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Abstract 9 

Secondary organic aerosol (SOA) is a major fraction of the total organic aerosol (OA) 10 

in the atmosphere. SOA is formed by the partitioning onto pre-existent particles of low 11 

vapor pressure products of the oxidation of volatile, intermediate volatility, and 12 

semivolatile organic compounds. Oxidation of the precursor molecules results in a 13 

myriad of organic products making the detailed analysis of smog chamber experiments 14 

difficult and the incorporation of the corresponding results into chemical transport 15 

models (CTMs) challenging. The volatility basis set (VBS) is a framework that has 16 

been designed to help bridge the gap between laboratory measurements and CTMs. The 17 

parametrization of SOA formation for the VBS has been traditionally based on fitting 18 

yield measurements of smog chamber experiments. To reduce the uncertainty of this 19 

approach we developed an algorithm to estimate the SOA product volatility 20 

distribution, effective vaporization enthalpy, and effective accommodation coefficient 21 

combining SOA yield measurements with thermograms (from thermodenuders) and 22 

areograms (from isothermal dilution chambers) from different experiments and 23 

laboratories. The algorithm is evaluated with “pseudo-data” produced from the 24 

simulation of the corresponding processes assuming SOA with known properties and 25 

introducing experimental error. One of the novel features of our approach is that the 26 

proposed algorithm estimates the uncertainty of the predicted yields for different 27 

atmospheric conditions (temperature, SOA concentration levels, etc.). The predicted 28 

yield uncertainty is significantly less than that of the estimated volatility distributions 29 

for all conditions tested. 30 

 31 
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1. Introduction 32 

Submicrometer atmospheric particles are of great importance due to their negative 33 

effects on public health (Pope and Dockery, 2006; Lim et al., 2012) and their uncertain 34 

influence on Earth’s climate (IPCC, 2013). Organic aerosol (OA) contributes 20–90 % 35 

to the submicron particulate mass (Zhang et al., 2007) and is emitted directly in the 36 

atmosphere as primary particles (POA) or formed as secondary organic aerosol (SOA). 37 

SOA constitutes a major fraction of the total OA in the atmosphere contributing more 38 

than 60 % on average (Kanakidou et al., 2005). SOA is formed by the condensation of 39 

low vapor pressure products of the oxidation of volatile (VOCs), intermediate volatility 40 

(IVOCs), and semi-volatile organic compounds (SVOCs). 41 

 Hundreds of mostly unknown products are formed during the oxidation of each 42 

SOA precursor making the detailed description of the corresponding reactions and 43 

eventual SOA formation extremely challenging. The volatility basis set (VBS) is one 44 

approach that has been proposed to simplify the system and to allow the SOA 45 

simulation in CTMs. The VBS describes the volatility distribution of OA using a set of 46 

surrogate species with effective saturation concentrations that vary by one order of 47 

magnitude (Donahue et al., 2006; Stanier et al., 2008). Volatility is one of the most 48 

important physical properties of SOA components as it determines to a large extent 49 

their gas-particle partitioning (Pankow, 1994a; 1994b). The parametrization of SOA 50 

formation for the VBS requires the determination of the yields of each volatility bin 51 

(volatility distribution of products) and the corresponding enthalpies of vaporization. 52 

 The SOA parametrizations for the VBS have been traditionally based on fitting 53 

yield measurements (Lane et al., 2008). The major weakness of this approach is that 54 

the resulting parametrization is limited to the range of OA concentrations and 55 

temperatures of the measurements. In most cases, the concentration range does not 56 

include the low concentrations relevant to the atmosphere and usually most of the 57 

experiments take place in a relatively narrow temperature range. Pathak et al. (2007a) 58 

needed 37 smog chamber experiments at different temperatures (0–45 oC) and 59 

atmospherically relevant concentrations to constrain the α-pinene SOA temperature 60 

sensitivity. 61 

 A number of approaches has been used to minimize the number of experiments 62 

needed to characterize the temperature dependence of the SOA formation. Stanier et al. 63 

(2007) developed an experimental technique with which the temperature-controlled 64 

smog chamber could be heated or cooled after the SOA formation moving the system 65 
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to new equilibrium favoring evaporation or condensation respectively. However, 66 

interactions of the SOA with the walls of the system increased the uncertainties of the 67 

approach. Stanier et al. (2008) presented an algorithm to fit the smog chamber 68 

experiments using several volatility bins. However, the number of experiments needed 69 

by the algorithm should cover a wide range of concentrations and temperatures to 70 

effectively constrain the stoichiometric mass yields and the effective vaporization 71 

enthalpy. 72 

 In an effort to cover a wider concentration and temperature range, 73 

thermodenuder measurements can be used. TD is a common instrument developed to 74 

characterize the volatility of atmospheric aerosols by heating them and observing the 75 

resulting changes in size, mass, optical properties, etc. (Burtscher et al., 2001; Wehner 76 

et al., 2002, 2004; An et al., 2007). TDs consist of a heated tube in which the more 77 

volatile particle components evaporate followed by a cooling section with activated 78 

carbon to avoid vapor recondensation. The mass changes in TDs depend on the initial 79 

SOA concentration, the residence time in the heating tube, the vaporization enthalpy, 80 

and the mass transfer resistances. A typical way of reporting the TD measurements is 81 

by calculating the aerosol mass fraction remaining (MFR) at a given temperature after 82 

passing through the TD. The MFRs in a range of TD temperatures constitute the 83 

thermogram. 84 

 In TD applications in the field (Cappa and Jimenez, 2010; Huffman et al., 2009; 85 

Lee et al., 2010; Louvaris et al., 2017a) and in the laboratory (Kalberer et al., 2004; 86 

Baltensperger et al., 2005; An et al., 2007; Lee et al., 2011; Cain et al., 2020) the system 87 

does not reach equilibrium. Therefore, dynamic aerosol evaporation models (Riipinen 88 

et al., 2010; Cappa, 2010; Fuentes and McFiggans, 2012) are needed for the 89 

interpretation of TD measurements. Karnezi et al. (2014) used the time-dependent 90 

evaporation model of Riipinen et al. (2010) to calculate the OA volatility distribution, 91 

vaporization enthalpy, and mass accommodation coefficient from TD measurements. 92 

The authors showed that a simple error minimization approach may not be appropriate 93 

for such systems as very similar thermograms can be obtained for multiple 94 

combinations of different parameters. For this reason, their approach estimates an 95 

ensemble of “good” solutions, from which the best estimate and the corresponding 96 

uncertainties are derived. 97 

 Grieshop et al. (2009) suggested the combination of TD and isothermal dilution 98 

to constrain the volatility distribution of SOA. Karnezi et al. (2014) proposed an 99 
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algorithm to include both two types of measurements. The authors concluded that the 100 

combination of the two type of measurements can better constrain the OA volatility 101 

than each set separately. Louvaris et al. (2017b) and Cain et al. (2020) applied this 102 

algorithm to cooking OA (COA) and SOA respectively. Louvaris et al. (2017b) showed 103 

that the use of only TD measurements led to overestimation of the SVOC fraction of 104 

COA, while the use of TD and isothermal dilution data reduces the uncertainty of the 105 

volatility distribution and of the effective vaporization enthalpy. Cain et al. (2020) 106 

obtained experimentally TD and isothermal dilution measurements for α-pinene and 107 

cyclohexene ozonolysis SOA. The SOA in these two systems had similar thermograms, 108 

but different areograms. When only thermograms were used in the model, the volatility 109 

distributions were quite similar. However, the addition of areograms revealed that α-110 

pinene ozonolysis SOA consists mostly of LVOCs and the cyclohexene ozonolysis 111 

SOA consists mostly of SVOCs. 112 

 To constrain the volatility product distribution of SOA and its effective 113 

vaporization enthalpy we combine TD and isothermal dilution experiments with the 114 

SOA yield measurements. We extend here the algorithm of Karnezi et al. (2014) by 115 

introducing additional inputs (SOA yields) and also providing additional outputs 116 

(uncertainty of estimated yields in relevant atmospheric conditions). The algorithm is 117 

tested with “pseudo-experimental” data generated from the use of models simulating 118 

the corresponding measurement processes, so the true parameters are known. The 119 

results of the “pseudo-experiments” are corrupted so that they include experimental 120 

errors. 121 

 122 

2. Model Description 123 

2.1. SOA Formation 124 

Gas-phase oxidation of VOCs involves a large number of reactions and produces a large 125 

number of products that can condense in the particulate phase. Depending on their 126 

effective saturation concentration, they can be represented in the 1D-VBS framework 127 

by 128 

 1 1 2 2VOC oxidant ... volatile productsn nP P P  + → + + + +  (1) 129 

where n is the number of the surrogate compounds (volatility bins in the VBS), Pi is the 130 

surrogate product in the i-th volatility bin and αi is the corresponding stoichiometric 131 

mass yield. The total SOA mass yield can be then calculated as: 132 

https://doi.org/10.5194/amt-2022-320
Preprint. Discussion started: 6 January 2023
c© Author(s) 2023. CC BY 4.0 License.



5 
 

 
( )

OA

*

OA
ΔVOC 1

n
i

i i

C
Y

C C


 =

+
  (2) 133 

where COA is the total SOA concentration, ΔVOC is the consumed concentration of the 134 

VOC and Ci 
* is the effective saturation concentration of compound i. This yield 135 

equation is an extension of the two-product model by Odum et al. (1996) replacing their 136 

semi-empirical partitioning coefficients with the assumption of a pseudo-ideal solution 137 

(Strader et al., 1999). This model assumes that the system has reached equilibrium when 138 

the yield was measured and that the differences in molecular weights are small. 139 

 The effective saturation concentrations at different temperatures are given by 140 

the Clausius-Clapeyron equation: 141 
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where Tref is the reference temperature in which the reference effective saturation 143 

concentration is defined (298 K in this work), and ΔHvap,i is the enthalpy of vaporization 144 

of surrogate compound i. 145 

 146 

2.2. Thermodenuder Model 147 

The time-dependent evaporation of SOA in the TD is described in this work by the 148 

dynamic mass transfer model of Riipinen et al. (2010). The evolution of the total 149 

particle mass, mp, and the gas phase concentration of the compound i, Ci are given by: 150 
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where n is the number of surrogate compounds, Ntot is the total number concentration 153 

of particles (assuming monodisperse aerosol population) and Ii is the mass flux of 154 

compound i from the gas to the particulate phase for each particle calculated by 155 

(Seinfeld and Pandis, 2016): 156 
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where dp is the particle diameter, R is the ideal gas constant, Mi is the molecular weight 158 

of compound i, Di is the diffusion coefficient of compound i in the gas phase at 159 

temperature TTD, pi and pi
0 are the partial vapor pressures of i far away from the particle 160 
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and at particle surface, respectively, and βmi is a factor for the correction of kinetic and 161 

transition regime effects (Fuchs and Sutugin, 1970): 162 
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where Kni is the Knudsen number of compound i, and αmi is the mass accommodation 164 

coefficient of compound i on the particles. The partial vapor pressure of compound i at 165 

the particle surface is given by: 166 
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where xmi is the mass fraction of compound i in the particulate phase, Ci
* is the effective 168 

saturation concentration, σ is the surface tension (assumed 0.05 N m-1 in our 169 

simulations), TTD is the particle temperature assumed to be the same as in the TD, and 170 

ρ is the particle density. The effective saturation concentrations at different TD 171 

temperatures are given by Eq. (3). 172 

 173 

2.3. Isothermal Dilution Model 174 

In isothermal dilution experiments, a SOA sample is injected in a reactor filled with 175 

clean air at room temperature. The concentrations of both the gas and particulate phase 176 

components are lowered due to dilution leading the system out of equilibrium. The 177 

evaporation of SOA as a result of isothermal dilution is also described by equations (3)-178 

(8) (Karnezi et al., 2014), but the temperature is equal to 298 K. Evaporation in a 179 

dilution chamber depends on the initial SOA mass, time, and the αm, but not on ΔHvap 180 

as the particles evaporate without a change in temperature. 181 

 182 

3. Algorithm for the Estimation of VBS Parameters 183 

The algorithm of Karnezi et al. (2014) was first extended to include an SOA partitioning 184 

model together with the TD and isothermal dilution models in order to estimate the 185 

volatility product distribution, vaporization enthalpy and accommodation coefficient. 186 

We discretized the domain of the parameters and simulated all combinations of 187 

stoichiometric mass yields (αi), ΔΗvap, and αm. The yields αi were allowed to vary from 188 

0.0 to 0.8, with values of 0.0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, and 0.8. Combinations 189 

with sum of the yields exceeding 1.0 were excluded from the analysis. For a 4-product 190 
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system there are 3,153 and for a 6-product system 66,636 acceptable combinations. The 191 

values used for ΔΗvap were from 20 to 200 kJ mol-1 with a step of 20, and for αm, the 192 

values used were 0.001, 0.01, 0.1, and 1. As a result 126,120 simulations are needed 193 

for a 4-product VBS and 2,665,440 for a 6-product solution. 194 

 For each simulation and each type of measurement, we calculated the 195 

normalized mean square error (NMSE) defined as 196 
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where Oi represents the ith observed value (corresponding to a specific SOA 198 

concentration for yield measurements or temperature for TD, or time for isothermal 199 

dilution), Pi the corresponding model-predicted value, and NO is the total number of 200 

observations from each type of measurement. For each simulation (denoted as s), the 201 

overall error was calculated by assuming equal weight to the set of yield, TD, and 202 

dilution measurements and summing the corresponding errors: 203 

 
, TD, Dil,NMSE NMSE NMSEs Y s s sE = + +  (10) 204 

 The parameter combinations for which the overall error Es is less than 5% are 205 

identified. The best solution is then calculated by averaging these solutions using the 206 

inverse error Es as a weighting factor. The solutions that are closer to the measurements 207 

have higher weight. More specifically the best estimate 𝑥̅ is given by: 208 
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where xk is the estimated value of a property (mass yield of a volatility bin, effective 210 

vaporization enthalpy, or effective accommodation coefficient) and N is the number of 211 

combinations with error below the threshold value. The uncertainty range of the 212 

parameters is estimated by calculating the standard deviation (σ): 213 
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following Karnezi et al. (2014). 215 
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 216 

4. Testing of the Algorithm 217 

4.1. Generation of Data for Evaluation 218 

In order to evaluate the algorithm, we generated data using the output of SOA 219 

formation, thermodenuder and isothermal dilution models for systems with known 220 

volatility distribution of the products, and properties. Then, these data were “corrupted” 221 

with random errors to represent the “noise” observed in laboratory measurements for 222 

yields, thermograms, and areograms. The yields were corrupted based on the variability 223 

of laboratory measurements of Pathak et al. (2007a), by assuming a normal distribution 224 

and standard deviation (σY) given by: 225 

 true0.1 0.02Y Y = +  (13) 226 

where Ytrue are the correct yields. 227 

 For TD, the errors were calculated by assuming a normal distribution and the 228 

standard deviation (σTD) suggested by Karnezi et al. (2014): 229 

 ( )
2

TD TD,true TD,true0.51 0.5MFR MFR = −   (14) 230 

where MFRTD,true are the correct MFR values for each TD temperature. 231 

 For dilution, the errors were calculated by assuming a uniform distribution and 232 

standard deviation (σDil) suggested by Karnezi et al. (2014): 233 

 
Dil Dil,true0.05 0.03MFR = +  (15) 234 

where MFRDil,true are the correct MFR values for isothermal dilution. 235 

 Based on the above methodology, we generated “pseudo-measurements” of 236 

yield, TD, and isothermal dilution for different SOA systems. The parameters used to 237 

produce the pseudo-experimental data are summarized in Table S1. The “experimental” 238 

conditions assumed for the TD and isothermal dilution measurements are shown in 239 

Table S2. 240 

 In “Experiment” A, we test the performance of the algorithm against -pinene 241 

ozonolysis data and examine the effect of TD and isothermal dilution data. For 242 

“Experiment” A, the “true” values were taken from the parameterization derived by 243 

Pathak et al. (2007b) for the ozonolysis of α-pinene at low NOx, dark and low RH 244 

conditions. So these results are good fits of the measurements analyzed in that study. 245 

The parametrization was derived assuming a 4-volatility bin system with saturation 246 

concentrations ranging from 1 to 103 μg m-3. The effective vaporization enthalpy 247 

estimated in that study was equal to 30 kJ mol-1. Because the effective accommodation 248 
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coefficient was not part of the Pathak et al. (2007b) parametrization, we assumed a 249 

value of 0.5 in this work. We used a small number of yield measurements at 250 

atmospherically relevant SOA concentrations of 1, 5, 10, 20 and 40 μg m-3 (Fig. 1). For 251 

this SOA system, the yield at 40 μg m-3 did not exceed 20%. The thermogram includes 252 

ten MFR data points in the temperature range of 20 to 200 oC. For the highest 253 

temperature, more than 70% of the SOA mass was evaporated. The areogram shows 254 

that the correspondent SOA evaporated almost by 70 % in the first 0.5 h and more than 255 

90% in less than 3 h. 256 

 For “Experiment” B, the “true” values were taken from the alternative 257 

parametrization proposed by Pathak et al. (2007b) for the same oxidation system as 258 

described before. This time, the authors used a 7-volatility bin system with saturation 259 

concentrations ranging from 10-2 to 104 μg m-3 in their parametrization. The effective 260 

vaporization enthalpy of the parametrization was 30 kJ mol-1, while for the 261 

accommodation coefficient we assumed again a value of 0.5. The yield, TD and 262 

isothermal dilution “measurements” of Experiment B are generated in the same SOA 263 

mass concentration, temperature, and dilution time range as in the previous pseudo-264 

experiment (Fig. 2). 265 

 For “Experiment” C, the “true” values were based on the parameterization of 266 

the SOA formed during α-humulene ozonolysis by Sippial et al. (2022). The authors 267 

measured high SOA yields for α-humulene in the main smog chamber (~70% at 60 μg 268 

m-3), and their corresponding thermogram suggested that the SOA particles fully 269 

evaporated at 150 oC, while the areogram showed modest (20%) evaporation in the 270 

dilution chamber after 3 hours. A 4-volatility bin set with saturation concentrations 271 

ranging from 10-2 to 10 μg m-3 was used in that study to fit the measurements. The 272 

stoichiometric coefficients of the three least volatile bins (10-2, 10-1 and 1 μg m-3) were 273 

around 0.1 and for the most volatile (10 μg m-3) 0.25. The vaporization enthalpy was 274 

115 kJ mol-1 and the accommodation coefficient was 0.01 (Table S1). We assumed five 275 

yield “measurements” in the SOA concentration range of 1 to 100 μg m-3 with yield 276 

values as high as 65 % at 100 μg m-3 (Fig. 3). The corresponding thermogram consisted 277 

of 10 data and the particles fully evaporated at TD temperatures higher than 150 oC. 278 

The areogram consisted of 17 data points and only 20 % of the SOA evaporated in the 279 

dilution chamber. 280 

 281 

https://doi.org/10.5194/amt-2022-320
Preprint. Discussion started: 6 January 2023
c© Author(s) 2023. CC BY 4.0 License.



10 
 

4.2. Parameter Estimation for “Experiments” A, B, and C 282 

We explored the performance of the algorithm for different choices of the number of 283 

volatility bins, the range of saturation concentrations, and the range of SOA mass 284 

concentration range in the yield measurements. For each test, the “true” and the 285 

estimated properties are summarized in Table 1. 286 

 We evaluated the performance of our parameter estimation algorithm 287 

comparing its predictions both against the “measurements” and also against the “truth” 288 

defined as the predictions of the original parameterization. In both comparisons, mean 289 

normalized error (MNE) (Emery et al., 2017) was used as metric. 290 

 For the evaluation against the “measurements”, the MNEM was defined as  291 

 Μ

1

100 ON
i i

iO i

EST O
MNE

N O=

−
=   (16) 292 

where ESTi is the estimated by the algorithm value and corresponds to a specific 293 

measured point Oi. 294 

 For the evaluation against the “truth”, which includes conditions (e.g., 295 

temperatures or concentrations) for which there are no available measurements, the 296 

MNET was defined as: 297 

 T
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100 dN
j j

jd j

EST TR
MNE

N TR=

−
=   (17) 298 

where EST and TR are the estimated and the “true” values respectively. Nd is the total 299 

number of data points included in calculations and depends on the selected 300 

discretization of the corresponding dependent variable (e.g., SOA concentration, TD 301 

temperature, and dilution time). We used a linear discretization for the SOA 302 

concentrations (from 0.01 to 50 μg m-3 with a step of 0.01) and the TD temperatures 303 

(20 to 200 oC with a step of 5 oC but including TD MFR values greater than zero). For 304 

the dilution time, we used a higher resolution for the first 0.5 hour (step of 2 min), in 305 

which the evaporation is usually faster, and lower then (step of 10 min) up to 3 hours.  306 

 Finally, we used the average relative standard deviation (ARSD) as a metric to 307 

quantify the uncertainty of the estimates (range of good solutions) using the same 308 

discretization as in the MNET metric. The ARSD is given by: 309 

 
1

100 dN
j

jd j

ARSD
N EST



=

=   (18) 310 

where σj is the standard deviation for data point j. 311 
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4.2.1 Parameter Estimation for “Experiment” A 312 

In Test A1, we applied the algorithm in the same range of saturation concentrations and 313 

with the same number of volatility bins as these used to produce the “experimental” 314 

data. The upper bin (103 μg m-3) exceeded the maximum SOA concentration (40 μg    315 

m-3) in the measurement range by one order of magnitude. 316 

 Figure 1 depicts the estimated and the range of the ensemble of best solutions 317 

for the three types of “measurements” for Test A1. The performance of the model for 318 

the yields at 25 oC was quite encouraging with a small tendency of overprediction for 319 

SOA higher than 10 μg m-3. The MNEM of the model for the SOA yield “measurements” 320 

(given by Eq. 16) was equal to 25% (Table 2). The corresponding discrepancy between 321 

the true parameterization and the measurements (due to the measurement error that we 322 

introduced) was 21.2% (Table 2). This indicates that a significant part of the algorithm 323 

error can be explained by the uncertainty introduced in the measurements. 324 

 Our algorithm can be used to calculate the SOA yield at different concentrations 325 

and temperatures. The yields were calculated in the atmospherically relevant range of 326 

0–50 μg m-3 SOA concentration and at four temperatures (5, 15, 25, and 35 oC) using 327 

the true parameter values and the estimated parameters of Test A1. At 25 oC, the 328 

estimated yield curve is in good agreement with the “true” yield curve for SOA 329 

concentrations lower than 6 μg m-3 (error of 8% at 6 μg m-3), but the discrepancies 330 

increase at higher concentrations (error of 23% at 50 μg m-3). The average MNET error 331 

between the true parametrization and the estimated values (given by Eq. 17) was equal 332 

to 17.3% for yields at 25 oC (Table 3). The uncertainties, as expected, are larger at lower 333 

temperatures. However, the MNET error (estimated yields compared to the true value) 334 

remains less than 25% (Table 3) even at 5 oC, quite far from the measurement 335 

temperature. 336 

 The algorithm provides a range of “good” estimates in addition to the best 337 

estimate. The range can be defined by the lower and upper SOA yield limits of the 338 

ensemble of the good solutions at each point. At 25 oC, the yield range increased, as 339 

expected, at higher concentrations (yield range of 0.05 at 1 μg m-3 to 0.17 at 50 μg        340 

m-3). The average relative standard deviation (ARSD of the estimated yields defined by 341 

Eq. 18) was equal to 26% (Table 4) for the 25 oC case. For the rest of the temperatures, 342 

the ARSD increased for the lower temperatures, ranging from 24% at 35 oC to 35% at 343 

5 oC (Table 4) and including in all cases the true solution. 344 
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 For the TD, the model reproduced well the correspondent thermogram with low 345 

errors compared to the “measurements” with an error MNEM of 7% (Table 2). The error 346 

MNET compared to the “true” values was 5.5% (Table 3). The error of the TD 347 

“measurements” compared to the true values was equal to 7.6% (Table 2). Therefore, 348 

the error of the proposed algorithm is quite similar to the experimental error. The error 349 

introduced into the “measurements” was transferred, as expected, to the error metrics 350 

of the algorithm.  351 

 For the isothermal dilution, the algorithm did reasonably well for the first 30 352 

minutes and then the evaporation was slightly underpredicted leading to an error MNEM 353 

of 16.7% (Table 2). This MNEM value was roughly two times higher than the 354 

corresponding error between the dilution measurements and the true parametrization 355 

(Table 2). The error between the estimated and the “true” values MNET was 19%. The 356 

ARSD of 24% (Table 4) was sufficient to include the true solution. 357 

 The estimated volatility distribution of the products and the effective 358 

vaporization enthalpy and accommodation coefficient using the three types of 359 

measurements can be seen in Figure 4 and Table 1. The estimated volatility distribution 360 

of the products was in a good agreement with the “true” values (αi absolute difference 361 

of 0.01 at 1 μg m-3, 0.03 at 10 μg m-3, 0.07 at 102 μg m-3, and 0.04 at 103 μg m-3) and 362 

the estimated uncertainties contained the correct values. There is a large uncertainty 363 

range for the two higher volatility bins (standard deviation higher than 0.13) indicating 364 

that yield values at a wider range of SOA concentrations would be needed to better 365 

constrain these volatility bins. The relative error of the estimated ΔHvap is 10%. The 366 

estimated accommodation coefficient was 0.17 compared to a true value of 0.5. The 367 

estimated uncertainty for the effective accommodation was almost one order of 368 

magnitude (from 0.06 to 0.51) indicating the difficulty of constraining this parameter 369 

when it is close to unity and thus the resistances to mass transfer are small. 370 

 371 

4.2.2 Parameter Estimation for “Experiment” B  372 

In this section, we used the pseudo-experimental data of Experiment B, which were 373 

obtained for an SOA system with more components and a much wider range of 374 

volatilities including LVOCs, SVOCs and IVOCs (10-2–104 μg m-3). In Test B1, the 375 

algorithm was applied using a 4-bin VBS with saturation concentrations ranging from 376 

1 to 103 μg m-3. This range is narrower than the actual range used to obtain the pseudo 377 

measurements of Experiment B. 378 
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 Figure 2 shows the results of the fitting for the three types of “measurements” 379 

in this experiment. At 25 oC, the model performance for the yields is encouraging 380 

(MNEM=20.6%). This is again pretty close to the measurement error (20.5%). Βy 381 

comparing the estimated and the “true” yield curves at 25 oC, the error MNET is now 382 

14%. The error increases to 31% at 5 oC, far from the available measurements. This is 383 

reflected also in the increase of the uncertainty of our estimates with the ARSD 384 

increasing from 17% at 35 oC to 37% at 5 oC (Table 4). Once more the uncertainty 385 

range estimated by the algorithm includes the true values. 386 

 Both “measured” and “true” thermogram were well captured by the best 387 

estimate (MNEM of 6% and MNET of 4%) with an uncertainty ARSD of 20.5%. The 388 

evaporation in the dilution chamber was a little underestimated for the first 2 h, but then 389 

it was slightly overpredicted. The MNET for the areogram was 13.3% and the true values 390 

were included within the range of the estimates (ARSD of 18%).  391 

 Figure 5 shows the results of Test B1 for the volatility distribution of the 392 

products. The “true” stoichiometric coefficient for the 1 μg m-3 bin was overestimated 393 

by 0.01 by the algorithm. This overestimation actually corresponds to the total material 394 

of the 10-2 and 10-1 μg m-3 bins of the “true” system. This indicates that the algorithm 395 

places the material of the two lowest bins that are not part of the solution to the bin with 396 

the lower volatility. For the 10 μg m-3 and 102 μg m-3 bins, the relative errors between 397 

the estimated and “true” were 58% and 277% respectively (Table S3), while for the 103 398 

μg m-3 bin, the relative error was 10 %. The ΔHvap was predicted accurately (error of 399 

only 4%), while αm was underpredicted (0.1 instead of 0.5). 400 

 The results of Test B1 suggest that the mismatch between the actual SOA 401 

volatility distribution and the range used for the fits can introduce significant errors in 402 

the retrieved distribution for individual volatility bins. However, despite these problems 403 

the yields predicted by the derived parameterizations have a much lower error than the 404 

volatility distribution. This is a valuable insight for the strengths and weaknesses of this 405 

and other similar SOA parameter estimation algorithms. 406 

 407 

4.2.3 Parameter Estimation for “Experiment” C 408 

In Test C1, we obtained the best fits for the pseudo-measurements of Experiment C by 409 

applying the algorithm in the same range of saturation concentrations and with the same 410 

number of volatility bins (4 volatility bins in the 10-2–101 μg m-3 saturation 411 

concentration range) as the true volatility distribution.  412 
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 Figure 3 shows the results of the fitting for the three types of “measurements”. 413 

The best estimate for the SOA yields at 25 oC was in a good agreement with the 414 

“measurements” (MNEM=6.3%) and the “true” values (MNET=9.6%). For the rest of 415 

the temperatures, there was a decreasing trend of the error as the temperature decreased 416 

varying from 15.5% at 35 oC to 6.2% at 5 oC. A similar decreasing trend was observed 417 

for the uncertainty ARSD of the estimates which varied from 23% at 35 oC to 15% at 5 418 

oC. This behavior is the opposite from what we observed in the previous tests, in which 419 

both errors and uncertainties increased at lower temperatures. However, the changes in 420 

both the error and the uncertainty are small (change of around 7% between the upper 421 

and lower temperature for both metrics), indicating that this system is less temperature-422 

sensitive in this temperature range than the previous ones. 423 

 The performance of the algorithm was satisfactory compared to the TD 424 

“measurements” (MNEM=12.9%). The corresponding error of the algorithm for the true 425 

values (MNET) was 4.4% for temperatures up to 110 oC and equal to 10.6% for the 426 

lower values at higher temperatures. According to Figure 3, the evaporation due to 427 

dilution was initially overestimated for the first 30 min, but then underestimated 428 

(highest MFR discrepancy of 0.05) and there is a high uncertainty range of the 429 

corresponding estimates (MFR range of 0.46 at 3 h). However, the low dilution values 430 

resulted in low relative errors (MNEM of 3.5% and MNET of 2.7%). 431 

 Figure 6 shows that the highest relative errors were calculated for the 10-1 and 432 

100 μg m-3 bins (23% and 33% respectively), and smaller relative errors for the other 433 

two bins (less than 13%). The uncertainties were almost of the same magnitude for all 434 

bins with standard deviations ranging from 0.09 to 0.13. The performance of the model 435 

was good for the ΔHvap (relative error of 7%), but with high uncertainty for αm. 436 

 437 

4.3. Effect of the Volatility Range 438 

In in this section, we explore the performance of the algorithm for different choices of 439 

the number of volatility bins and the range of saturation concentrations. The analysis 440 

of the results of Test B1 has already quantified the effects of using a narrower volatility 441 

distribution in the parameter estimation algorithm than the one of the investigated SOA 442 

system. Additional sensitivity tests are performed here for all cases.  443 

 In Test A2, we used 3 volatility bins covering the 1–102 μg m-3 saturation 444 

concentration range instead of the 4 bins used in Test A1 and covering the 103 μg m-3 445 

material. The narrower assumed volatility range had a very small effect on the estimated 446 
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yields at all temperatures (Table 3 and Fig. S1) compared to Test A1. The change in 447 

MNET ranged from 3% at 5 oC to 0.3% at 35 oC. Minor changes were detected in the 448 

predicted thermogram (change of 0.8%) and areogram (change of 0.5%) as well. The 449 

uncertainty of the yield estimates increased by less than 2.5% at all temperatures. The 450 

estimated volatility distribution of the SOA products of Test A2 changed by less than 451 

5% in the two lower bins. The material in the 102 μg m-3 increased by 15% to account 452 

for the SOA of higher volatility that could not be included otherwise in the estimated 453 

distribution. The estimated ΔHvap was in this case 32 kJ mol-1 (2.7% decrease) and the 454 

αm decreased by 12% with respect to Test A1. 455 

 In Test A3, we shifted the assumed 4-bin volatility distribution by one order of 456 

magnitude to lower values, covering in that way the 0.1–100 μg m-3 saturation 457 

concentration range. In this case, the algorithm distributed exactly the same material to 458 

the 1, 10 and 100 μg m-3 volatility bins as in Test A2, and it predicted correctly zero 459 

SOA in the 0.1 μg m-3 bin (Table 1). The ΔHvap and αm estimated values were also 460 

unchanged with respect to Test A2. This in turn, led to the same estimated yields at 461 

different temperatures (no change in the error between the two tests). 462 

 In Test C2, we applied the algorithm against the Experiment C “measurements” 463 

using a 4-volatility bin system in the 1 to 103 μg m-3 range, that is two orders of 464 

magnitude higher than the actual range of the “true” values. Figure 7 shows the results 465 

of the fitting for the three types of “measurements”. Despite the significant mismatch 466 

of the volatility distributions the MNEM increased by only 2.3% for the estimated SOA 467 

yields. The error for the TD measurements increased by 20% while it actually decreased 468 

a little (1.2%) for the dilution data. The errors compared to the true values increased by 469 

less than 3% for the temperature range 15–35 oC while it increased by 12% at 5 oC. 470 

These results suggest that the estimated yields are quite robust in this case to the 471 

assumed volatility range. The major effect of the mismatch in volatility ranges was 472 

evident in the predicted thermogram with overestimation of the MFR for the 60–120 473 

oC temperature range and underprediction in higher temperatures. The increase in 474 

MNET for the TD MFR was 17.2% (Table 3). The change in the predicted areogram 475 

was marginal and led to a small increase of MNET (error increase by 0.7%) (Table 3). 476 

The algorithm underestimated again the αm (0.004 instead of 0.01) but also recognized 477 

the high uncertainty of the corresponding estimate. The algorithm distributed 478 

significant material to the 1 μg m-3 bin (3.6 times higher than the actual), in an effort to 479 
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account for the absence of the 10-2 and 10-1 μg m-3 bins. The ΔHvap was underestimated 480 

with an error of 21%. 481 

 The results of the above tests indicate that a mismatch between the true and 482 

assumed volatility ranges of the SOA increases in general the estimation error but the 483 

increase is small to modest. This is reassuring for the robustness of the proposed 484 

algorithm.  485 

 486 

4.4. Effect of Measurements at high SOA Levels 487 

During the last decade there has been a significant shift of the performed SOA smog 488 

chamber towards lower SOA concentrations. This is needed to increase the accuracy at 489 

the ambient concentration levels. The high SOA concentration experiments that once 490 

represented the majority of the performed experiments are becoming increasingly rare. 491 

In this paragraph we examine the value of these high concentration experiments for the 492 

estimation of SOA yields at ambient conditions. 493 

 To examine the effect of “measurements” at SOA levels much higher than the 494 

atmospheric ones, we included an extra yield measurement at 200 μg m-3 in the yield 495 

data of Experiments A and B. In Test A4 and B2, we applied the algorithm once again 496 

against the three types of “measurements” by using a 4-volatility bin system with 497 

saturation concentrations ranging from 1 to 103 μg m-3. 498 

 In Test A4, the additional experiment at high SOA concentration led to an MNET 499 

of 15.7% for the yields at 25 oC (Table 3 and Fig. S2), which is by 1.6% lower than that 500 

without this experiment in Test A1. The improvement was more significant at lower 501 

temperatures e.g., the MNET at 5 oC was reduced from 24.4% to 20.4%. The reduction 502 

in the ARSD for the SOA yields ranged from 3.8% at 5 oC to 0.9% at 35 oC (Table 4). 503 

Figure 8 depicts the results of the model for the yields and the volatility distribution of 504 

the products for Test A4. The accuracy of the predicted volatility distribution increased 505 

especially for the higher volatility material. For example, the error for the 102 μg m-3 506 

bin was reduced from 41% in Test A1 to 6% in this case (Table S3). Minor changes in 507 

the errors were detected for the ΔHvap and αm between the two tests (3% increase and 508 

6% decrease respectively). 509 

 Similar to Test A4, in Test B2 we added a yield measurement at 200 μg m-3 in 510 

the Experiment B set of “measurements”. Figure 9 depicts the results of the model for 511 

the SOA yields at 25 oC and the estimated volatility distribution of the products. The 512 

use of the additional data point led to a reduction of the NMET from 13.9% in Test B1 513 
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to 9% in Test B2 at 25 oC (Table 3). Similar reductions in the NMET were observed for 514 

the other temperatures, with the highest one observed at 5 oC (lower error by 7%) 515 

(Figure 10). The reduction in the ARSD for the estimated yields ranged from 3.3% at 5 516 

oC to 1.2% at 35 oC (Table 4). Minor changes were observed for the estimated 517 

thermogram (Fig. S3) (change in the NMET of 1.5%) and the uncertainty of the 518 

estimates (change in the ARSD of 2.5%). The error in the estimated areogram was also 519 

small but in this case the error increased by 5%. The additional data point helped 520 

decrease the errors for the estimated mass of the more volatile SOA products (Fig. 9) 521 

and especially for the 102 μg m-3 bin. The ΔHvap and αm estimated values were only 522 

slightly affected by the additional measurement.  523 

 These results suggest that an additional yield measurement at high SOA can 524 

lead to a substantial reduction of the error for the estimated yields at low temperatures 525 

(Fig. 10) and also a better estimation of the SOA products with higher volatility (102 526 

and 103 g m-3). These products may contribute little to the SOA concentration at 25 527 

oC, but their reactions (aging) could lead to significant additional SOA in later stages. 528 

  529 

5. Conclusions 530 

An algorithm was developed to estimate VBS parameters for SOA formation 531 

combining yield measurements from atmospheric simulation chambers with 532 

thermodenuder and isothermal dilution measurements chambers. Αn additional feature 533 

of this approach is that the algorithm estimates the uncertainty of the predicted SOA 534 

yields for different SOA concentrations and temperatures, assisting in this way in the 535 

design of future experiments. 536 

 The algorithm was evaluated against pseudo-experimental data for SOA 537 

systems with known properties. The algorithm performed quite well at reproducing the 538 

SOA yields at atmospherically relevant concentrations and temperatures with errors 539 

less than 20% for practically all cases. This was the case even at temperatures as low 540 

as 5 oC and also when the volatility range used for the parameter estimation was 541 

narrower than that of the simulated SOA system. One should note that this error was 542 

quite similar in most cases to the experimental error assumed in the construction of the 543 

“measurement” datasets. 544 

 The errors in the retrieved SOA volatility distributions were in general higher 545 

than those of the SOA yields. This is due to a large extent to the existence of multiple 546 
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solutions that can result in similar yields. The accuracy of the estimated mass fractions 547 

of the more volatile SOA components improved when an additional yield measurement 548 

at high SOA (e.g., at 200 μg m-3). The addition of this measurement also improved the 549 

estimated yields at low temperatures. This therefore suggests that data points at high 550 

SOA concentrations should also be obtained experimentally, together with the data 551 

points at atmospherically relevant atmospheric SOA levels. 552 

 In all cases the algorithm results in good estimates of the effective evaporation 553 

enthalpy. On the other hand, the estimates of the effective accommodation coefficient 554 

are usually quite uncertain. 555 

 The approach combining yield, TD (thermograms), and isothermal dilution 556 

(areograms) measurements is recommended for future parametrizations of SOA 557 

formation. 558 

 559 
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Table 1: True and estimated volatility distribution of the products for 8 different tests. 

The uncertainty of the estimates (±σ) is also included. 

TEST 
ΔHvap 

(kJ mol-1) 
log(αm) 

Stoichiometric Coefficients (αi) 

at Ci
* (μg m-3) 

10-2 10-1 100 101 102 103 104 

True 

A 
30 -0.30 - - 0.070 0.038 0.179 0.300 - 

A1 32.9±9.6 -0.77±0.47 - - 
0.059 

±0.022 

0.071 

±0.052 

0.252 

±0.130 

0.255 

±0.191 
- 

A2 32.0±9.8 -0.72±0.45 - - 
0.062 

±0.021 

0.067 

±0.053 

0.286 

±0.132 
- - 

A3 32.0±9.8 -0.72±0.45 - 
0.000 

±0.000 

0.062 

±0.021 

0.067 

±0.053 

0.286 

±0.132 
- - 

A4 34.0±9.2 -0.70±0.46 - - 
0.062 

±0.021 

0.082 

±0.050 

0.191 

±0.084 

0.259 

±0.198 
- 

True 

B 
30 -0.30 0.001 0.012 0.037 0.088 0.099 0.250 0.800 

B1 33.8±9.2 -0.95±0.21 - - 
0.052 

±0.011 

0.037 

±0.039 

0.374 

±0.122 

0.226 

±0.176 
- 

B2 36.5±7.6 -0.93±0.26 - - 
0.050 

±0.000 

0.051 

±0.039 

0.292 

±0.103 

0.234 

±0.196 
- 

True 

C 
115 -2.02 0.118 0.094 0.116 0.247 - - - 

C1 104.6±24.0 -1.74±0.97 
0.126 

±0.086 

0.116 

±0.090 

0.154 

±0.116 

0.216 

±0.126 
- - - 

C2 91.2±19.2 -2.36±0.83 - - 
0.415 

±0.099 

0.143 

±0.117 

0.137 

±0.113 

0.115 

±0.095 
- 
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Table 2: The mean normilized error (MNE) between the “measurements” and “true” 

values, and between the “measurements” and the model estimated values for the 

different tests. 

Test 
“Measurements” vs “True” a 

“Measurements” vs Estimated 

MNEM b 

Yield TD Dilution Yield TD Dilution 

A1 21.2 7.6 9.4 25.0 7.0 16.69 

A2 21.2 7.6 9.4 25.1 7.1 16.71 

A3 21.2 7.6 9.4 25.1 7.1 16.71 

A4 17.8 7.6 9.4 22.4 7.1 19.7 

B1 20.5 6.9 5.6 20.6 6.0 14.7 

B2 18.1 6.9 5.6 19.1 7.8 18.1 

C1 8.4 11.6 1.8 6.3 12.9 3.5 

C2 8.4 11.6 1.8 8.6 32.4 2.3 

a Calculated by 
1

100 ON
i i

iO i

O TR

N O=

−
 . 

b Calculated by Eq. (16). 
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Table 3: The mean normilized error between the “true” and estimated values (MNET) 

for the different tests. 

Test 
Yield 

TD Dilution 
5 oC 15 oC 25 oC 35 oC 

A1 24.4 21.0 17.3 13.8 5.5 19.0 

A2 21.4 19.5 16.9 14.1 4.7 18.5 

A3 21.4 19.5 16.9 14.1 4.7 18.5 

A4 20.4 18.3 15.7 12.9 6.0 22.5 

B1 31.3 21.7 13.9 8.7 4.0 13.3 

B2 24.4 15.6 9.0 6.4 2.5 18.4 

C1 6.2 6.8 9.6 15.5 
4.4 (110 oC)* 

10.6 (140 oC)*  
2.7 

C2 18.1 9.6 7.2 11.5 
9.0 (110 oC)* 

27.8 (140 oC)* 
3.4 

*  The errors for TD were calculated up to the denoted temperature in the parenthesis. 

 

 

Table 4: The average relative standard deviation (ARSD) for the different tests. 

Test 
Yield 

TD Dilution 
5 oC 15 oC 25 oC 35 oC 

A1 34.6 29.7 26.0 24.2 21.0 23.6 

A2 32.1 28.5 25.2 23.3 21.1 23.2 

A3 32.1 28.5 25.2 23.3 21.1 23.2 

A4 30.8 27.2 24.5 23.3 21.0 22.1 

B1 37.1 27.2 20.0 16.9 20.5 18.0 

B2 33.8 25.0 18.5 15.7 18.0 15.9 

C1 15.0 14.9 16.2 22.9 20.7* 16.5 

C2 20.1 15.6 14.1 21.3 20.6* 9.8 

*  The ARSD for the TD MFR values were calculated in the 20–120 oC temperature range. 
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Figure 1: “Measurements” of Test A1 in Experiment A (red dots), true (red line) and 

estimated (blue line) yields at four temperatures (at 5 oC, 15 oC, 25 oC, and 35 oC), TD 

(thermogram), and dilution (areogram) values. The grey area shows the range of good 

solutions obtained by our algorithm. 
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Figure 2: “Measurements” of Test B1 in Experiment B (red dots), true (red line) and 

estimated (blue line) yields at four temperatures (at 5 oC, 15 oC, 25 oC, and 35 oC), TD 

(thermogram), and dilution (areogram) values. The grey area shows the range of good 

solutions. 
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Figure 3: “Measurements” of Test C1 in Experiment C (red dots), true (red line) and 

estimated (blue line) yields at four temperatures (at 5 oC, 15 oC, 25 oC, and 35 oC), TD 

(thermogram), and dilution (areogram) values. The grey area shows the range of good 

solutions. 
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Figure 4. Estimated (bars) and true (red lines) parameter values of Experiment A in 

Test A1 combining yield, TD, and isothermal dilution measurements for: (a) the 

volatility distribution of the products, (b) ΔHvap, and (c) αm. The error bars represent 

the uncertainty of the estimated values. 
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Figure 5: Estimated (bars) and true (red lines) parameter values of Experiment B in 

Test B1 combining yield, TD, and isothermal dilution measurements for: (a) the 

volatility distribution of the products, (b) ΔHvap, and (c) αm. The error bars represent 

the uncertainty of the estimated values. 
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Figure 6: Estimated (bars) and true (red lines) parameter values of Experiment C in 

Test C1 combining yield, TD, and isothermal dilution measurements for: (a) the 

volatility distribution of the products, (b) ΔHvap, and (c) αm. The error bars represent 

the uncertainty of the estimated values. 
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Figure 7: Yields calculated using the “true” parameters of Experiment C (red line) and 

the estimated (blue line) using the parameters of Test C2 for the following temperatures: 

5 oC, 15 oC, 25 oC, and 35 oC. Also shown the thermogram and aerogram. The grey area 

shows the range of good solutions obtained by our algorithm. 
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Figure 8: (a) True (red line) and estimated (blue line) yields in Test A4, and the 

“measurements” of Experiment A (red dots) including an additional yield 

“measurement” at 200 μg m-3. (b) Estimated volatility distribution of the products (bars) 

of Test A4 and the true (red lines) parameter values. 

 

 

 

 

 

Figure 9: (a) Estimated yields (blue line) in Test B2 and “measurements” of 

Experiment B (red dots) including an additional yield “measurement” at 200 μg m-3. 

(b) Estimated volatility distribution of the products (bars) of Test B2 and the true (red 

lines) parameter values. 
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Figure 10: Yields calculated using the “true” parameters of Experiment B (red line) 

and the estimated (blue line) using the parameters of Test B2 for the following 

temperatures: 5 oC, 15 oC, 25 oC, and 35 oC. The grey area shows the range of good 

solutions obtained by our algorithm. 
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