0 the equilibria consists of the circle σ(χ) = 0 and the point (1, 0), which is an unstable

node.8 See Fig. 2.

ii) If 0 < Ω0 <
1
2 there are three equilibria, (0, 0), (12+

1
2

√
1− 4Ω2

0,−Ω0) and (12−
1
2

√
1− 4Ω2

0,−Ω0),

which are a stable node, an unstable focus and a saddle, respectively. See Fig. 2.

iii) If Ω0 = 1
2 there are two equilibria, (0, 0), which is a stable node and (12 ,−

1
2), that is a (non–

hyperbolic) unstable node. See Fig. 3.

iv) If Ω0 > 1
2 , (0, 0) is the only equilibrium. It is a stable node for Ω0 ≤ 1 and a stable focus for

Ω0 > 1. See Fig. 3.

7Without loss of generality one can take Ω0 ≥ 0. To treat the case Ω0 ≤ 0, replace χ2 ← −χ2 in (17) and all

statements follow verbatim.
8Unless stated otherwise, the equilibrium points are hyperbolic, i.e., the linearization of the system at that point

does not have jω–axis eigenvalues.
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Figure 2: Phase portrait of (17) for Ω0 = 0 (left) and Ω0 = 0.4 (right).
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Figure 3: Phase portrait of (17) for Ω0 =
1
2 (left) and Ω0 = 0.9 (right).

Proof From (11), and inverting the full rank matrix Ω0J − σ(χ)I2, it is obvious that the equilibria,

denoted χ̄, are the solutions of the polynomial equations

(σ2(χ̄) + Ω2
0)χ̄1 − σ2(χ̄) = 0

(σ2(χ̄) + Ω2
0)χ̄2 − Ω0σ(χ̄) = 0.

Note that, since σ(0) = 0, (0, 0) is an equilibrium for all Ω0. In addition, if Ω0 = 0, then it is clear

that the equilibrium set is {χ ∈ R2 | σ(χ) = 0} ∪ {(1, 0)}.

Assume now that Ω0 ̸= 0. Notice that, in this case, (0, 0) is the only equilibrium if σ(χ̄) = 0.

Hence, assume furthermore that σ(χ̄) ̸= 0. Multiplying the right hand side of the first equation in

14



(17) by χ1 and the right hand side of the second one by χ2 and adding them up one gets

−σ(χ̄)(χ̄2
1 − χ̄1 + χ̄2

2) = 0. (20)

Setting to zero the term in parenthesis and replacing it in σ(χ̄) yields

σ(χ̄) = −χ̄1,

which, upon replacement in the right hand side of the first equation in (17) gives

χ̄2
1 − χ̄1 − Ω0χ̄2 = 0. (21)

Now, (20) and (21) imply χ̄2
2 +Ω0χ̄2 = 0, which has solutions χ̄2 = 0 or χ̄2 = −Ω0. In the first case,

χ̄1 = 0 or χ̄1 = 1. In the second case one gets

χ̄2
1 − χ̄1 +Ω2

0 = 0,

which has real solutions if and only if Ω0 ≤ 1
2 . Consequently, if Ω0 >

1
2 , the only equilibrium is (0, 0).

The proof is completed analyzing the eigenvalues of the linearization. 222

A way to tune the estimation gain, as a function of the rotor speed, in order to avoid the existence

of multiple equilibria is suggested by Proposition 4.9 Notice, however, that when γ = 0 the observer

becomes the open–loop, obviously non–robust, emulator ˙̂x = y12—hence, the observation gain should

not be made arbitrarily small.

To complete our analysis it is necessary to establish the stability properties of the critical points

identified in Proposition 4. Since the system lives in the plane the main step is to rule out the

existence of limit cycles. From the equilibrium analysis above it is clear that, as Ω0 ranges between

zero and infinity, the dynamics moves from having the whole circle σ(χ) = 0 (plus one point) as

equilibrium set, to three equilibria and finally to a single equilibrium at the origin. This scenario

suggests the existence of highly complex dynamics, for which the limit cycle analysis is quite involved.

As indicated in Subsection 3.2, the system (17) has been extensively studied in the literature. A

review of some of this literature leads us to state the following Fact, whose proof may be found in

[9].

Fact 1 Consider the system (17) and assume the motor speed is constant, i.e., Ω(t) = Ω0 ≥ 0.

i) If Ω0 = 0 the circle σ(χ) = 0 is an almost GAS stable equilibrium set whose domain of attraction

is R2 minus the point (1, 0).

9Recall that the actual speed ω was scaled with a factor 1
γ
to define Ω.
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ii) If 0 < Ω0 < 1
2 the stable node (0, 0) is almost GAS, its domain of attraction is R2 minus the

two other equilibria and the stable manifold of the saddle point.

iii) If Ω0 =
1
2 the stable node (0, 0) is almost GAS, its domain of attraction is R2 minus the other

unstable node equilibrium and its stable manifold.

iv) If Ω0 >
1
2 , (0, 0) is a GAS equilibrium.

In summary, except for the case of zero speed, where the estimation error is not guaranteed to

converge to zero, in all other cases this will be (almost surely) the case. In view of the interest of the

zero speed case a simple proof of point i) of the claim proceeds as follows. From the proof of (ii) of

Proposition 2, setting Ω = 0 in the second equation of (19) we get

dR2

dt
= −2(R2 − 1)R2. (22)

Fig. 4 shows the graph of the function dR2

dt versus R2, from which one concludes that, if R2(χ(0)) > 0,

then R2(χ(t))→ 1. The proof is completed recalling that σ(χ) = R2(χ)− 1, and noting that, when

Ω = 0, the point χ(0) = (1, 0)—that is the unique point for which R2(0) = 0—is an equilibrium of

(17), whence the “almost” qualifier.

R2
0.2 0.4 0.6 0.8 1.0 1.2

d
dt

 R2

K0.4

K0.3

K0.2

K0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 4: Plot of function (22).

4 A speed and load torque observer

In this section we solve the second problem stated in Section 2. Namely, assuming the position (θ)

and the electromagnetic torque (τ) are known, and τL is constant, design an observer of speed (ω)
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and load torque (τL) for the mechanical dynamics of (2), that we repeat here for ease of reference

and, to simplify the notation, we have taken nP = 1,

θ̇ = ω

Jω̇ = τ − fω − τL.
(23)

To the best of our knowledge, in spite of its apparent simplicity, no solution to the problem of

designing a globally convergent observer has been reported in the literature. Although the system

(23) is clearly linear, the difficulty stems from the fact that the state does not live in R × R but in

the cylinder S × R and, for speed regulation applications, this topology has to be respected. The

construction of the observer closely follows [13], where an important extension of the I&I techniques

of [3], is reported—namely, the need to solve a partial differential equation, which is the bottleneck

of the I&I technique, is obviated.10

4.1 An alternative representation of the mechanical equations

In view of the observation above the observer is designed using as “outputs” the measurable signals

h =

 sin θ

cos θ

 . (24)

Moreover, define

η =

 ω

τL
J

 ,

that, together with (23), (24) and the assumption that τL is constant, leads to

η̇ = Aη +

 1
J τ

0


ḣ = Ψ(h)η, (25)

where

A :=

 − f
J −1

0 0

 , Ψ(h) :=

 h2 0

−h1 0

 .

Although the system (25) is in the form considered in [13], a key assumption is, unfortunately, not

satisfied—see Remark 6. Hence, it is necessary to slightly modify the construction but, other than

that, our derivations follow verbatim [13], to which the reader is referred for further details—see also

[4].

10Observer design is recast in the I&I framework as a problem of rendering attractive a suitably selected invariant

manifold defined in the extended state–space of the plant and the observer.
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4.2 Proposed observer and main stability result

To streamline the presentation of the main result define

k1 :=
1

2

(
a1 −

√
a21 − 4a2

)
, δ :=

 a1 − f
J

−a2

 , k2 := |δ|2, (26)

where a1, a2 are (arbitrary) positive numbers such that

a1 > max{2
√
a2, 4}. (27)

Define the Hurwitz matrix

A⋆ :=

 −a1 −1

a2 0

 .

Let the matrix T ∈ R2×2 define a diagonalizing transformation of A⋆, that is,

TA⋆T
−1 = diag{λ1, λ2}, (28)

where λi ∈ R− are the eigenvalues of A⋆. Notice that k1 = −max{λ1, λ2}. Finally, define

k3 := ∥T−1∥, k5 := ∥T∥∥T−1∥, (29)

where ∥ · ∥ is the matrix induced 2—norm.

Proposition 5 Consider the system (23) with θ and τ known. The fifth–dimensional system

˙̂
h =

 h2

−h1

 η̂1 − ρ1(r)(ĥ− h)

ξ̇ =

 1
J τ −

f
J η̂1 − η̂2

0

+ [η̂1(1− h⊤ĥ) + ρ1(r)ρ2(h, ĥ)]δ

ṙ = −k1
4
(r − 1) +

k2k5
2k1

r(1− h⊤ĥ)2, r(0) ≥ 1

η̂ = ξ + ρ2(h, ĥ)δ, (30)

where h is defined in (24) and

ρ1(r) := k4 +
1

2
(
k2k5
k1

+ k3)r
2, ρ2(h, ĥ) := h1ĥ2 − ĥ1h2,

with k4 > 0, ensures ĥ, ξ, r are bounded and

lim
t→∞
|η̂(t)−

 ω(t)

τL
J

 | = 0 (exp).

Hence, (30) is a globally exponentially convergent observer of ω and τL for (23).
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4.3 Proof of main result

Following the I&I procedure define the off–the–manifold coordinate, that plays the role of observer

error,

z = ξ − η + β(h, ĥ). (31)

To obtain the dynamics of z differentiate (31) to get

ż = ξ̇ − η̇ + β̇

= ξ̇ −Aη −

 1
J τ

0

+∇hβΨ(h)η +∇ĥβ
˙̂
h.

Let

ξ̇ =

 1
J τ

0

+A(ξ + β)−∇hβΨ(h)(ξ + β)−∇ĥβ
˙̂
h, (32)

where
˙̂
h is defined in the proposition. Replacing (32) in the equation of ż above yields

ż = [A−∇hβΨ(h)]z. (33)

It is at this point that the key modification introduced in [13] is essential. Assume there exists a

function β⋆ : R2 → R2 that solves the PDE

A−∇hβ⋆(h)Ψ(h) = A(h) (34)

for some A : R2 → R2×2 such that

A(h) +A⊤(h) < 0.

Then, d
dt |z|

2 < 0, and the design would be completed with this new β⋆, that does not require ĥ.

Unfortunately, this condition cannot be satisfied. Indeed, for any matrix B : R2 → R2×2, the (2, 2)

element of A − B(h)Ψ(h) is zero. Moreover, for the existence of a β⋆ verifying ∇hβ⋆(h) = B(h),

there is the additional requirement that B(h) should be Jacobian. On the other hand, it is easy to

see that the matrix

B(h) =
[
h2δ

... −h1δ
]
,

with the vector δ defined in (26), ensures

A−B(h)Ψ(h) = A⋆, (35)

which is a Hurwitz matrix with distinct real eigenvalues. Hence, mimicking [13], define

β(h, ĥ) =

∫ h1

0
(ĥ2δ)ds+

∫ h2

0
(−ĥ1δ)ds,
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which yields

β(h, ĥ) = (h1ĥ2 − ĥ1h2)δ. (36)

Differentiating (36), we get

∇hβ(h, ĥ) =
[
ĥ2δ −ĥ1δ

]
.

Defining the error h̃ := ĥ− h, and replacing it above, we get

∇hβ(h, ĥ) = B(h)−∆(h, ĥ), (37)

where the error term is given as

∆(h, ĥ) :=
[
−h̃2δ h̃1δ

]
Replacing (37) and (35) in (33) yields

ż = A⋆z +∆Ψz. (38)

Recalling that A⋆ is Hurwitz, it is clear that the mapping ∆ plays the role of a disturbance that will

be dominated by means of a dynamic scaling.

Define the scaled off–the–manifold coordinate

zS =
1

r
Tz, (39)

with T satisfying (28) and r the dynamic scaling factor. Differentiating (39), and replacing (38), one

gets

żS =
1

r
T ż − ṙ

r
zS

= TA⋆T
−1zS + T∆ΨT−1zS −

ṙ

r
zS .

Consider the function

V1(zS) =
1

2
|zS |2

whose derivative yields

V̇1 ≤ −(k1 +
ṙ

r
)|zS |2 + z⊤S T∆ΨT−1zS ,

where (28), and the definition of k1 in (26), have been used to get the inequality. Now,

∆Ψ =
[
−δ

... 0

]
h⊤h̃

=
[
−δ

... 0

]
(h⊤ĥ− 1),

where we have used |h| = 1 to get the second identity. This, together with the definition of k2 in

(26), yields

∥T∆ΨT−1∥2 ≤ k2k5(1− h⊤ĥ)2,
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where we used ∥T∥∥T−1∥ = k5. Hence, applying Young’s inequality (with the factor k1), one gets

z⊤S T∆ΨT−1zS ≤
k1
2
|zS |2 +

k2k5
2k1

(1− h⊤ĥ)2|zS |2.

Applying this bound on V̇1 above, and invoking the definition of ṙ in (30), yields

V̇1 ≤ −
(
k1
2
− k1

4

r − 1

r

)
|zS |2

≤ −k1
4
|zS |2 (40)

where the property that r−1
r ≤ 1 has been used to obtain the last inequality. From (40) we conclude

that zS(t) converges to zero exponentially fast.

From (39) and the previous analysis it is clear that z(t) also converges to zero if we can prove

that r ∈ L∞. To enhance readability, and exhibit some additional stability properties of the design,

the procedure is divided in two parts: first, we make the function

V2(zS , h̃) = V1(zS) +
1

2
|h̃|2,

a strict Lyapunov function for the error subsystem (zS , h̃). Then, the derivative of the function

V3(zS , h̃, r) = V2(zS , h̃) +
1

2
r2,

is shown to be non–positive for the overall system—establishing the desired boundedness of r. At

both steps the objectives are achieved adding, via the observer dynamics, negative quadratic terms

in h̃ in the Lyapunov function derivative. We recall that h̃ is measurable.

From (30) and (25) one gets the error dynamics

˙̃
h = Ψ(h)z − ρ1(r)h̃. (41)

Using (40) and (41), and doing some basic bounding, the derivative of V2 satisfies

V̇2 ≤ −k1
4
|zS |2 + rh̃⊤ΨT−1zS − ρ1(r)|h̃|2

≤ −1

4
(k1 − 2)|zS |2 −

(
ρ1(r)−

r2

2
∥ΨT−1∥2

)
|h̃|2

≤ −1

4
(k1 − 2)|zS |2 −

(
ρ1(r)− k3

r2

2

)
|h̃|2

≤ −1

4
(k1 − 2)|zS |2 − k4|h̃|2. (42)

where

∥ΨT−1∥ ≤ ∥Ψ∥∥T−1∥ = ∥T−1∥,
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and the definition of k3 in (29), have been used to get the third bound, and

ρ1(r) ≥ k4 + k3
r2

2

for the last one. Since (27) ensures that k1 > 2, the previous analysis establishes that zS , h̃ ∈

L2 ∩ L∞ and the origin of the (non-autonomous) subsystem with state (zS , h̃) is uniformly globally

exponentially stable.

We are now ready to prove that r ∈ L∞. For, evaluating the derivative of V3, using the third

inequality in (42) and the definition of ρ1(r) one gets

V̇3 ≤ −1

4
(k1 − 2)|zS |2 − k4|h̃|2

≤ 0,

which ensures r ∈ L∞.

The proof is completed replacing the various functions in (32) to obtain (30). 222

Remark 5 The observer has three (positive) tuning parameters a1, a2 and k4. The first two assign

the poles of the unperturbed error dynamics (35), (38). Hence, grosso modo, define the speed of

convergence of the observer—as shown by (40). The gain k4, on the other hand, is a high–gain

injection that should be chosen as small as possible to reduce the noise sensitivity.

Remark 6 Assumption 1 of [13] is satisfied in our problem with “ρ(y) = 0”—using the notation of

[13]. Indeed, A⋆ +A⊤
⋆ is not negative definite, only semi–definite. Since this factor plays the role of

our k1 it is not possible to add the leakage term −k1
4 (r− 1) in the dynamic scaling and the function

r(t) is non–decreasing—rendering the result practically unfeasible. To overcome this drawback it was

necessary to redefine the normalized observer error in (39) including the diagonalizing transformation

matrix T .

5 Simulation and experimental results

Realistic simulations and experiments were carried out to test the performance of the proposed

position observer when used together with a classical linearizing and decoupling field oriented speed

regulation scheme.

The overall control law consists of the following.

i) Position observer equations (7) and (9).
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ii) Rotation, with the estimated position, to the dq–coordinates of iαβ and to the αβ–coordinates

of the computed control vdq. That is,

idq = e−J θ̂iαβ , vαβ = eJ θ̂vdq.

iii) Speed regulation PI loops11

i⋆dq = (Kp +Ki
1

s
)(ω⋆ − ω̂)

where ω⋆ is the reference speed and ω̂ is an estimate of the rotor speed that. Following standard

practice, the latter is generated with a speed estimator of the form

ż1 = Kp(θ̂ − z1) +Kiz2

ż2 = θ̂ − z1

ω̂ = Kp(θ̂ − z1) +Kiz2.

See @@@ NAM @@@ for additional remarks on this observer. It should be pointed out that

our experimental evidence showed that estimating the speed via numerical differentiation of

the position estimates led to unsatisfactory results.

iv) Current regulation PI loops, plus terms that linearize and decouple the dynamics in the dq–

model (3). That is

vd = (Kp +Ki
1

s
)(i⋆d − id)− Lω̂iq

vq = (Kp +Ki
1

s
)(i⋆q − iq) + Lω̂id + ω̂Φ.

Simulation in MATLAB Simulink was first performed utilizing the motor parameters listed in

Table 1. In the speed control block, torque limit and field weakening provisions were set up. Steps

in the reference speed and load torque were simulated obtaining the results shown in Fig. 5–7. As

depicted by the figures the speed response transient due to reference and load torque step changes is

excellent thanks to the fast convergence of the position estimation error. These parameters correspond

to a large machine, for which the development of sensorless schemes is more critical.

Experiments were then performed with a dynamo test bench which was made with two (smaller)

surface–mounted PMSMs. The shafts of the two motors are connected via a coupler. All the non-

linear observer and control algorithms were implemented in a TMS320vc33 DSP board. The PWM

switching frequency was set to be 8kHz and the dead time to 2µs. The current control algorithm was

carried out every 125µs, and the speed control loop was activated every 1.25ms. The dynamo motor

11To avoid cluttering the proportional and integral gains of the various PI’s are generically denoted as Kp,Ki > 0.
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Input DC link voltage [V] 240 200 200

Rated output power [kW] 40 0.3 1.0

Rated torque [Nm] 180 3.0 8.3

Rated speed [r/min] 2200 1000 1500

Rated phase current [A] 216 3.0 10.7

Number of pole pairs (nP ) 3 4 4

Rotor flux (Φ) [Wb] 0.146 0.11 0.099

Switching frequency [kHz] 8 8 8

Stator inductance (L) [mH] 0.655 1.14 2.6

Stator resistance (Rs) [Ω] 0.065 0.675 0.825

Table 1: Parameters of PMSMs: Simulation (first column) and experiments (second column for the

test motor and third column for the dynamo motor)

controller was constructed with a DSP, PIC30F6015. Further details on the set–up and additional

experimental results may be found in [17].

Full load step disturbances were introduced to the speed control system operating at 200rpm and

800rpm. The responses are shown in Fig. 8. To illustrate the tracking capability of the algorithm

experiments with speed ramp references were also performed and the results shown in Fig. 9. As

predicted by the theory the steady state position errors are smaller at higher speeds.

It should be mentioned that, as also indicated by the theoretical analysis, the performance of

the system was strongly degraded when the speed approached zero, more precisely for ω < 50rpm,

depending on the load conditions, the system could become unstable.

6 Concluding remarks and future research

A very simple observer of the rotor position of PMSMs that exhibits some remarkable stability

properties was presented. Unlike other back emf–based observers, e.g., [20, 22, 25], the design

proceeds from a representation of the PMSM in the classical fixed αβ frame. To exhibit a key

algebraic constraint used in the observer design a second change of coordinates, first proposed in

[25], is applied. Furthermore, under the assumption that rotor position is known, a speed and load

torque I&I observer was shown to be globally exponentially convergent.

We are currently pursuing our research to address the following issues:

• The extension of the result to the case of salient PMSM is also very challenging. In this case
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Figure 5: Simulation results in speed control mode operation. Time evolution of (a) ω⋆ and ω̂, (b)

τe and τL.

error

Time [sec]

Time [sec]

(a)

(b)

Figure 6: Expanded time scale of Fig 5. Time evolution of (a) θ and θ̂, (b) θ̃.
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Figure 7: Expanded time scale of Fig 5. Time evolution of (a) sin θ̂, cos θ̂, (b) x̂1, x̂2 and plots in

the planes (c) cos θ̂ − sin θ̂ and (d) x̂2 − x̂1.
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TL = 3.0 Nm
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Figure 8: Experimental results of speed control. Time evolution of τL, θ̂ and θ for (a) ω⋆ = 200rpm

and (b) ω⋆ = 800rpm.

0 
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Figure 9: Macroscopic view of the experimental response of ω̂, sin θ̂ and θ̂ to a speed reference change

from ω⋆ = 200rpm to ω⋆ = 1000rpm.
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the αβ model takes the form [12]

d

dt
[(LoI2 + L1Q(2θ))iαβ ] = −Rsiαβ + ωΦ

 sin θ

− cos θ

+ vαβ .

where

L0 :=
1

2
(Ld + Lq), L1 :=

1

2
(Ld − Lq), Q(2θ) :=

 cos(2θ) sin(2θ)

sin(2θ) − cos(2θ]

 .

• Some preliminary calculations show that the observers can be used in conjunction with the

full state feedback controller of [2] ensuring local stability. Critical in the establishment of this

result is the fact that the controller of [2] is a simple linear state feedback.

• Simulations have shown that the observer is sensitive to uncertainty in Φ and Rs. On–line

adaptation of this parameters, in the spirit of [12, 22], should be considered. As the uncertain

parameters enter in the observer in a multiplicative way, this constitutes a challenging non–

linearly parameterized adaptation problem—a good candidate for the immersion and invariance

adaptive control techniques studied in [3].

• Given the critical role that the gain γ plays in the stability analysis a practical tuning pro-

cedure is required. This procedure should be gain–scheduled with speed that, unfortunately,

is unavailable in sensorless applications. However, since only upper and lower bounds of this

gain are needed, knowledge of interval estimates of speed may be sufficient to achieve good

performance.

• Although most of the elements required for the proof of Fact 1 appear in the literature they

typically invoke concepts from bifurcation analysis that are not easily accessible to control

engineers. Some preliminary calculations lead us to believe that it is possible to establish this

result with basic (Lyapunov–like) arguments and the classical Bendixson’s criterion.

• Besides the constant speed case, other cases of practical interest are (almost) periodically time–

varying speeds or small variations around a constant value. The analysis of these cases will be

carried out in the future.

• In [25] a full order observer for PMSMs that estimates the electrical and mechanical coordinates—

even the load torque—was presented. Unfortunately, given the short time scales of the machine

transients, the high complexity of the observer precludes it from practical application.

• Although the speed and load torque observer of Section 4 has not been used in the present

paper, some simulation results may be found in [27].
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• An experimental comparison with existing observers, for instance, the widely popular and

interesting scheme reported in [20], is in order. Also, a more detailed theoretical analysis of

these schemes, in the spirit of [22], is highly desirable. Some preliminary results along this

direction have been reported in [17].
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