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�We study a semi-varying coefficient model where the regressors are generated by the multivari-

ate unit root I(1) processes. The influence of the explanatory vectors on the response variable

satisfies the semiparametric partially linear structure with the nonlinear component being func-

tional coefficients. A semiparametric estimation methodology with the first-stage local polyno-

mial smoothing is applied to estimate both the constant coefficients in the linear component and

the functional coefficients in the nonlinear component. The asymptotic distribution theory for

the proposed semiparametric estimators is established under some mild conditions, from which

both the parametric and nonparametric estimators are shown to enjoy the well-known super-

consistency property. Furthermore, a simulation study is conducted to investigate the finite

sample performance of the developed methodology and results.
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1. INTRODUCTION

In this paper, we are interested in a partially linear varying coefficient model

defined by

Yt = X⊤1tγ +X⊤2tβ(Zt) +ut , (1.1)

where X1t is a d1-dimensional I(1) vector, X2t is a d2-dimensional I(1) vector, Zt

is a scalar stationary (or I(0)) variable, ut is a stationary error term, γ is a d1 × 1
vector of constant parameters and β(·) is a d2-dimensional vector of unspecified

smooth functions. The notation “⊤” denotes transpose of a vector (or matrix).

Model (1.1) provides a very flexible framework in nonstationary time series analy-

sis, and it covers various linear and nonlinear time series models with nonstation-

arity. For example, when β(Zt) ≡ β, (1.1) reduces to a linear cointegration model

which has been systematically investigated by existing literature such as Phillips

(1986), Phillips and Durlauf (1986), Park and Phillips (1988, 1989) and Saikkonen

(1995). When γ = 0, (1.1) becomes a functional coefficient model with nonsta-

tionarity, which has been studied by Cai et al. (2009), Xiao (2009) and Sun and

Li (2011). The advantage of the functional coefficient structure in the nonpara-

metric component of model (1.1) is that it could attenuate the so-called “curse of

dimensionality” problem in nonparametric estimation when the dimension of the

predictors is larger than three.

The main focus of this paper is to consider semiparametric estimation for both

the parameter γ and the functional coefficient β(·), and then derive the associated

asymptotic theory. In Section 2 below, we will use a so-called profile likelihood

approach with first-stage local polynomial fitting to estimate the proposed model.

In the case of independent or stationary weakly dependent observations, the pro-

file likelihood methodology has been commonly used to estimate semiparametric

varying coefficient models, see, for example, Fan and Huang (2005), Zhou and

Liang (2009), Li et al. (2011) and the references therein. However, to the best of

our knowledge, there is few work of extending such idea to the nonstationary time

series case. Chen et al. (2012) considered the profile least squares estimation for

the partially linear model through the null recurrent Markov chain framework.

However, the model in Chen et al. (2012) is less general than model (1.1), and it is

difficult to verify the null recurrent Markov property in practical applications.
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The main challenge of deriving the asymptotic theory in this paper is the lack

of uniform consistency results for the local polynomial estimators in the context

of the functional coefficient models with nonstationarity. Hence, in this paper, we

establish such uniform consistency result (see, for example, the argument in the

proof of Proposition A.1), which is critical in our derivation and of independent in-

terest. Under some mild conditions, we then establish the asymptotic distribution

theory for the proposed semiparametric estimators. We show that the estimator for

the parameter in the linear component enjoys the well-known super-consistency

property with n-convergence rate, which is similar to that in parametric linear

and nonlinear cointegration models (c.f., Park and Phillips, 1988, 1989, 2001).

However, such super-consistency result is fundamentally different from the para-

metric convergence rate in Chen et al. (2012), who could only derive the root-n

rate in the context of partially linear models with regressor being null recurrent

Markov chain. Meanwhile, similar to Cai et al. (2009), Xiao (2009) and Phillips

et al. (2013), we can also show that the convergence rate for the nonparametric

estimator is faster than the root-nh rate which is common in the stationary case.

Our results complement existing literature on nonparametric and semiparametric

estimation for nonstationary time series (see, for example, Park and Hahn, 1999;

Juhl and Xiao, 2005; Cai et al., 2009; Wang and Phillips, 2009a, 2009b; Xiao 2009;

Chen et al., 2010; Sun and Li, 2011; and Chen et al., 2012). Furthermore, a simula-

tion study is conducted to illustrate the finite sample performance of the proposed

methodology as well as the super-consistency results.

The rest of this paper is organized as follows. The semiparametric estimation

methodology is given in Section 2. The asymptotic theory for the proposedmethod

is provided in Section 3. The simulation study is conducted in Section 4. Section 5

concludes the paper. The mathematical proofs of the asymptotic results are given

in an appendix.

2. SEMIPARAMETRIC ESTIMATIONMETHOD

As mentioned above, when (Yt ,X
⊤
t ,Zt) is stationary with X⊤t = (X⊤1t ,X

⊤
2t), the

profile likelihood estimation methodology as well as the related asymptotic prop-

erties have been extensively studied for the semi-varying coefficient model (1.1),

see, for example, Fan and Huang (2005) and Zhou and Liang (2009). In this paper,
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we will extend such methodology to the nonstationary time series case, which is an

important feature for economic data. To avoid confusion, throughout the paper,

we let γ0 and β0(·) be the true parameters and functional coefficients.

Let e =
(
Id2 ,Nd2×qd2

)
, where Id2 is a d2 × d2 identity matrix and Nd2×qd2 is a

d2 × qd2 null matrix. Define

Zst,h = (Zs −Zt)/h, Kh,st = K(Zst,h), Qs,t =
[
1, (Zs −Zt), · · · , (Zs −Zt)

q
]⊤
,

and Gh = diag
(
1,h, · · · ,hq

)
⊗ Id2 , where h is a bandwidth, K(·) is a kernel function

and ⊗ denotes the Kronecker product. We next adopt the local polynomial ap-

proach (Fan and Gijbels, 1996) to estimate the functional coefficient β0(·) when γ

is given. Assuming that β0(·) has q-th order continuous derivative (q ≥ 1), we have

the following Taylor expansion for the functional coefficient:

β0(z) ≈ β0(z0) + β′0(z0)(z − z0) + · · ·+ β
(q)
0 (z0)

(z − z0)q
q!

for z in a small neighborhood of z0. The local polynomial estimate of

Mβ(·) =
[
β0(·),β′0(·), · · · ,

β
(q)
0 (·)
q!

]⊤

at point z0 for given γ , is defined by minimizing the weighted loss function (with

respect to A):

Ln(A | γ) =
n∑

t=1

{
Yt −X⊤1tγ −A

[
Qt(z0)⊗X2t

]}2
K
(Zt − z0

h

)
,

where A is a (q + 1)d2-dimensional row vector and Qt(z0) =
[
1, (Zt − z0), · · · , (Zt −

z0)
q
]⊤
. Then, by some elementary calculations, the local polynomial estimate of

β0(·) at Zt for given γ is

β̃(Zt ,γ) = e
[ n∑

s=1

Kh,stQs,tQ
⊤
s,t ⊗X2sX

⊤
2s

]−1 n∑

s=1

Kh,stQs,t ⊗X2s(Ys −X⊤1sγ)

= eGh

[ n∑

s=1

Kh,stQs,tQ
⊤
s,t ⊗X2sX

⊤
2s

]−1
GhG

−1
h

n∑

s=1

Kh,stQs,t ⊗X2s(Ys −X⊤1sγ)

= e
[
n−2

n∑

s=1

Kh,stG
−1
h

(
Qs,tQ

⊤
s,t ⊗X2sX

⊤
2s

)
G−1h

]−1[
n−2

n∑

s=1

Kh,stG
−1
h (Qs,t ⊗X2s)(Ys −X⊤1sγ)

]

= A2t −A1tγ (2.1)
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where

A1t = eS−1t
[
n−2

n∑

s=1

Kh,stG
−1
h (Qs,t ⊗X2s)X

⊤
1s

]
,

A2t = eS−1t
[
n−2

n∑

s=1

Kh,stG
−1
h (Qs,t ⊗X2s)Ys

]
,

St = n−2
n∑

s=1

Kh,stG
−1
h

(
Qs,tQ

⊤
s,t ⊗X2sX

⊤
2s

)
G−1h ,

and in the second equality above we used the fact that eGh = e.

It is easy to see that β̃(Zt ,γ) can be seen as a function of the unknown parameter

γ . Then, replacing β(Zt) by β̃(Zt ,γ) inmodel (1.1) and then applying ordinary least

squares (OLS) method, we obtain the estimator of γ0:

γ̂ =




n∑

t=1

(X1t −A⊤1tX2t)(X1t −A⊤1tX2t)
⊤



−1 n∑

t=1

(X1t −A⊤1tX2t)(Yt −X⊤2tA2t). (2.2)

With γ̂ replacing γ in (2.1), we obtain a feasible local polynomial estimator of β0(z)

by

β̂(z) =A2(z)−A1(z)γ̂ , (2.3)

whereA1(z) andA2(z) are defined asA1t andA2t with Zt being replaced by z. The

asymptotic properties of γ̂ and β̂(z) will be given in Section 3 below.

3. ASYMPTOTIC THEORY

Before giving the asymptotic distribution theory for both γ̂ and β̂(z), we first

introduce some regularity conditions. Let X1t = X1,t−1 + x1t and X2t = X2,t−1 + x2t ,

where x1t and x2t are stationary and weakly dependent random vector processes

which will be specified later. Without loss of generality, we assume that X10 = 0

and X20 = 0, where 0 is a null vector whose dimension may vary from place to

place. Hereafter, let ‖ · ‖ = ‖ · ‖2 denote the Euclidean norm.

Assumption 1. Let wt = (x⊤t , ut)
⊤ with x⊤t = (x⊤1t , x

⊤
2t). For some p1 > p2 > 2,

{
(w⊤t ,Zt)

}
is a strictly stationary and strongly mixing sequence with zero mean and

mixing coefficients αm = O
(
m−p1p2/(p1−p2)

)
and E

[
‖wt‖p1 + |Zt |p1

]
< ∞. In addition,

there exists a positive definite matrix Ω such that 1
nE

[
(
∑n

t=1wt)(
∑n

t=1wt)
⊤
]
→ Ω,

and Zt has a compact support SZ .
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Assumption 2. Let (ut ,Fnt ,1 ≤ t ≤ n) be a martingale difference sequence with

E(ut |Fn,t−1)=0 a.s. and E(u2
t |Fn,t−1) = σ2

u a.s., where Fnt = σ
{
xs1 ,Zs1 ,us2 : 1 ≤ s1 ≤

n, 1 ≤ s2 ≤ t
}
.

Assumption 3. The function β(z) has (q+1)-th order continuous derivatives when

z is in the compact support of Zt .

Assumption 4. The density function of Zt , fZ(z), is positive and bounded away

from infinity and zero, and has second-order continuous derivative when z is in

the compact support of Zt . Furthermore, the joint density function of (Z1,Zs+1),

f (u,v;s), is bounded for all s ≥ 1.

Assumption 5. K(·) is continuous probability density function with a compact

support.

Assumption 6. Let nhq+1→ 0 and (nh)/ logn→∞ as n→∞.

Consider the partial sum process defined by Bn(s) = n−1/2
∑[ns]

t=1wt with wt be-

ing defined in Assumption 1 and 0 ≤ s ≤ 1, where [a] denotes the largest integer

less than or equal to a. By Assumption 1 and the multivariate invariance prin-

ciple for Bn(s) (c.f., Phillips and Durlauf, 1986), we have Bn(s) ⇒ B(s), where

B(·) is a multivariate Brownian motion with E
[
B(1)B⊤(1)

]
= Ω. We can further

decompose Bn(s) as
[
B⊤1n(s),B

⊤
2n(s),B3n(s)

]⊤
, where B1n(s) = n−1/2

∑[ns]
t=1 x1t , B2n(s) =

n−1/2
∑[ns]

t=1 x2t and B3n(s) = n−1/2
∑[ns]

t=1 ut . Then, we have Bjn(s) ⇒ Bj(s) such that

B(s) =
[
B⊤1 (s),B

⊤
2 (s),B3(s)

]⊤
. The restriction of martingale differences on the error

term ut in Assumption 2 is to facilitate our proofs, and it can be relaxed at the cost

of more lengthy proofs. In particular, we can relax the conditional homoskedas-

tic condition to the heteroskedastic case, and similar asymptotic theory would still

hold with modified proofs. The smoothness conditions in Assumptions 3–5 ensure

that the local polynomial estimation and some uniform consistency results (c.f.,

Masry, 1996; and Hansen, 2008) are applicable, and such conditions are critical

in our proofs and commonly used in the literature on nonparametric estimation

such as Fan and Gijbels (1996) and Li and Racine (2007). Assumption 6 imposes

some restrictions on the bandwidth h. The first bandwidth condition nhq+1 = o(1)

is imposed to ensure the asymptotic bias of the local polynomial estimators is

asymptotically negligible and thus the n-convergence rate can be obtained for the
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parametric estimator γ̂ . In particular, when the local linear approach (q = 1) is

applied, we can further relax such condition to nh2 =O(1). The second bandwidth

condition (nh)/ logn → ∞ is common to apply the uniform consistency result of

nonparametric kernel-based estimation.

Define

Σ0 =

∫ [
B1(s)−W⊤(B1,B2)B2(s)

]⊗2
ds,

where W (B1,B2) =
[∫ 1

0
B2(s)B

⊤
2 (s)ds

]−1 ∫ 1
0
B2(s)B

⊤
1 (s)ds and B⊗2 = BB⊤ for any ma-

trix B. Define

Σ1(s) = B1(s)−W⊤(B1,B2)B2(s).

The next theorem gives the asymptotic distribution of γ̂ defined in (2.2).

Theorem 3.1. Suppose that Assumptions 1–6 are satisfied and Σ0 is non-singular.

Then, we have

n(γ̂ −γ0)⇒ Σ
−1
0

∫ 1

0
Σ1(s)dB3(s). (3.1)

The above theorem shows that the estimator γ̂ enjoys the super-consistency

property in the context of semi-varying coefficient cointegration models, which

can be seen as an extension of some existing results for the parametric cointegra-

tion models (c.f, Park and Phillips, 1988, 1989, 2001). However, the non-standard

asymptotic distribution on the right hand side of (3.1) would make the associated

statistical inference more difficult than that in the stationary case. We conjecture

that the techniques developed in Park and Phillips (1988) can be generalized to

the semiparametric setting in this paper and will consider this in the future study.

By using Theorem 3.1, we can also derive the asymptotic distribution for β̂(z)

defined in (2.3). To simplify the presentation, we only consider the case of d2 = 1.

The extension to the case of d2 > 1 is straightforward. Let µj =
∫
sjK(s)ds, νj =∫

sjK2(s)ds, ∆(µ) be a (q + 1)× (q + 1) matrix with the (i, j)-th element being µi+j−2,

and Γ(ν) be (q +1)× (q +1) matrix with the (i, j)-th element being νi+j−2. Define

bz =
hq+1β

(q+1)
0 (z)

(q +1)!
e1∆

−1(µ)(µq+1, · · · ,µ2q+1)⊤

7



and

Σz =
σ2
ue1∆

−1(µ)Γ(ν)∆−1(µ)e⊤1

fZ(z)
∫ 1
0
B2
2(s)ds

,

where e1 = (1,0, · · · ,0) is of dimension (q +1).

Theorem 3.2. Suppose that the conditions of Theorem 3.1 are satisfied. Then, we have

n
√
h
[
β̂(z)− β0(z)− bz

]
⇒MN(Σz), (3.2)

where MN(Σz) is a mixed normal distribution with zero mean and conditional covari-

ance matrix Σz.

The mixed normal distribution in Theorem 3.2 means that the estimator has

an asymptotic normal distribution conditional on the random variable which is

involved in Σz. By using the first bandwidth condition in Assumption 6, we can

further show that the asymptotic bias term in the above theorem is asymptotically

negligible. Hence, the asymptotic distribution in (3.2) can be simplified to

n
√
h
[
β̂(z)− β0(z)

]
⇒MN(Σz).

We can find that the above convergence rate is faster than the root-nh rate in sta-

tionary case, which is consistent with the findings in Cai et al. (2009), Xiao (2009)

and Sun and Li (2011).

4. SIMULATION STUDY

In this section, we give a simulated example to illustrate the proposed method-

ology and theory. Consider the model

Yt = X1tγ0 +X2tβ0(Zt) +ut , t = 1,2, · · · ,n, (4.1)

where γ0 = 2 and β0(z) = sin(πz), ut
i.i.d.∼ N(0,0.52), and {Zt} is generated by the

AR(1) model:

Zt = 0.5Zt−1 + zt with zt
i.i.d.∼ N(0,0.52),

and {zt} is independent of {ut}. It is easy to check that {Zt} is stationary and α-

mixing dependent with geometric decaying coefficient. For the generation of {Xt}
with Xt = (X1t ,X2t)

⊤, we consider the following two cases:
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(i) {Xt} is generated by Xt = 0.5Xt−1 + xt , where

xt = (x1t ,x2t)
⊤ i.i.d.∼ N

(
(0,0)⊤,diag(1,1)

)
.

(ii) {Xt} is generated by Xt = Xt−1 + xt , where xt is generated as in Case (i).

It is easy to show that {Xt} defined in Case (i) is stationary and α-mixing de-

pendent, whereas {Xt} defined in Case (ii) is nonstationary I(1). In this simulation,

we consider the sample size n = 300 and 600 with replication number N = 200.

For simplicity, we use the local linear smoother (which corresponds to the local

polynomial smoother with q = 1) to estimate the coefficient function β0(·) with

the standard normal kernel function, and the bandwidth is chosen by using the

cross-validation method.

To investigate the performance of the proposed semiparametric estimationmeth-

ods for the above two cases, we calculate the bias for the parametric estimate as

well as the mean squared errors for the nonparametric estimate when the replica-

tion is 200. Let

Bias(γ) =
1

N

N∑

j=1

Biasj(λ), Biasj(γ) = γ̂(j)−γ0, (4.2)

and

MSE(β) =
1

N

N∑

j=1

MSEj(β), MSEj(β) =
1

n

n∑

t=1

[
β̂(Zt , j)− β0(Zt)

]2
, (4.3)

where γ̂(j) and β̂(·, j) are the resulting parametric and nonparametric estimates in

the j-th simulation, 1 ≤ j ≤ 200. Meanwhile, in Table 1 below, we also provide

the standard errors of the parametric estimates in the 200 replications denoted

by SE(γ) which can be used to verify the super-consistency of the parametric es-

timation in the finite sample case, and the standard errors of MSEj(β) in the 200

replications denoted by SE(β).

The bias and standard errors for the parametric estimates and themean squared

errors for the nonparametric estimates are given in Table 1, and the plots for the

nonparametric estimation with sample size 600 are given in Figure 1. From Ta-

ble 1, we have the following conclusions. (1) It is easy to find that the standard

errors of the parametric estimates in Case (ii) are smaller than those in Case (i).
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In particular, for Case (i), the ratio of the standard error when the sample size

is 300 and that when the sample size is 600, equals to 2.4644/1.7600 = 1.4002,

close the theoretical value
√
2; and for Case (ii), the ratio of the standard error

when the sample size is 300 and that when the sample size is 600, equals to

7.7832/3.2729 = 2.3781, close the theoretical value 2. This finding is consistent

with the super-consistency result for the parametric estimation in Theorem 3.1.

(ii) The values of mean squared errors for the local linear estimates in Case (ii) are

smaller than those in Case (i), which indicates that the convergence of the non-

parametric estimation is faster in the nonstationary case. (iii) The performance of

the parametric and nonparametric estimators improve as the sample size increases

from 300 to 600.

Table 1. Bias and standard errors for the parametric estimate and mean squared errors for the

nonparametric estimate

n=300 n=600

Case (i) Case (ii) Case (i) Case (ii)

Bias(γ) -7.5667(×10−4) 1.5710(×10−4) -0.4854(×10−4) 1.3429(×10−4)

SE(γ) 2.4644(×10−2) 7.7832(×10−3) 1.7600(×10−2) 3.2729(×10−3)

MSE(β) 2.8109(×10−2) 1.6770(×10−2) 1.4600(×10−2) 1.0400(×10−2)

SE(β) 1.5174(×10−2) 0.2975(×10−2) 0.4700(×10−2) 0.1100(×10−2)

5. CONCLUSION

In this paper, we consider a semi-varying coefficient model where the regres-

sors are generated by the multivariate unit root I(1) processes, which provides a

flexible framework to model the impact of nonstationary explanatory vectors on

the response variable and covers some commonly-used parametric and nonpara-

metric cointegration models. We apply a semiparametric estimation methodology

with the first-stage local polynomial smoothing to estimate both the constant co-

efficients in the linear component and the functional coefficients in the nonlinear

component. Through developing the uniform consistency result for the local poly-

nomial estimators in the context of the functional coefficient models with nonsta-

tionarity which is of independent interest, we establish the asymptotic distribution
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Figure 1. The left plot is the local linear estimated coefficient function for Case (i) and the right

plot is the local linear estimated coefficient function for Case (ii). The solid line is the true function

and the dashed line is the estimated function.

theory for the developed semiparametric estimators, from which both the para-

metric and nonparametric estimators are shown to enjoy the well-known super-

consistency property. In particular, to derive the super-consistency result for the

parametric estimator, we need to undersmooth the functional coefficient (see the

first bandwidth restriction in Assumption 6) which is common in the stationary

case. Our asymptotic results substantially generalize some existing results in the

context of parametric and nonparametric cointegration models. Furthermore, a

simulation study is conducted to investigate the finite sample performance of the

developed methodology and asymptotic results.
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Appendix: Proofs of the main results

In this appendix, we give the proofs of the theoretical results given in Section

11



3. Throughout the proof, “≡” means “is defined as”.

Proof of Theorem 3.1. Note that

γ̂ −γ0 =
[ n∑

t=1

(X1t −A⊤1tX2t)(X1t −A⊤1tX2t)
⊤
]−1 n∑

t=1

(X1t −A⊤1tX2t)(Yt −X⊤2tA2t)−γ0

=
[ n∑

t=1

(X1t −A⊤1tX2t)(X1t −A⊤1tX2t)
⊤
]−1 n∑

t=1

(X1t −A⊤1tX2t)(Yt −X⊤1tγ0) +

[ n∑

t=1

(X1t −A⊤1tX2t)(X1t −A⊤1tX2t)
⊤
]−1 n∑

t=1

(X1t −A⊤1tX2t)X
⊤
2t

(
A1tγ0 −A2t

)

=
[ n∑

t=1

(X1t −A⊤1tX2t)(X1t −A⊤1tX2t)
⊤
]−1 n∑

t=1

(X1t −A⊤1tX2t)ut −

[ n∑

t=1

(X1t −A⊤1tX2t)(X1t −A⊤1tX2t)
⊤
]−1 n∑

t=1

(X1t −A⊤1tX2t)ũt +

[ n∑

t=1

(X1t −A⊤1tX2t)(X1t −A⊤1tX2t)
⊤
]−1 n∑

t=1

(X1t −A⊤1tX2t)X
⊤
2t

[
β0(Zt)− β(Zt)

]
,

where ũt = eS−1t
[
n−2

∑n
s=1Kh,stG

−1
h (Qs,t ⊗ X2s)us

]
, β(Zt) = eMβ(Zt) with Mβ(Zt) =

S−1t
[
n−2

∑n
s=1Kh,stG

−1
h (Qs,t ⊗X2s)X

⊤
2sβ0(Zs)

]
and e is defined in Section 2.

To further simplify the presentation, we define

B1n =
1

n2

n∑

t=1

(
X1t −A⊤1tX2t

)(
X1t −A⊤1tX2t

)⊤
,

B2n =
1

n

n∑

t=1

(X1t −A⊤1tX2t)ut ,

B3n =
1

n

n∑

t=1

(X1t −A⊤1tX2t)X
⊤
2tũt ,

B4n =
1

n

n∑

t=1

(X1t −A⊤1tX2t)X
⊤
2t

[
β0(Zt)− β(Zt)

]
.

Then, Theorem 3.1 can be proved through the following three propositions. �

Proposition A.1. Under the conditions of Theorem 3.1, we have

B1n⇒
∫ [

B1(s)−W⊤(B1,B2)B2(s)
]⊗2

ds = Σ0, (A.1)

where W (B1,B2) is defined in Section 3.
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Proof. Let Kh,s(z) =
1
hKh,s(z)Qs(z)Q

⊤
s (z), where

Kh,s(z) = K(Zs,h(z)), Zs,h(z) = (Zs − z)/h, Qs,z =
[
1, (Zs − z), · · · , (Zs − z)q

]⊤
.

We have

1

h
Sn(z) ≡ G−1h

[
n−2

n∑

s=1

Kh,s(z)⊗X2sX
⊤
2s

]
G−1h

= G−1h

{
n−2

n∑

s=1

E
[
Kh,s(z)

]
⊗X2sX

⊤
2s

}
G−1h +

G−1h

(
n−2

n∑

s=1

{
Kh,sz(z)−E

[
Kh,sz(z)

]}
⊗X2sX

⊤
2s

)
G−1h .

≡ Sn1(z) +Sn2(z),

where Gh is defined in Section 2,

Sn1(z) = G−1h

{
n−2

n∑

s=1

E
[
Kh,s(z)

]
⊗X2sX

⊤
2s

}
G−1h ,

Sn2(z) = G−1h

(
n−2

n∑

s=1

ηh,s(z)⊗X2sX
⊤
2s

)
G−1h ,

ηh,s(z) = Kh,s(z)−E
[
Kh,s(z)

]
.

By Assumptions 4 and 5, we have, uniformly in z ∈ SZ ,

E
[
Kh,s(z)

]
= fZ(z)∆(µ) + o(1),

where ∆(µ) is a (q+1)× (q+1) matrix with the (i, j)-th element being µi+j−2. On the

other hand, by Assumption 1, we can prove that

n−2
n∑

s=1

X2sX
⊤
2s = n−1

n∑

s=1

X2s√
n
· X
⊤
2s√
n
⇒

∫ 1

0
B2(r)B

⊤
2 (r)dr =OP(1).

Noting that fZ(z) is bounded away from infinity and zero for z ∈ Sz, we have, uni-

formly in z ∈ SZ ,

1

fZ(z)
Sn1(z)−∆(µ)⊗

(
n−2

n∑

s=1

X2sX
⊤
2s

)
= oP(1). (A.2)

We next prove that Sn2(z) is oP(1) uniformly for z ∈ SZ . Let

Q∗s(z) =
[
1,

Zs − z
h

, · · · , (Zs − z)q
hq

]⊤

13



and η∗h,s(z) be defined as ηh,s(z) with Qs(z) replaced by Q∗s(z). Then, we can show

that

Sn2(z) =
1

n2

n∑

s=1

η∗h,s(z)⊗X2sX
⊤
2s.

As in Theorem 1 of Masry (1996), we can prove that

sup
l≥0

sup
z∈SZ

Var
[ l+m∑

s=l+1

η∗h,s(z)
]
=O

(m
h

)

for all m ≥ 1. For some 0 < δ < 1, set N = [1/δ], sk = [kn/N ] + 1, s∗k = sk+1 − 1, and
s∗∗k = min{s∗k ,n}. Let Un,s = X2sX

⊤
2s/n for any 1 ≤ s ≤ n and Un(r) = Un,[nr] for any

r ∈ [0,1]. Following the proof of Theorem 3.3 of Hansen (1992), we have

sup
z∈SZ
‖Sn2(z)‖ = sup

z∈SZ

∥∥∥∥
1

n2

n∑

s=1

η∗h,s(z)⊗Un,s

∥∥∥∥ = sup
z∈SZ

∥∥∥∥
1

n2

N−1∑

k=0

s∗∗k∑

s=sk

η∗h,s(z)⊗Un,s

∥∥∥∥

≤ sup
z∈SZ

∥∥∥∥
1

n2

N−1∑

k=0

s∗∗k∑

s=sk

η∗h,s(z)⊗Un,sk

∥∥∥∥+ sup
z∈SZ

∥∥∥∥
1

n2

N−1∑

k=0

s∗∗k∑

s=sk

η∗h,s(z)⊗
(
Un,s −Un,sk

)∥∥∥∥

≤ sup
z∈SZ

1

n2

N−1∑

k=0

∥∥∥
s∗∗k∑

s=sk

η∗h,s(z)
∥∥∥ ·

∥∥∥Un,sk

∥∥∥+ sup
z∈SZ

1

n2

N−1∑

k=0

s∗∗k∑

s=sk

∥∥∥η∗h,s(z)
∥∥∥ · ‖Un,s −Un,sk

∥∥∥

≤ 1

n

N−1∑

k=0

sup
z∈SZ
‖

s∗∗k∑

s=sk

η∗h,s(z)‖ sup
0≤r≤1

‖Un(r)‖

+ sup
|r1−r2|≤δ

‖Un(r1)−Un(r2)‖ · sup
z∈SZ

1

n

N−1∑

k=0

s∗∗k∑

s=sk

∥∥∥η∗h,s(z)
∥∥∥

≡ Sn,21 +Sn,22.

Note that sup0≤r≤1 ‖Un(r)‖ = Op(1) as Un(r) ⇒ B2(r)B
⊤
2 (r) by Assumption 1. Fur-

thermore, following the argument in the proof of Theorem in Masry (1996), we

have

1

n

N−1∑

k=0

sup
z∈SZ

∥∥∥∥
s∗k∑

s=sk

ηh,s(z)
∥∥∥∥ ≤

N

n
sup

0≤k≤N−1
sup
z∈SZ

∥∥∥∥
s∗k∑

s=sk

ηh,s(z)
∥∥∥∥

≤ sup
1≤s≤n

sup
z∈SZ

∥∥∥∥
1

δn

s+δn∑

i=s

ηh,s(z)
∥∥∥∥ = oP(1),

which implies that

Sn,21 = sup
0≤r≤1

‖Un(r)‖ · oP(1) = oP(1). (A.3)
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It is easy to see that uniformly for z ∈ SZ ,

1

n

N−1∑

k=0

s∗∗k∑

s=sk

∥∥∥ηh,s(z)
∥∥∥ =OP(1),

which implies that

Sn,22 = sup
|r1−r2|≤δ

∥∥∥∥Un(r1)−Un(r2)
∥∥∥∥ ·OP(1) = oP(1) (A.4)

by letting δ→ 0.

By using (A.3) and (A.4), we have shown that Sn2(z) = oP(1) uniformly in z ∈ SZ ,
which, together with (A.2), leads to

1

hfZ(Zt)
Sn(Zt)−∆(µ)⊗

(
n−2

n∑

s=1

X2sX
⊤
2s

)
= oP(1) (A.5)

Similarly, we can also prove that, for any t = 1, · · · ,n,

1

n2hfZ(Zt)

n∑

s=1

Kh,stG
−1
h (Qs,t ⊗X2s)X

⊤
1s − (µ0,µ1, · · · ,µq)⊤ ⊗

(
n−2

n∑

s=1

X2sX
⊤
1s

)
= oP(1).

(A.6)

Then, by the definition of A1t , we can show that

A1,t −Wn(B1,B2) = oP(1), uniformly in t = 1, · · · ,n, (A.7)

where

Wn(B1,B2) =
[
e1∆

−1(µ)(µ0,µ1, · · · ,µq)⊤
]
⊗
[(
n−2

n∑

s=1

X2sX
⊤
2s

)−1(
n−2

n∑

s=1

X2sX
⊤
1s

)]
,

e = (1,0, · · · ,0)⊤. By standard algebraic calculation, we have e1∆(µ)
−1
Γ(µ) ≡ 1. Not-

ing that Wn(B1,B2)⇒ W (B1,B2), by the definition of B1n and (A.7), we can com-

plete the proof of Proposition A.1. �

Proposition A.2. Under the conditions of Theorem 3.1, we have B4n =OP(nh
q+1).

Proof. For Mβ(Zt) = S−1t
[
n−2

∑n
s=1Kh,stG

−1
h (Qs,t ⊗X2s)X

⊤
2sβ0(Zs)

]
and

Mβ(Zt) =
[
β(Zt),β

′(Zt), · · · ,
β(q)(Zt)

q!

]⊤
,
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we have
∥∥∥Mβ(Zt)−Mβ(Zt)

∥∥∥

=
∥∥∥∥S−1t

{
1

n2

n∑

s=1

Kh,stG
−1
h (Qs,t ⊗X2s)X

⊤
2s

[
β0(Zs)−

q∑

i=0

β
(i)
0 (Zt)

i!
(Zs −Zt)

i
]}∥∥∥∥

≤ 1

n2

∥∥∥hS−1t
∥∥∥

n∑

s=1

∥∥∥G−1h (Qs,t ⊗X2s)
∥∥∥ ·

∥∥∥X2s

∥∥∥ ·
∥∥∥
[
β0(Zs)−

q∑

i=0

β
(i)
0 (Zt)

i!
(Zs −Zt)

i
]
h−1Kh,st

∥∥∥

= OP(h
q+1),

where we use

E
∥∥∥∥
[
β0(Zs)−

q∑

i=0

β
(i)
0 (Zt)

i!
(Zs −Zt)

i
]
h−1Kh,st

∥∥∥∥ =O(hq+1)

in the last equality. Thus, we obtain that

Mβ(Zt)−Mβ(Zt) =OP(h
q+1) (A.8)

uniformly for t = 1, · · · ,n. Thus, we can further prove that

sup
1≤t≤n

∥∥∥β0(Zt)− β(Zt)
∥∥∥ = sup

1≤t≤n

∥∥∥eMβ(Zt)− eMβ(Zt)
∥∥∥ =OP(h

q+1). (A.9)

Then, we have

‖B4n‖ ≤ sup
1≤t≤n

∥∥∥β0(Zt)− β(Zt)
∥∥∥1
n

n∑

t=1

∥∥∥X1t −A⊤1tX2t

∥∥∥ ·
∥∥∥X2t

∥∥∥

= OP(h
q+1) ·OP(n) =OP(nh

q+1),

as
∥∥∥X1t −A⊤1tX2t

∥∥∥ +
∥∥∥X2t

∥∥∥ = OP(n
1/2). We then complete the proof of Proposition

A.2. �

Proposition A.3. Under the conditions of Theorem 3.1, we have

B2n −B3n⇒
∫ 1

0

[
B1(r)−W⊤(B1,B2)B2(r)

]
dB3(r), (A.10)

where W (B1,B2) is defined in Section 3.

Proof. Observe that

B3n =
1

n

n∑

t=1

(X1t −A⊤1tX2t)X
⊤
2tũt ,

=
1

n

n∑

t=1

(X1t −A⊤1tX2t)X
⊤
2t

{
eS−1t

[
1

n2

n∑

s=1

Kh,stG
−1
h (Qs,t ⊗X2s)us

]}

=
1

n

n∑

s=1

[
1

n2

n∑

t=1

(X1t −A⊤1tX2t)X
⊤
2t

(
eS−1t Kh,stG

−1
h (Qs,t ⊗X2s)

)]
us. (A.11)
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Similar to the proof of Proposition A.1, we can prove that, uniformly in s =

1, · · · ,n,

1

n2

n∑

t=1

(X1t −A⊤1tX2t)X
⊤
2t

[
eS−1t Kh,stG

−1
h (Qs,t ⊗

X2s√
n
)

]
(A.12)

=
1

n2

n∑

t=1

[
X1t −W⊤n (B1,B2)X2t

]
X⊤2t

[
eS−1t Kh,stG

−1
h (Qs,t ⊗

X2s√
n
)

]
+ oP(1)

=
1

n2

n∑

t=1

[
X1t −W⊤n (B1,B2)X2t

]
X⊤2t

{
e
[
∆(µ)⊗

(
n−2

n∑

t=1

X2tX
⊤
2t

)]−1[
m(µ)⊗ X2s√

n

]}
+ oP(1),

where m(µ) = (µ0,µ1, · · · ,µq)⊤.
Let

Vns =
1

n2

n∑

t=1

[
X1t −W⊤n (B1,B2)X2t

]
X⊤2t

{
e
[
∆(µ)⊗

(
n−2

n∑

t=1

X2tX
⊤
2t

)]−1[
m(µ)⊗ X2s√

n

]}
,

and

Θns =
1

n2

n∑

t=1

(X1t −A⊤1tX2t)X
⊤
2t

[
eS−1t Kh,stG

−1
h (Qs,t ⊗

X2s√
n
)

]
−Vns.

By (A.11) and (A.12), we can write that

B3n =
1√
n

n∑

s=1

Vnsus +
1√
n

n∑

s=1

Θnsus, (A.13)

where Θns = oP(1) uniformly in s = 1, · · · ,n.
For any ǫ1 > 0 and ǫ2 > 0, we have

P
{∥∥∥∥

1√
n

n∑

s=1

Θnsus

∥∥∥∥ > ǫ1

}

= P
{∥∥∥∥

1√
n

n∑

s=1

Θnsus

∥∥∥∥ > ǫ1, max
s
‖Θns‖ > ǫ2

}
+

P
{∥∥∥∥

1√
n

n∑

s=1

Θnsus

∥∥∥∥ > ǫ1, max
s
‖Θns‖ ≤ ǫ2

}

≤ P
{∥∥∥∥

1√
n

n∑

s=1

Θnsus

∥∥∥∥ > ǫ1, max
s
‖Θns‖ ≤ ǫ2

}
+P

{
max

s
‖Θns‖ > ǫ2

}

=

E
{∥∥∥

n∑
s=1

Θnsus
∥∥∥2I

(
max

s
‖Θns‖ ≤ ǫ2

)}

nǫ21
+ o(1). (A.14)
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By Assumptions 1 and 2, we can show that

1

n
E
{∥∥∥

n∑

s=1

Θnsus
∥∥∥2I

(
max

s
‖Θns‖ ≤ ǫ2

)}
= o(1) (A.15)

by letting ǫ2→ 0. Further, we can see that

Vns =
1

n2

n∑

t=1

[
X1t −W⊤n (B1,B2)X2t

]
X⊤2te

[
∆(µ)⊗

(
1

n2

n∑

t=1

X2tX
⊤
2t

)]−1[
m(µ)⊗ X2s√

n

]

=
1

n2

n∑

t=1

[
X1t −

[(
1

n2

n∑

s=1

X2sX
⊤
2s

)−1( 1

n2

n∑

s=1

X2sX
⊤
1s

)]⊤
X2t

]
X⊤2t

[(
1

n2

n∑

t=1

X2tX
⊤
2t

)−1X2s√
n

]

=
[
1

n2

n∑

t=1

X1tX
⊤
2t −

(
1

n2

n∑

s=1

X1sX
⊤
2s

)(
1

n2

n∑

s=1

X2sX
⊤
2s

)−1 1

n2

n∑

t=1

X2tX
⊤
2t

][(
1

n2

n∑

t=1

X2tX
⊤
2t

)−1X2s√
n

]

≡ 0. (A.16)

By using (A.13)–(A.16), we prove that

B3n = oP(1). (A.17)

Since

B2n =
1

n

n∑

s=1

(X1s −A⊤1sX2s)us

=
1√
n

n∑

s=1

(
X1s√
n
−Wn(B1,B2)

⊤X2s√
n
)us +

1

n

n∑

s=1

Φnsus

≡ 1√
n

n∑

s=1

U ∗nsus +
1

n

n∑

s=1

Φnsus,

where U ∗ns =
X1s√
n
−Wn(B1,B2)

⊤X2s√
n
, Φns =

X1s√
n
−A⊤1t

X2s√
n
−U ∗ns, and by (A.7) we have

‖Φns‖ = oP(1) uniformly in s = 1, · · · ,n. Similar to (A.14) and (A.15), we then have

that 1
n

∑n
s=1Φnsus = oP(1).

By (A.17) and the definition of B2n, we have

B2n −B3n =
1√
n

n∑

s=1

U ∗nsus + oP(1),

which leads to (A.10). We thus complete the proof of Proposition A.3. �

We next turn to the proof of Theorem 3.2. Similar to Lemma 2 in Xiao (2009)

and Lemma 2 in Gu and Liang (2013), we have the following joint convergence

result.
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Proposition A.4. Under Assumptions 1-6 in Section 3, we have that for r ∈ [0,1]




1√
n

[nr]∑
s=1

x2s

1√
nh

[nr]∑
s=1

usKh,s(z)



=⇒




B2(r)

Bu,z(r)



≡ B̃(r), (A.18)

where B̃(·) is a multivariate Brownian motion with zero mean and variance-covariance

matrix

Ω(z) =




Ω22 0 · · · 0

0 ν0fZ(z)σ
2
u · · · νqfZ(z)σ

2
u

...
...

. . .
...

0 νqfZ(z)σ
2
u · · · ν2qfZ(z)σ

2
u




,

and Ω22 =
∑∞

k=1E
[
x2tx

⊤
2,t+k

]
.

Proof of Theorem 3.2. Note that d2 is assumed to be 1 without loss of generality.

From (2.3), we have that

β̂(z) =A2(z)−A1(z)γ̂ ,

where

A1(z) = e1S−1(z)
[
1

n2

n∑

s=1

Kh,s(z)G
−1
h Qs(z)X2sX

⊤
1s

]
,

A2(z) = e1S−1(z)
[
1

n2

n∑

s=1

Kh,s(z)G
−1
h Qs(z)X2sYs

]
,

S(z) =
1

n2

n∑

s=1

Kh,s(z)G
−1
h Qs(z)Q

⊤
s (z)X2sX2sG

−1
h ,

and as in the proof of Proposition A.1, Zs,h(z) = (Zs − z)/h, Kh,s(z) = K(Zs,h(z)),

Qs(z) =
[
1, (Zs−z), · · · , (Zs−z)q

]⊤
. As d2 = 1, it is easy to see thatGh = diag

(
1,h, · · · ,hq

)

and e is reduced to be e1.
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Then we have

β̂(z)− β0(z) = A2(z)−A1(z)γ̂ − β0(z)

= e1S−1(z)
[
1

n2

n∑

s=1

Kh,s(z)G
−1
h Qs(z)X2s(Ys −X⊤1sγ̂)

]
− β0(z)

= e1S−1(z)
(
1

n2

n∑

s=1

Kh,s(z)G
−1
h Qs(z)X2s

{
X⊤1sγ0 +X2s[β0(Zs)− β0(z)] +us −X⊤1sγ̂

})

= e1S−1(z)
[
1

n2

n∑

s=1

Kh,s(z)G
−1
h Qs(z)X2sus

]
+

e1S−1(z)
[
1

n2

n∑

s=1

Kh,s(z)G
−1
h Qs(z)X2sX

⊤
1s

]
(γ0 − γ̂) +

e1S−1(z)
{
1

n2

n∑

s=1

Kh,s(z)G
−1
h Qs(z)X

2
2s

[
β0(Zs)−

q∑

j=1

β
(j)
0 (z)

(Zs − z)j
j!

]}

≡ e1S−1(z)C1(z) + e1S−1(z)C2(z) + e1S−1(z)C3(z).

We first consider the convergence result for S(z). From (A.5), we have that

1

hfZ(z)
S(z)−∆(µ)

(
1

n2

n∑

s=1

X2sX
⊤
2s

)
= oP(1). (A.19)

We next consider C1(z). Following Theorem 3.1 of Hansen (1992) and (A.18),

by noting thatwjs(z) = Z
j
s,h(z)ush

−1/2Kh,s(z) is a martingale difference sequence with

respect to Fns defined in Assumption 2, we can see that for the typical element of

nh−1/2C1(z)

1√
nh

n∑

s=1

(
Zs − z
h

)j
Kh,s(z)

X2s√
n
us⇒

∫ 1

0
B2(s)dBuz,j(s), j = 0,1, · · · , q,

where Buz(s) =
[
Buz,0(s),Buz,1(s), · · · ,Buz,q(s)

]⊤
. Furthermore, we have that

nh−1/2C1(z)⇒ σuf
1/2
Z (z)Γ1/2(ν)

∫ 1

0
B2(s)dW (s),

where Γ(ν) is defined in Section 3 andW (s) is a (q+1)-dimensional standard Brow-

nian motion. Taking together with (A.19), we obtain

n
√
he1S−1(z)C1(z)⇒ σu

e1∆
−1(µ)Γ1/2(ν)

f 1/2
Z (z)

∫ 1
0
B2
2(s)ds

∫ 1

0
B2(s)dW (s). (A.20)
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Similar as the proof of (A.2), for the typical element of C2(z), we have

1

n2

n∑

s=1

Z
j
s,h(z)Kh,s(z)X2sX

⊤
1s =

1

n

n∑

s=1

{
Z
j
s,h(z)Kh,s(z)−E

[
Z
j
s,h(z)Kh,s(z)

]}
X2s√
n

X⊤1s√
n
+

1

n

n∑

s=1

E
[
Z
j
s,h(z)Kh,s(z)

]
X2s√
n

X⊤1s√
n

= OP(h).

Thus, we have

1

n2

n∑

s=1

Kh,s(z)G
−1
h Qs(z)X2sX

⊤
1s =OP(h).

From Theorem 3.1, γ̂ −γ =OP(n
−1), then we have

n
√
he1S−1(z)C2(z) =OP(n

√
hh−1hn−1) =OP(

√
h) = oP(1). (A.21)

We finally consider C3(z). For the typical element of h−1C3(z), following similar

arguments as (A.3) and (A.4) in the proof of Proposition A.1, we have

1

n

n∑

s=1

X2
2s

n

(
Zs − z
h

)j
Bq (Zs, z)h

−1Kh,s(z)

=
1

n

n∑

s=1

X2
2s

n
E

[(
Zs − z
h

)j
Bq (Zs, z)h

−1Kh,s(z)

]
+

1

n

n∑

s=1

X2
2s

n

{(
Zs − z
h

)j
Bq (Zs, z)h

−1Kh,sz −E
[(
Zs − z
h

)j
Bq (Zs, z)h

−1Kh,s(z)

]}

=
hq+1fZ(z)µj+q+1

(q +1)!
β
(q+1)
0 (z)

∫ 1

0
B2
2(s)ds + oP(h

q+1),

where Bq(Zs, z) = β0(Zs)−
∑q

j=1β
(j)
0 (z)

(Zs−z)j
j! . Hence, we obtain

h−1C3(z) =
hq+1fZ(z)β

(q+1)
0 (z)

(q +1)!

(
µq+1,µq+2, · · · ,µ2q+1

)⊤∫ 1

0
B2
2(s)ds + oP(h

q+1).

Therefore, we have

e1S−1(z)C3(z)−
hq+1β

(q+1)
0 (z)

(q +1)!
e1∆

−1(µ)
(
µq+1,µq+2, · · · ,µ2q+1

)⊤
= oP(h

q+1). (A.22)

Combining (A.20)–(A.22) and using the continuousmapping theorem (Billings-
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ley, 1999), we have

n
√
h
[
β̂(z)− β0(z)− bz

]

= n
√
h
{
e1S−1(z)C1(z) + e1S−1(z)C2(z) +

[
e1S−1(z)C3(z)− bz

]}

= n
√
he1S−1(z)C1(z) + oP(1)

⇒ σu
e1∆

−1(µ)Γ1/2(ν)

f 1/2
Z (z)

∫ 1
0
B2
2(s)ds

∫ 1

0
B2(s)dW (s)

≡ MN(Σz),

where

bz =
hq+1β

(q+1)
0 (z)

(q +1)!
e1∆

−1(µ)
(
µq+1,µq+2, · · · ,µ2q+1

)⊤

and

Σz =
σ2
ue1∆

−1(µ)Γ(ν)∆−1(µ)e⊤1

fZ(z)
∫ 1
0
B2
2(s)ds

.

This completes the proof of Theorem 3.2. �

REFERENCES

Billingsley, P. (1999) Convergence of Probability Measures (2nd Edition). Wiley Series in Probability

and Statistics.

Cai, Z., Q. Li, and J. Park (2009) Functional-coefficient models for nonstationary time series data.

Journal of Econometrics 148, 101-113.

Chen, J., D. Li, and L. Zhang (2010) Robust estimator in a nonlinear cointegration model. Journal

of Multivariate Analysis 101, 706-717.

Chen, J., J. Gao, and D. Li (2012) Estimation in semiparametric regression with nonstationary

regressors. Bernoulli 18, 678-702.

Fan, J., and I. Gijbels (1996) Local Polynomial Modelling and Its Applications. London: Chapman &

Hall/CRC.

Fan. J., and T. Huang (2005) Profile likelihood inference on semiparametric varying coefficient

partially linear models. Bernoulli 11, 1031-1059.

Gu, J., and Z. Liang (2013) Testing cointegration relationship in a semiparametric varying coeffi-

cient model. Journal of Econometrics, forthcoming.

Hansen, B.E. (1992) Convergence to stochastic integrals for dependent heterogeneous processes.

Econometric Theory 8, 489-500.

22



Hansen, B.E. (2008) Uniform convergence rates for kernel estimation with dependent data. Econo-

metric Theory 24, 726-748.

Juhl, T., and Z. Xiao (2005) Partially linear models with unit roots. Econometric Theory 21, 877-

906.

Li, D., J. Chen, and Z. Lin (2011) Statistical inference in partially time-varying coefficient models.

Journal of Statistical Planning and Inference 141, 995-1013.

Li, Q., and J.S. Racine (2007) Nonparametric Econometrics: Theory and Practice, Princeton Uni-

versity Press, Princeton.

Masry, E. (1996) Multivariate local polynomial regression for time series: uniform strong consis-

tency and rates. Journal of Time Series Analysis 17, 571-599.

Park, J.Y., and S.B. Hahn (1999) Cointegrating regressions with time varying coefficients. Econometric

Theory 15, 664-703.

Park, J. Y., and P. C. B. Phillips (1988) Statistical inference in regression with integrated processes:

part 1. Econometric Theory 4, 468-497.

Park, J. Y., and P. C. B. Phillips (1989) Statistical inference in regression with integrated processes:

part 2. Econometric Theory 5, 95-131.

Park, J. Y., and P. C. B. Phillips (2001) Nonlinear regressions with integrated time series. Econometrica

69, 117-161.

Phillips, P.C.B. (1986) Optimal inference in cointegrated systems. Econometrica 59, 283-306.

Phillips, P.C.B., and S.N. Durlauf (1986) Multiple time series regression with integrated processes.

Review of Economic Studies 53, 473-495.

Phillips, P.C.B., D. Li, and J. Gao (2013) Estimating smooth structural change in cointegration

models. Cowles Foundation Discussion Paper No. 1910, Yale University.

Saikkonen, P. (1995) Problems with the asymptotic theory of maximum likelihood estimation in

integrated and cointegrated systems. Econometric Theory 11, 888-911.

Sun, Y., and Q. Li (2011) Data-driven bandwidth selection for nonstationary semiparametric mod-

els. Journal of Business and Economic Statistics 29, 541-551.

Wang, Q., and P.C.B. Phillips (2009a) Asymptotic theory for local time density estimation and

nonparametric cointegrating regression. Econometric Theory 25, 710-738.

Wang, Q., and P.C.B. Phillips (2009b) Structural nonparametric cointegrating regression. Econo-

metrica 77, 1901-1948.

Xiao, Z. (2009) Functional-coefficient cointegration models. Journal of Econometrics 152, 81-92.

Zhou, Y., and H. Liang (2009) Statistical inference for semiparametric varying-coefficient partially

linear models with error-prone linear covariates. The Annals of Statistics 37, 427-458.

23


