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1. INTRODUCTION 

In this article we consider the estimation of two seem- 
ingly unrelated Tobit regressions in which the depen- 
dent variables are truncated normal. The model is use- 
ful, since it can be viewed as the reduced form of a 
simultaneous-equations Tobit model. The proposed es- 
timation method and algorithm are interesting in them- 
selves for the following reasons. In the estimation of a 
simultaneous equations model, for example, Nelson 
and Olson (1978) proposed a procedure analogous to 
the two-stage least squares method. In the first stage 
of estimating the reduced form, however, the disturb- 
ances are assumed uncorrelated; hence some iterative 
algorithms of maximum likelihood or instrumental-vari- 
able techniques apply to each of the reduced-form equa- 
tions separately. A more efficient first-stage estimate 
of the truncated dependent variables can be obtained 
by taking into account the nonzero covariance between 
the disturbances, even though the regressors are iden- 
tical in the different Tobit regressions. 

In this article, the expectation-maximization (EM) 
algorithm of Dempster, Laird, and Rubin (1977) is ap- 
plied to compute the maximum likelihood estimates in 
the case of nonzero covariance. We then provide an 
illustrative example on the determination of life-health 
insurance and pension benefits. 

2. THE MODEL AND THE EM ALGORITHM 

Consider the estimation of two seemingly unrelated 
Tobit regressions, 

Z1, _ Xit 0 B1 + Ul 

Z2t 0 X2t B2 U2t 

or 

Z, = X, B + U,, (1) 
where Z, is a vector of random latent variables and the 

matrix of exogenous variables Xt is assumed to be non- 
stochastic. The observed data Yit are related to the la- 
tent variable Zi, by the observation function Y(Zit), 

Yi = Y(Zi,) = Z, iff Z, > 0 

= 0iff Zi, 0. (2) 

The vector of disturbances, U' = (U1t U2t), is assumed 
to be distributed according to N(O, L), where 

(T11 
O 12 

(021 Cr22 

and E(U, Uj,') = 0 for s : s'. 
Naturally, the model (1), along with the observation 

function (2), can be considered as the reduced form of 
a simultaneous-equations model, such as the model of 
Amemiya (1974) or the model of Nelson and Olson 
(1978). The model of seemingly unrelated Tobit regres- 
sion (SUTR) considered here conforms to the reduced 
form of the latter model, but not to Amemiya's. The 
reduced form of the Amemiya model is different in the 
sense that the observation function (2) is replaced by 
Yit = Y(Zit) = Zit if all observed dependent variables 
are positive and Yit = 0 otherwise. 

Let 0 = (B, E) be the unknown parameter set. The 
likelihood function of the latent variables Z = (Z1, 
..., Zn) is 

L(Z; 0) = (270)-n 1l'-n/2 

x exp - Yij Zit Zt 

2 _ Z i j t=l 

- 2 
j 

'i ( SitZ.i)Bi 
i j t=l 

+ .i B ( XtXjt)Bj }, 
i 1 t=l 

(3) 
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where aij is the element of inverse matrix S-1. Since 
(tn= ZitZjt) and (=1 XitZj) are joint sufficient statis- 
tics for 0, the likelihood function L(Z; 0) can be more 
compactly written as 

L(Z; 0) = K(Z)exp[P'(O)t(Z)] [A(0)]-1, (4) 

where P(O) is a vector function of 0 and t(Z) is the 
corresponding vector of sufficient statistics. 

Corresponding to L(Z; 0), the marginal likelihood 
function of the observed data Y = (Y1, . ., Yn) is 

L(Y; 6) = f L(Z; 0) dZ, 
JR 

(5) 

where R = {Z; Y(Z) = Y} is the set of latent variables 
given the observed data Y. Maximization of the log- 
likelihood of (5), 

log L(Y; 0) 
= log f K(Z)exp[P'(O)t(Z)] dZ - log A(), 

results in the following first-order condition: 

d log A(O)/dO 
= [dP (0)/dO] { f exp[P'(O)t(Z)] dZ} 

x f t(Z)exp[P'(0)t(Z)] dZ 
JR 

= [dP'(O)/d0] . E[t(Z) I Y; 0], (6) 

where E[t(Z) I Y; 0] is the conditional expectation of 
the sufficient statistics. 

On the other hand, if the latent variables Z were 
completely observed, the maximization of the log- 
likelihood function in (4), 

log L(Z; 0) = log K(Z) + P'(O)t(Z) - log A(O), 

would simply yield the condition that 

d log A(O) dP' (0) 
d06 

~ 
d6 t(z). (7) dO dO 

Thus, by comparing the maximization conditions (6) 
and (7), Dempster et al. (1977) suggested an iterative 
procedure for obtaining the maximum likelihood esti- 
mate of 0. Suppose 0(,) denotes the current estimated 
values of 0 after p iterations of the algorithm. The next 
iteration involves two steps. In the expectation step (the 
E step), the conditional expectation of the sufficient 
statistics on the right side of (6) is evaluated at 0(,); that 
is, E[t(Z) I Y; 0(p)]. The estimated sufficient statistics 
are then used to replace t(Z) in the log-likelihood func- 
tion log L(Z; 0) for the maximization purpose (the M 
step). The maximization condition (7) is used for solving 
the next iterative value 0(p+l); that is, 

d log A(O(p+1)) - dP'(()) E[t(Z) I Y; 
A(p)]. 

(8) 
dO dO 

Given the new estimate 0(p+ ), the iteration continues 
between the expectation and the maximization steps 
until the convergence occurs. 

3. CONDITIONAL EXPECTATION OF THE 
SUFFICIENT STATISTICS 

Let the set of integers {1, 2, .. ., n} be divided into 
four mutually exclusive and exhaustive subsets, Si (i = 
1, 2, 3, 4), such that 

S1 = {t Ylt > 0, Y2t > 0} 

S2 {t Ylt = , Y2t > 0} 

S3 = {t Ylt > 0, Y2t = 0} 

S4 = {t I Yt = 0, Y2t = 0}. 

The conditional expectation of the sufficient statistics 
(2t=1 ZitZjt) and (2,=1 XitZjt), given the observed data 
Y, can then be decomposed into four groups accord- 
ingly. They are 

(9) 

- n - 4 

E Zt,,jt | Y; 0 = E E E[Z2itZ I Y; 0] 
-t=l _ g=l tESg 

and 
- n - 4 

E E XitZjt, Y; 0 = E XitE[Zjt, Y; 0. 
_t=l _ g=l tE~S 

(10) 

Obviously, for the observations that belong to the 
subset S, the conditional expectations are simply 

E[ZitZjt I Y; 0] = E Y,tY, 
tES1 tES1 

and 

XitE[Zj, I Y; 0] = Xi,Yjt. 
tEs, tESl 

For the observations belonging to other subsets, S2, 
S3, and S4, the conditional expectations need to be eval- 
uated. Define the standardized random variable of Z,, 

T, = (Z, - X,tB)lai, 

and the corresponding standardized truncated point at 
Zi = 0, 

hit = -XitBi/li. 

For observations belonging to the subset S2, the latent 
variable Zlt is truncated from above at 0, Z1 -- 0, and 
Z2t is not truncated. Correspondingly, the standardized 
variable T1l is truncated from above as hlt (T2t is not 
truncated). The conditional moments of Tl, in this case 
are defined as 

M(r) = E Tr, I Tlt < hl, T2t = t 

0'2 

r = 1, 2, 3, .... (11) 
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The first two moments are shown to be (Johnson 
Kotz 1970, p. 113) 

M(1) = pT, - 0(a2t) V - p2 

M(2) = (1 - p2) {1 - (2t,(a2t) 

- 
:(a2t)_ 2+ [M(1)]2 

where 

P = a12/\ /011022, alt = (h2, - pTlt)l/1 - 

a2t = (hlt - pT2t)l/V - p2, 

and 0(') and ((.) are standard normal density anc 
tribution functions, respectively. The conditiona 
pectation for t E S2 in (9) and (10) are then 

Z E[Z,t Z2t I Y,; 0] = E[Zlt I Y,; O]Y2t 
tES2 tES2 

= [XltB1 + a1M(1)]Y2, 
tES2 

E[Z2lt Y,; 0] 
tES2 

= [(XuB1)2 + 2Xt,B,a,M(1) + a2M(2)] 
tES2 

E X, E[Z,l I Y,; 0] = > Xit[X,B, + a,M(1)]. 
tES2 tES2 

(13) 
For the observations belonging to the subset S3, the 

conditional expectations are similarly obtained from 
(11)-(13) by interchanging the subscripts 1 and 2. 

Lastly, for the observations belonging to the subset 
S4, both Z,l and Z2t are truncated from above at 0. The 
moments of the standardized variables Tl, and T2, are 
defined as 

M(r, s) = E[Tr,TT, I T1t, hit, T2, h2t]. 

The first two moments are 

1 
M(1, ) = 

hl, h2; ) 

x [4(hut)F(Ajt) + p4(h2t)DA2t)] 

1 
M(2, 0) = h p -h (h1t)D(hlt) 

- p2 h2t4(h2t)$(h2,) 

+ p(l - p2)0(h,,, h2t; p)] + 1 

1 
M(l' 1)= 

1 
f)[- hltDA i) 

M(1, 1 ) = (h, h2,; p) 

- h2tp(h2t)F(A2t) + (D(hl,, h2t; P)] 

+ (1 - p2)b(ht,, h2t; p)}, 

(14) 

iand where 

Al, = (h2t - phl,)l/l - p2, 

A2t = (hlt - ph2t)I1\ - p2, 

and ( (h1t, h2t; p) and ((hlt, h2,; p) are bivariate standard 
normal density and distribution functions. The mo- 
ments for M(0, 1) and M(0, 2) are obtained from those 
M(1, 0) and M(2, 0) by interchanging h1t and h2t, and 

(12) A1, and A2t. The conditional expectations for t E S4 are 
then 

E E[Zlt I Yt; 0] = E [XltB1 + o1M(1, 0)], 
2 tES4 teS4 

p2, 

E[Z2lt I Y,; 0] 
tES4 

1 dis- = E [(Xt,B1)2 + 2XtBualM(1, 0) + a7 M(2, 0)], 
1 ex- tES4 

and 

E E[Zi, Z2t I Yt; 0] 
tES4 

= [(X,tB1)(X2tB2) + Xt,B1a2M(O, 1) 
tES4 

+ X2tBlalM(1, 0) + 0102 M(1, 1)]. 

The conditional expectations E[Z2, I Yt; 0] and E[Z2, I 
Y,; 0] are obtained by interchanging the subscripts 1 
and 2. 

4. ESTIMATION VIA THE EM ALGORITHM 

Suppose that 0(p) denotes the current estimated value 
of 0 after p iterations of the algorithm. In the E step, 
the sufficient statistics (tn' ZitZjt) and (Etnl XiZjt) in 
(3) are estimated by (E1 ZitZjt)(p) and (t1 X,itZ)(p) 
from (9) and (10): 

ZitZjt = E[ZitZjt Y; 0(p)] 
t=l (p) g=1 tES, 

and 

itZ = E XitE[Zjt I Y; 0()] 
t=l (p) g=l tESg 

These estimated sufficient statistics are then used for 
the maximization step of the algorithm. In the M step, 
the new estimate 0(p+1) of 0 is obtained by maximizing 
the log-likelihood function (3) to obtain 

n 

a(P) J X,x,,t 
t=l 

(p+l) - 
n 

^ 1 
a(p) X,X,, 

t=l 

n 1 -1 

'(p) j Xt,X2t 
t=l 

n 

6(p) E X2tX2t 
t=l 

'(p) mt, Zlt L ^ X1t Z2t 

X t=1 (P) 
t= 

1 (p) 

(p)I X2,zt Zlt) + ? ( X2t Z2t 
t=l (p) t=1 (p) 

(15) 
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where [tp)] is the inverse matrix of I evaluated at the 
pth iteration. The new estimate of (Uij)(p+,) is then 

1 /(" zn ) 
t=l (p) 

-B Jt iZ,) 
+ B;(' xX;j, . (16) 

Any consistent estimator of 0 can be used as a starting 
value for the iteration. The illustrative example given 
in Section 5 uses the consistent estimator of Amemiya 
(1974, p. 1010) based on the instrumental variable tech- 
nique. 

Louis (1982) proposed a procedure of obtaining the 
observed information matrix when using the EM al- 
gorithm. It requires a computation of the gradient and 
second derivatives matrix of the logarithmic likelihood 
function In L(Z; 0) under the restriction Z E R = {Z; 
Y(Z) = Y}. From (5), the gradient vector of In L(Y; 
0) is 

d In L(Y; 0) 
dO 

= 
L 

(Z; 
)dZ/ L(Z; 0) dZ 

dOJR JR 

= { EdlnL(Z;O) ZR 
_ dO }' 

(17) 
where the last equality is obtained by multiplying and 
dividing the integrand in the numerator by L(Z; 0). 

Taking an additional derivative, the second derivative 
matrix can be shown to be 

d2 In L(Y; 0) Ed2 In L(Z;) z) ZER 
dO dO' dO dO' 

+ E d n L(Z; ))d ln L(Z; ) ZER 
dO dO 

E d ln L(Z;0) 

Ed lnL(Z;0) 
_ ^dO 

ZER }. 

When the first-order condition of the maximization is 
imposed, Equation (17) is 0. Thus, at the last iteration 
of the EM algorithm, the last term of the second de- 
rivative is 0. The second derivative matrix of the ob- 
served data Y used in the calculation of the covariance 
matrix of 0 = (B, ,) can then be computed in the last 
iteration of the EM algorithm using only the first two 
terms. 

Clearly the EM approach is simply an alternative 
algorithm for the maximum likelihood estimation of 0 
in (5) via the "complete-data" specification L(Z; 0). 
Various other algorithms such as the Newton method 
and the Davidon-Fletcher-Powell method are com- 

monly used to find the optimal value of 0 directly via 
the "incomplete-data" specification L(Y; 0). Unfortu- 
nately, tests of the performance of these iterative al- 
gorithms are seldom investigated and compared in the 
literature. This certainly is an interesting and important 
research subject to be explored in the future. 

5. AN ILLUSTRATIVE EXAMPLE 

The share of compensation paid in nonwage form has 
risen dramatically in the last three decades. The in- 
crease has been substantial for both legally mandated 
and nonmandated fringes. Excluding various types of 
leaves, the largest nonmandated fringes by far are 
health insurance and private pensions. In a recent em- 
pirical study, Sloan and Adamache (1986) assessed 
variations in fringes among establishments that paid in 
the form of life-health insurance and pension per work 
hour. The analysis was based largely on a standard eco- 
nomic theory in modeling household behavior in which 
the employee values both nonwage and wage income. 
The employees' choice between the two depends, 
among other factors, on federal and state marginal tax 
rates and family income. Other explanatory variables 
include union status of the establishment; a dummy 
variable indicating whether the establishment's product 
was subject to regulation (such as in the electric utility, 
gas, communication, and transportation industries); a 
dummy variable for manufacturing industries; and the 
capital-to-labor ratio for the establishment's industry, 
because turnover tends to be lower in firms with a high 
ratio, which makes the demand for pensions higher. 
Several explanatory variables also are included to ac- 
count for differences in employee characteristics-pro- 
portions of workers who are female, under age 44, over 
age 55, and part-time, as well as variables for metro- 
politan status, region, and year. 

The principal data sources were Surveys of Employer 
Expenditure for Employee Compensation (EEC) con- 
ducted by the U.S. Bureau of Labor Statistics in 1968, 
1972, and 1977. The dependent variables were em- 
ployer contributions to life-health insurance and private 
pension plans expressed per work hour. The EEC data 
base did not allow life insurance to be split from health 
insurance, but more than eight-tenths of the composite 
is for health insurance. Out of a sample of 30,686 ob- 
servations on establishments, more than 51% (15,737) 
of them provided no pension and more than 16% 
(5,063) provided neither life-health nor pension benefit. 

Based on the estimation of two separate Tobit regres- 
sions for life-health insurance and private pensions, 
Sloan and Adamache (1986) concluded that both non- 
wage compensations are highly responsive to the mar- 
ginal income tax rate. Tax elasticities at the mean for 
both nonwage fringes exceed 1. No account, however, 
was taken of likely positive correlation of the distur- 
bance terms in the two Tobit regressions. We have, 
therefore, reestimated the two seemingly unrelated To- 
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bit regressions based on the EM algorithm of the max- 
imum likelihood method. 

Table 1 shows the estimates of SUTR via the EM 
algorithm and the estimates of unrelated Tobit regres- 
sion (UTR) reported by Sloan and Adamache (1986). 
The correlation coefficient (p) between the disturbances 
in the two Tobit regressions is estimated to be .492, 
which is significantly larger than 0 based on an asymp- 
totic test (t = 123). The nonzero correlation coefficient 
implies the possible gain of efficiency in the SUTR es- 
timation. As shown in both life-health and pension 
regressions, the SUTR estimates all have smaller esti- 
mated asymptotic variances than the UTR estimates, 
although both the SUTR and UTR estimations produce 
valid asymptotic standard errors, since the regressions 
place no restrictions on coefficients. The reduction in 
asymptotic variance in the life-health regression is 

smaller than in the pension regression. This is expected, 
however, because the fraction of limited observations 
(i.e., 0 values) in the life-health insurance dependent 
variable is much smaller than the fraction of limited 
observations in the pension dependent variable. The 
fractions are 16.5% in the former and 51.3% in the 
latter. 

Technically, the comparison between the SUTR and 
UTR estimations is valid only with respect to the pos- 
sible gain of efficiency caused by the existence of non- 
zero correlation between disturbances in the Tobit 
regressions. It is the asymptotic variances of the esti- 
mators that are of most interest. Nevertheless, noticing 
the substantial change in the estimates of the marginal 
tax rate in the pension regression is inescapable. The 
SUTR estimate shows the effect of the marginal tax 
rate to be about half as large as the UTR estimate. The 

Table 1. Nonwage Compensation per Hour Regressions: Comparison of Two Approaches 

Life-health regressions Pension regressions 

Explanatory SUTR UTR SUTR UTR 
variable approach approach approach approach 

Marginal tax rate 

Family income (in thousands of dollars) 

Unionized establishment 

Regulated industry 

Manufacturing industry 

Capital-labor ratio 

Office worker 

Proportion female workers 

Proportion minority workers 

Proportion workers under age 24 

Proportion workers over age 55 

Proportion workers part-time 

Standard metropolitan statistical area 

Northeast 

North Central 

West 

1972 dummy 

1977 dummy 

Constant 

Variance a8 

Correlation coefficient p 

NOTE: Asymptotic standard errors are in parentheses. 
a Statistically significant at the 1% level. 
b Statistically significant at the 5% level. 

2.35a 
(.20) 

- .0020 
(.0013) 
.17a 

(.003) 
.017a 

(.005) 
.060a 

(.003) 
.0001 

(.0006) 
.074a 

(.005) 
-.168 

(.007) 
- .014 
(.019) 

- .096a 
(.018) 
.091a 

(.021) 
- .20a 

(.011) 
.038a 

(.003) 
.043a 

(.003) 
.063a 

(.003) 
.071a 

(.004) 
.079a 

(.004) 
.097a 

(.007) 
-.328 
(.02) 

2.270a 
(.199) 

-.0011 
(.0013) 
.1688 

(.003) 
.01 7a 

(.005) 
.060a 

(.003) 
.0002 

(.0005) 
.064a 

(.005) 
-.153a 
(.006) 

- .021 
(.019) 

- .0998 

(.018) 
.068a 

(.021) 
-.182a 

(.011) 
.036a 

(.003) 
.046a 

(.003) 
.063a 

(.003) 
.070a 

(.004) 
.059" 

(.004) 
.096a 

(.007) 
-.302a 
(.022) 
.038a 

(.0003) 
.492" 

(.004) 

2.28a 
(.56) 
.041a 

(.004) 
.358 

(.009) 
- .094a 
(.015) 
.022b 

(.009) 
.017a 

(.001) 
.10a 

(.016) 
.0053 

(.020) 
.54a 

(.06) 
-.16a 
(.06) 

- .055 
(.066) 

--.38a 

(.035) 
.11a 

(.008) 
.108 

(.009) 
.118 

(.009) 
.11a 

(.011) 
.97a 

(.014) 
.94 

(.024) 
-2.158 
(.065) 

1.11 6a 
(.428) 
.0468 

(.003) 
.295a 

(.006) 
- .012 

(.011) 
.0177a 

(.007) 
.0188 

(.001) 
.015 

(.011) 
.071a 

(.013) 
.305a 

(.041) 
-.084a 

(.038) 
-.171a 

(.046) 
-.314a 

(.025) 
.087a 

(.006) 
.0928 

(.007) 
.080a 

(.006) 
.082a 

(.008) 
.805a 

(.008) 
.923a 

(.016) 
-1.845 

(.047) 
.174a 

(.001) 
.492a 

(.004) 

429 



430 Journal of Business & Economic Statistics, July 1987 

SUTR estimate of tax elasticity evaluated at the means 
is well under unity, but the associated income elasticity 
is only slightly higher than the corresponding UTR es- 
timate. The estimated union effect is somewhat more 
modest in the SUTR version, and the estimated impact 
of several of the demographic variables is changed- 
up in some cases and down in others. In this case (but 
not for life-health insurance in which there are relatively 
few values of the dependent variable at the limit), it 

certainly paid to take account of the correlated dis- 
turbances. 

6. CONCLUSION 

In this article we have considered the estimation of 
two seemingly unrelated Tobit regressions via the EM 

algorithm. We have argued that a more efficient esti- 
mation is as obtainable in the censored SUTR model 
as in the case of Zellner's (1962) uncensored SUR 
model. Several problems have been omitted from the 

discussion, however, and will be investigated in future 
research. First, the proposed SUTR estimation through 
the EM algorithm is restricted to a model with only two 

equations. The obvious reason is a practical as well as 
a theoretical one. In a model with more than two equa- 
tions, the conditional expectations of the sufficient sta- 
tistics are difficult, if not impossible, to obtain. Second, 
in this article the censored SUTR and SUR estimators 
are compared only in terms of the estimated variances. 
The efficiency comparison ignores the predictive per- 
formance of the estimators. Perhaps the cross-valida- 
tion technique with the estimation obtained from the 

first subsample by the SUTR and SUR methods should 
be used to compare the predictive performance of the 
censored dependent variables for the second subsam- 
ple. This split-sample analysis deserves careful consid- 
eration as a future research topic in the area of a 
censored regression model. 
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