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Abstract—Robust estimation of vehicle states (e.g., vehicle
sideslip angle and roll angle) is essential for vehicle stability
control applications such as yaw stability control and roll sta-
bility control. This paper proposes novel methods for estimating
sideslip angle and roll angle using real-time lateral tire force
measurements, obtained from the multi-sensing hub (MSHub)
units, for practical applications to vehicle control systems of in-
wheel-motor-driven electric vehicles. In vehicle sideslip estima-
tion, a recursive least squares (RLS) algorithm with a forgetting
factor is utilized based on a linear vehicle model and sensor
measurements. In roll angle estimation, the Kalman filter is
designed by integrating available sensor measurements and roll
dynamics. The proposed estimation methods, RLS-based sideslip
angle estimator and the Kalman filter are evaluated through
field tests on an experimental electric vehicle. The experimental
results show that the proposed estimator can accurately estimate
the vehicle sideslip angle and roll angle. It is experimentally
confirmed that the estimation accuracy is improved by more than
50% comparing to conventional method’s one (see RMS error
shown in Fig. 4). Moreover, the feasibility of practical applications
of the lateral tire force sensors to vehicle state estimation is
verified through various test results.

Index Terms—Electric vehicles, Kalman filter, multi-sensing
hub (MSHub) unit, recursive least squares (RLS), roll angle,
sideslip angle.

I. INTRODUCTION

DUE to the increasing concerns about advanced motion

control of electric vehicles with in-wheel motors, a great

deal of research on dynamics control for electric vehicles has

been carried out [1]–[6]. Advanced motion control systems

for electric vehicles, slip prevention, spinout prevention, and

excessive roll prevention, are referred to as yaw stability

control and roll stability control, respectively. Compared with

internal combustion engine vehicles, electric vehicles with in-

wheel motors have several advantages in the viewpoint of

motion control [1], [3].
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1) The torque generation of driving motors is very fast and

accurate.

2) The driving torque can be easily measured from motor

current.

3) Each wheel with an in-wheel motor can be indepen-

dently controlled.

Based on these advantages, a novel yaw moment control

method based on the yaw moment observer (YMO) was

proposed in [7] and roll stability control for safety and driver’s

ride quality was proposed and verified with experimental

results [8]. In most vehicle stability control systems, only a

direct yaw rate feedback is used for improving the stability

performances. However, on slippery road surfaces, controlling

the vehicle sideslip angle to prevent it from becoming too large

is also beneficial [9], [33].

Since the goal of aforementioned stability control systems

is to control yaw rate, vehicle sideslip angle and roll angle,

sensor measurements of yaw rate, vehicle sideslip angle,

and roll angle are required. Yaw rate is easily measured

by a cheap gyro sensor. However, since sensors for vehicle

sideslip angle and roll angle are expensive, these must be

estimated from available measurements and vehicle models.

For this reason, a variety of estimation methods for estimating

vehicle sideslip angle have been studied extensively [10]–

[14]. Estimation methods based on state observers and Kalman

filter design using a linear vehicle model were proposed

and experimentally validated [15], [16]. Since linear vehicle

model-based methods use constant vehicle and tire parameters,

this method is not robust against parameter variations by

changes in tire road conditions and driving conditions. In

[17], the body slip angle fuzzy observer was proposed to

deal with the nonlinearities in a vehicle model by representing

the nonlinear models as Takagi-Sugeno (T–S) fuzzy models.

In [18] and [19], nonlinear techniques for estimating lateral

tire forces and sideslip angle, using extended and unscented

Kalman filters, were proposed and evaluated by field tests.

In [18], especially, the estimation method using nonlinear

models shows the practical potential as a low-cost solution for

calculating lateral tire forces and sideslip angle in real-time.

In [20], [21], an adaptive sideslip angle observer considering

tire-road friction adaptation (e.g., adaptation algorithm was

designed using lateral vehicle dynamics) was proposed. A

new methodology of combining a vehicle model-based method

and a kinematics-based method was proposed and evaluated

by experiments [11], [15]. Moreover, several researchers have
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proposed new estimation methods using Global Positioning

System (GPS) and inertial measurements to estimate vehicle

sideslip angle without knowing the vehicle model [22], [28].

Over the last few years, several estimation methods were

proposed to estimate roll states based on vehicle dynamics

models without using additional sensors (e.g., roll rate sensor)

[23]–[25]. In [25], several methods for roll angle estimation

were discussed based on advantages and drawbacks of each

method. Moreover, an approach using closed loop adaptive

observer for roll angle and roll rate estimation was proposed

and evaluated. In [23], a road-disturbance decoupled roll state

estimator was designed, by combining the lateral model-

based estimation method and vertical model-based estimation

method, and evaluated by computer simulations. In other

approaches [26]–[28], GPS with two laterally placed GPS an-

tennas was used to estimate roll angle. GPS-based estimation

approaches require satellite visibility from any location. How-

ever, the satellite visibility may be lost periodically in urban

and forested driving environments and it causes inaccurate

estimation. Even though GPS provides relatively accurate roll

angle estimates under limited driving environments, it has a

difficulty in vehicle applications due to the additional sensor

cost.

In this paper, novel estimation methods based on lateral

tire forces, measured by multi-sensing hub (MSHub) units

[36], are proposed to provide accurate estimates of vehicle

sideslip angle and roll angle. The recursive least squares (RLS)

algorithm with a forgetting factor, which has been extensively

utilized in the time-varying system identification [29], [34],

was used to estimate lateral vehicle velocity for calculating

sideslip angle. For estimating roll angle, the Kalman filter

[35] was designed by using available sensor measurements

and lateral vehicle velocity estimated from RLS. Kalman filter

applications in vehicle state estimations have been widely

discussed in the literature [14], [18], [30], and [31]. In order

to make the best use of the advantages of in-wheel-motor-

driven electric vehicles, it is necessarily required to accurately

estimate the unmeasurable states using cost-effective sensors.

At this point, this study presents the practical potential of

MSHub units as a cost-effective solution for estimating vehicle

states, which can improve the performance of vehicle control

systems for in-wheel-motor-driven electric vehicles.

This paper is organized as follows. The vehicle model for

estimator design is introduced in Section II. The conventional

methods for estimating the vehicle sideslip angle are reviewed

and a novel estimation method using MSHub units is proposed

and evaluated by experiments in Section III. In Section IV, a

Kalman filter for roll state estimation is designed and response

characteristics of a lateral acceleration sensor and MSHub

units are discussed. In Section V, the experimental electric ve-

hicle is introduced. In addition, the estimation results obtained

from field tests are illustrated to validate and evaluate the

estimation performance of a proposed Kalman filter. Finally,

summary and conclusion are given in Section VI.

II. VEHICLE DYNAMICS FOR ESTIMATOR DESIGN

In this section, a three degree-of-freedom (3–DOF) yaw

plane model is introduced to describe the lateral motion of
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Fig. 1. 3–DOF yaw plane vehicle model.

electric vehicles. The yaw plane representation is shown in

Fig. 1.

The governing equations for longitudinal and lateral motions

are given by

max = F x
r + F x

f cosδf − F y
f sinδf (1)

may = F y
r + F x

f sinδf + F y
f cosδf (2)

where the steering angles of front left and right wheels are

assumed to be the same (i.e., = δf ), front longitudinal tire

force F x
f is the sum of the front left and right longitudinal

tire forces (i.e., F x
f = F x

fl + F x
fr), rear longitudinal tire force

F x
r is the sum of the rear left and right longitudinal tire forces

(i.e., F x
r = F x

rl+F x
rr), front lateral tire force F y

f is the sum of

the front left and right lateral tire forces (i.e., F y
f = F y

fl+F y
fr),

and rear lateral tire force F y
r is the sum of the rear left and

right lateral tire forces (i.e., F y
r = F y

rl + F y
rr).

The yaw moment balance equation with respect to point CG

is

Iz γ̇ = lfF
x
f sinδf + lfF

y
f cosδf − lrF

y
r +Mz (3)

where the yaw moment, Mz , indicates a direct yaw moment

control input, which is generated by the independent torque

control of in-wheel motors. During yaw motion control, Mz is

the control law to stabilize the vehicle motion and play a role

as an additional input to the vehicle. Therefore, Mz is included

in yaw moment balance equation and can be calculated as

follows:

Mz =
d

2
(F x

rr − F x
rl) +

d

2
(F x

fr − F x
fl)cosδf . (4)

Here, longitudinal tire forces can be obtained from a driving

force observer which is designed based on wheel dynamics

[32].

The tire slip angles are calculated based on geometric

derivation using wheel velocity vectors. If the velocities at

wheel ground contact points are known, the tire slip angles

can be easily derived geometrically and are given by [33]

αfl = −δf + tan−1

(

vy + γlf
vx − γd/2

)

(5)

αfr = −δf + tan−1

(

vy + γlf
vx + γd/2

)

(6)

αrl = tan−1

(

vy − γlr
vx − γd/2

)

(7)

αrr = tan−1

(

vy − γlr
vx + γd/2

)

. (8)
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For design simplicity, the single track vehicle model (also

called the bicycle model) is usually used in estimator design.

By assuming that δf is relatively small, the lateral and yaw rate

dynamics including a yaw moment control input are obtained

as follows [17]:

may = mvx(β̇ + γ) = F y
f + F y

r (9)

Iz γ̇ = lfF
y
f − lrF

y
r +Mz. (10)

For small tire slip angles, the lateral tire forces can be

linearly approximated as follows:

F y
f = −2Cfαf = −2Cf

(

β +
γlf
vx

− δf

)

(11)

F y
r = −2Crαr = −2Cr

(

β −
γlr
vx

)

. (12)

III. DESIGN OF ROBUST SIDESLIP ANGLE ESTIMATOR

The vehicle sideslip angle is defined as the angle between

the longitudinal axis of the vehicle and the orientation of

vehicle velocity vector [33]. The vehicle sideslip angle, shown

in Fig. 2, is obtained as

β = tan−1

(

vy
vx

)

. (13)
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Fig. 2. Vehicle coordinates and tire slip angle: (a) Body fixed to global
coordinates. (b) Tire slip angle.

A. Review on Conventional Sideslip Angle Estimation Meth-

ods

The conventional estimation methods of sideslip angle were

proposed based on model-based observer design and direct

sensor integration [11]. The model-based estimation method

has the advantages of high accuracy in linear tire region

and robustness against sensor bias. However, the estimation

accuracy is dominantly dependent on vehicle parameters, tire

parameters, and driving conditions. Since it is difficult to

correctly identify the vehicle parameters (e.g., mass) and tire

parameters (e.g., tire cornering stiffness) in real-time, a model-

based estimation method can not provide reliable estimation

over all driving conditions.

In the model-based estimation method, a linear bicycle

model is used for estimator design. Based on a linear bicycle

model and a linear tire model, state observers and Kalman

filter were mainly used for sideslip angle estimation [15], [16].

Based on state space equations obtained from (9)–(12), a state

observer is designed as follows:

˙̂x = Abx̂+Bbu+ L(y − ŷ)
ŷ = Cbx̂

(14)

where x̂ = [β̂mod γ̂]T , u = [δf Mz]
T , and y = γ

Ab =







−2(Cf + Cr)
mvx

−2(lfCf − lrCr)

mv2x
− 1

−2(lfCf − lrCr)
Iz

−2(l2fCf + l2rCr)
Izvx







Bb =







2Cf

mvx
0

2lfCf

Iz

1
Iz






, Cb = [ 0 1 ] .

From the above state observer, the model-based sideslip

angle estimate, β̂mod, is obtained. The critical aspect of this

approach is that estimation performance dominantly relies on

the tire model and variations in vehicle parameters. In order to

minimize the effects of model mismatch, several researchers

have proposed estimation methods for cornering stiffness,

which is dependent on tire-road friction coefficients. In [17],

a novel linear observer that uses a lateral acceleration sensor

and yaw rate sensor as sensor measurements was proposed,

and a fuzzy rule-based observer was also designed in order to

cope with nonlinearities in vehicle models.

The sensor kinematics-based estimation method is based on

the kinematic relationship among sensor measurements [11].

The equation of sensor kinematics is expressed as

˙̂
βkin =

aym − gφ

vx
− γ. (15)

In order to obtain sideslip angle from (15), a direct numerical

integration of (15) is required, but this causes a signal drift

problem due to sensor bias. Moreover, since the lateral accel-

eration measurement contains a gravity effect caused by roll

motion, the gravity effect should be compensated for accurate

estimation (e.g., over-estimation is avoided by compensating

the gravity effect). In practice, the numerical integration with

a suitable forgetting factor is carried out to avoid severe signal

drift.

In [11] and [13], the combined method of model-based

estimation and kinematics-based estimation was proposed to

make use of advantages of the two estimation methods. The

model-based estimate is used at low frequencies (i.e., with

low pass filter) while the kinematics-based estimate is used at

higher frequencies (i.e., with high pass filter). The estimated

sideslip angle from the combined estimation method was

expressed as [11]

β̂com =
1

1 + τs
β̂mod +

τ

1 + τs
˙̂
βkin

=
1

1 + τs
β̂mod +

τs

1 + τs
β̂kin. (16)

Here, the parameter, τ , is utilized for the filter setting.
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B. Proposed Sideslip Angle Estimation Method

A novel method to estimate vehicle sideslip angle is

proposed based on lateral vehicle velocity estimation. The

proposed method uses the lateral tire forces which can be

measured from MSHub units. Note that if the vehicle longi-

tudinal and lateral velocities are obtained, the vehicle sideslip

angle can be easily calculated. The lateral vehicle velocity is

estimated using a RLS algorithm and its estimate is used to

finally calculate the vehicle sideslip angle. In order to design a

lateral vehicle velocity estimator, a simplified lateral tire force

model (i.e., neglecting longitudinal tire force effects, see [33])

is used.

F y
i = −Citan(αi). (17)

The above simplified lateral tire force model is applied to

front left and right tires, respectively. For purposes of lateral

vehicle velocity estimation, lateral tire force models for front

tires are utilized based on following assumptions.

1) The left and right tires have pure tire slip conditions

with negligible longitudinal slip and the peak lateral

tire force occurs at the same tire slip angle. Tire slip

angles, where the peak lateral tire forces occur at, are

affected by weight transfer of vehicles. In contrast to

engine vehicles, in-wheel-motor-driven electric vehicles,

having battery packs under the floor and driving motors

attached in wheels, can lower a CG of the vehicle. This

provides the less weight transfer and thereby improves

the driving stability. From these features, variations in

front left and right tire forces due to weight transfer are

not considered.

2) Front left and right tire cornering stiffnesses are the same

(i.e., Cfl=Cfr≈Cf ). Considering that front tires are on

the same road surface and effects of weight transfer are

not critical, effects of weight transfer in tire cornering

stiffnesses of left and right tires are not considered.

3) From small angle approximations, tan(αi) ≈ αi.

From the above assumptions, front lateral tire forces can be

expressed as

F y
fl = −Cflαfl ≈ −Cf

(

vy + γlf
vx − γd/2

− δf

)

(18)

F y
fr = −Cfrαfr ≈ −Cf

(

vy + γlf
vx + γd/2

− δf

)

. (19)

By dividing (18) by (19), the lateral vehicle velocity vy is

derived as

vy = γlf −
δf (F

y
fl − F y

fr)

F y
fl

vx + γd/2
−

F y
fr

vx − γd/2

(20)

where the estimated lateral vehicle velocity is defined as a

pseudo-measurement and expressed as ṽy . As described in

(20), the proposed estimation method makes use of the ratio of

front left and right lateral tire forces and is based on linearized

tire models of front left and right tires by above assumptions.

Even though we use linearized tire models in estimator design,

the proposed estimator shows better estimation results with

relatively small errors compared with results of conventionally

used methods, even when lateral tire forces reach a peak value

(e.g., up to 5m/s2 of lateral acceleration, see Fig. 3(b)). We

can confirm that a proposed estimator is robust against road

conditions without using complicated nonlinear tire models

only if front tires are on the same road surface. In section IV,

this pseudo-measurement ṽy is used as a sensor measurement

in the roll angle estimator using a Kalman filter.

Considering that all output data and input data are deter-

mined at sample instant, vy described in (20) can thus be

formulated by the RLS algorithm.

y(t) = ϕT (t)θ(t) (21)

where the estimated parameter θ(t), input regression ϕT (t),
and measured output y(t) are given as

θ(t) = ṽy

ϕT (t) =

(

F y
fl

vx + γd/2
−

F y
fr

vx − γd/2

)

y(t) = γlf

(

F y
fl

vx + γd/2
−

F y
fr

vx − γd/2

)

− δf (F
y
fl − F y

fr).

The ultimate goal of the RLS algorithm is to provide

parameter estimates that minimize the following weighted least

squares criterion [34]:

θ̂(t) = argmin
θ

{

t
∑

k=1

Γ(t, k)·ρ[ε(k|θ)]

}

. (22)

Here, Γ(t, k) is the weight on the prediction errors at time k,

and ρ(ε) is the cost function which is defined as ρ(ε) =
1

2
ε2.

If the prediction errors can be assumed to be Gaussian with

zero mean values, the defined cost function is reasonable.

The recursive process of the RLS algorithm, in a Kalman

filter interpretation, is described as

θ̂(t) = θ̂(t− 1) +K(t)·ε
(

t|θ̂(t− 1)
)

ε
(

t|θ̂(t− 1)
)

= y(t)− ŷ
(

t|θ̂(t− 1)
)

= y(t)− ϕT (t)·θ̂(t− 1)

K(t) = P (t− 1)ϕ(t)[λI + ϕT (t)P (t− 1)ϕ(t)]−1

P (t) =
1

λ
[I −K(t)ϕT (t)]P (t− 1) (23)

where I is the identity matrix, ε(t) is the prediction error, and

K(t) and P (t) are the Kalman gain and covariance matrices.

In order to cope with time-varying properties in a vehicle

system, the weighted least squares criterion (22) is handled

by putting less weight on older measurements. Therefore, the

weighting function is set to [34]

Γ(t, k) = λt−k (24)

where the forgetting factor, λ, is always chosen to be a positive

constant slightly smaller than 1. The smaller λ is, the less

weight is assigned to the older data; that is, the past data are

forgotten faster. In this paper, λ around 0.995 was selected to

make reasonable trade-off between tracking ability and noise

sensitivity. From the RLS algorithm (23), the lateral vehicle
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velocity is estimated and used to calculate the vehicle sideslip

angle. The sideslip angle is easily calculated by (13) with

vehicle velocity and pseudo-measurement ṽy . The average

value of the non-driven wheel velocities is used as a vehicle

velocity. Considering that an electric vehicle used in field tests

was a rear-wheel drive vehicle, it is reasonable to use non-

driven wheel’s velocity as a vehicle velocity. In case that the

wheel slip occurs in non-driven wheels due to sudden braking,

we can not use non-driven wheel’s velocity for calculating the

vehicle velocity. However, rear-wheel drive electric vehicles

have Anti-lock Braking System (ABS), which contributes to

keeping a vehicle steerable and stable during heavy braking

moments by preventing wheel lock, for efficient braking of

non-driven wheels and thereby severe wheel slip in non-driven

wheels can be avoided.

Compared with the aforementioned conventional estimation

methods, the main advantages of the proposed estimation

method, utilizing lateral tire force sensors, are summarized in

three points. First, it is robust against variations in vehicle

parameters and tire-road conditions. Second, the proposed

method can be easily realized without using additional sensors.

Finally, the proposed recursive algorithm is very simple and

can be easily implemented in real-time. Moreover, the esti-

mated sideslip angle can be used to identify cornering stiffness

in (18) and (19). The real-time information on cornering

stiffness will contribute to improving the control performance

of advanced motion control systems.

C. Experimental Results

The proposed estimation method was implemented on the

experimental electric vehicle shown in Fig. 9. Moreover,

to verify the effectiveness of the proposed method through

comparison study, conventional estimation methods were also

implemented and those results are evaluated by comparing the

results of a proposed method. The specification and explana-

tion for the experimental electric vehicle are introduced in

section V.

In this study, a variety of field tests were performed with

following driving conditions: 1) constant vehicle speed; 2)

various steering commands, e.g., pulse steering, sine steering,

and random steering; 3) without activation of vehicle motion

controllers such as anti-slip control or yaw stability control

(this means that the same current commands are applied to

rear left and right in-wheel motors, i.e., control input Mz in

(3) is equal to zero); 4) rear-wheel driving mode.

Experimental results obtained from a random steering test

at vx=40 km/h are shown in Fig. 3(a). Even though estimated

sideslip angles obtained from model-based estimation method

and combined method follow the measured sideslip angle,

there still exist estimation errors due to model uncertainties

in the observer model and numerical integration errors. On

the other hand, the proposed estimation method shows more

accurate estimation. In this result, the sensor measurement

(i.e., thick gray line) is the actual value which is directly

measured from the non-contact optical sensor. Fig. 3(b) and

(c) show the results obtained from a pulse steering test and

slalom test at vx=50 km/h on wet asphalt, respectively. The
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Fig. 3. Experimental results for the sideslip angle estimation: (a) Random
steering test on dry asphalt (i.e., µ≃0.9); maximum lateral acceleration 5
m/s2. (b) Pulse steering test on wet asphalt (i.e., µ=0.7); maximum lateral
acceleration 6 m/s2. (c) Slalom test on wet asphalt (i.e., µ≃0.7); maximum
lateral acceleration 4 m/s2. (d) Slalom test on a slippery road (i.e., µ≃0.3);
maximum lateral acceleration 2 m/s2 .
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Fig. 4. Calculated RMS errors for estimation.

estimation results for two conventional methods contain errors

with phase lag. The proposed estimation method provides very

accurate estimation without any noticeable phase lag. To verify

the robustness of the proposed estimation method, field tests

on a slippery road (i.e., µ≃0.3) were also carried out and its

result is shown in Fig. 3(d). Even though the results show

larger estimation errors compared with the results on dry and

wet asphalt, the estimation error was significantly decreased

by applying the proposed method.

For quantitative evaluation of the proposed estimation

method, the RMS values of estimation errors for different field

tests were compared.

RMS error =

√

√

√

√

1

N

N
∑

j=1

(β̂j − βsensor,j)2 (25)

where N is the number of samples. β̂j and βsensor,j represent

the estimated and measured sideslip angles at the jth sample.

(a),(b),(c), and (d), seen in Fig. 4, correspond to the test results,

shown in Fig. 3(a)–(d). As shown in Fig. 4, the proposed

estimation method shows much smaller RMS values.

IV. DESIGN OF ROLL ANGLE ESTIMATOR

Vehicle roll motion generally occurs as a result of lateral

motion by steering maneuvers or road disturbances. In contrast

to conventional engine vehicles, electric vehicles with in-

wheel motors have a low ratio of sprung mass over unsprung

mass due to having in-wheel motors installed in each wheel.

This implies that ride quality can be deteriorated. In order

to avoid deterioration in ride quality, the suspension stiffness

was selected as a smaller value. It indicates that the roll motion

easily occurs. Thus, a roll stability control system is required

and an accurate roll angle should be obtained before control

design. In this section, a roll angle estimation method, which

uses sensor kinematic relationships and a linear roll model,

is introduced. In a proposed roll angle estimator, lateral tire

forces which are measured by MSHub units are utilized to

estimate roll angle for the first time.

A. Roll Dynamics for Kalman Filter Design

This section introduces roll dynamics for Kalman filter

design. Fig. 5 shows the two-dimensional roll dynamics for

electric vehicles with in-wheel motors. In order to model the

roll dynamics, the following assumptions are made:

SCG

RC

y

leftF y

rightF

s ym a

φ

sm g

RCh

rollh

yma

Z

Y

z

y

M
o
to
r

M
o
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r

y

eqF

Fig. 5. 2–dimensional roll dynamics for an electric vehicle.

1) The location of the roll axis is constant with height hRC

and the lateral and vertical movements of RC due to the

asymmetric suspension geometry are not considered.

2) Since roll angle is small, sinφ ≈ φ and cosφ ≈ 1.

3) Pitching and bouncing motion of sprung mass are ne-

glected.

4) The effect of the road bank angle is not considered in

this study.

The two-dimensional roll dynamic equation [24], the kine-

matic relationships of the lateral acceleration of CG, ay, and

sensor measurement, aym, are expressed as

Ixφ̈+ Crollφ̇+Krollφ = ms(aym)hroll

= ms(ay + gφ)hroll (26)

ay = v̇y + γvx (27)

aym = v̇y + γvx + gφ. (28)

In (26), a roll moment acting on the sprung mass, which

is caused by lateral motion, can be explained by lateral

inertial force and gravity force of the sprung mass. The

lateral acceleration effect in roll moment generation can be

equivalently explained by lateral tire forces applied on tires,

and the equivalent equation using lateral tire forces can be

derived from the roll moment balance equation with respect

to point RC as seen in Fig. 5.
∑

Mx = ms(ay + gφ)hroll = F y
eqhRC . (29)

Here, F y
eq is the equivalent lateral tire force causing roll

motion, which corresponds to roll motion caused by lateral

acceleration of sprung mass. In (29), F y
eq is replaced by lateral

tire forces measured from the MSHub units, installed in each

wheel. Therefore, an external roll moment acting on the sprung

mass is explained with lateral tire forces.

F y
eqhRC ≈ (F y

left + F y
right)hRC =

4
∑

i=1

(F y
i )hRC . (30)

Combining (26), (29), and (30), and using lateral tire forces

as an external input, the following roll dynamics is obtained.

Ixφ̈+ Crollφ̇+Krollφ =
4
∑

i=1

(F y
i )hRC . (31)
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Fig. 6. Roll moment induced by the lateral vehicle motion: (a) Driving on
dry asphalt (µ≃0.9). (b) Driving on a slippery road (µ≃0.3).

In contrast to conventional roll model-based estimation

methods, the proposed roll angle estimation method uses

lateral tire forces as inputs. Therefore, the effects of nonlinear

tire characteristics (e.g., tire deflection by load transfer) can be

considered in roll dynamics by directly using measured lateral

tire forces. In this paper, two Kalman filters are designed–one

that uses lateral tire force measurements (“Fy-based method”),

and one that uses lateral acceleration measurements (“Ay-

based method”). Since the MSHub units are superior to the

lateral acceleration sensor in response time, it is expected that

estimations based on lateral tire force measurements will lead

that of estimations based on lateral acceleration measurements.

Since the main source of lateral dynamic motion is the lateral

tire force induced by driver’s steering actions, the measured

lateral tire forces can provide accurate estimation of vehicle

states.

In order to check the response characteristics of two sensors

(i.e., a lateral acceleration sensor and a MSHub unit), the roll

moments, described in (29), were calculated from experiment

data obtained in field tests on dry asphalt and a slippery

road, respectively. From field test data, it is founded that the

response time difference between a MSHub unit and a lateral

acceleration sensor ranges from 80msec to 200msec. Fig. 6

shows the roll moments calculated from (29). As shown in

Fig. 6, the roll moment calculated from lateral acceleration

measurements has phase lag compared with the calculated roll

moment from lateral tire force measurements.

B. Kalman Filter Design for Roll Angle Estimation

In this section, vehicle states are estimated using available

sensor measurements and roll dynamics. The Kalman filter

Preliminary Estimator

RLS

States EstimatorSensor Measurement

§ Wheel speed

§ Steering angle

§ Yaw rate

§ Lateral acceleration

§ Lateral tire forces
 
§ In-wheel motor 

torque

yvɶ

  y y

f rF Fγ  

Kalman Filter

Pseudo-measurement

Sensor measurement

 ym za M  
Input

Fig. 7. Schematic of the roll angle estimator.

was applied to estimate unknown states (e.g., roll angle and

roll rate) and to smoothen the sensor measurement noise. An

overall structure of the proposed state estimator is shown in

Fig. 7. The process of roll angle estimation can be divided

into two stages: first, the preliminary estimation of a lateral

vehicle velocity is conducted using the sensor measurements;

second, this preliminary estimate (i.e., pseudo-measurement)

and available sensor measurements are used in Kalman filter

design for roll angle estimation. The estimated vy from (20)

is considered as a measurement variable, called a pseudo-

measurement ṽy, and thereby (28) can be rewritten as follows:

˙̃vy = aym − γvx − gφ. (32)

From (10), (31), and (32), the state space equation for

Kalman filter design is obtained as

ẋ = Ax+Bu+ w
y = Cx+ v

(33)

where A, B, and C are defined at the top of the next page.

State variables, inputs, and measurement outputs are defined

as

x = [ ṽy γ φ φ̇ F y
f F y

r ]T , u = [ aym Mz ]T ,

y = [ ṽy γ F y
f F y

r ]T .

Note that the system described by (33) could be completely

observable by using ṽy in (32) as a sensor measurement.

Observability, which is concerned with the problem of de-

termining the states of a dynamics system from observations

of the output and control vectors, is examined through a

rank condition on the Kalman observability matrix. By using

pseudo-measurement ṽy, (A,C) is observable (which means

that observability matrix has full rank).

For real-time implementation, (33) is discretized as follows:

x[k + 1] = G[k]x[k] +H[k]u[k] + w[k]
y[k] = C[k]x[k] + v[k]

(34)

where

G[k] = eATs , H[k] =

∫ Ts

0

eAτBdτ

C[k] = C, Ts : Sampling time.

Here, w[k] and v[k] are the process noise and measurement

noise, k is the time step. It is assumed that the process and
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measurement noise are zero-mean Gaussian processes, and the

covariance matrices are given as follows:

Qw = E(w[k]w[k]T ) > 0 (35)

Rv = E(v[k]v[k]T ) ≫ 0 (36)

E(w[k]v[k]T ) = 0. (37)

The Kalman filter bandwidth and its susceptibility to sensor

measurement noise totally depend on the process noise covari-

ance matrix Qw and the measurement noise covariance matrix

Rv , which represent level of confidence placed in the accuracy

of the observer model and sensor measurements. These ma-

trices determine the filter characteristics including accuracy

and response, and their matrix values were experimentally

determined by using sensor measurements. In this paper, the

covariance matrices of process noise and measurement noise

are given as follows:

Qw = diag[Qṽy
, Qγ , Qφ, Qφ̇, QF

y

f
, QF

y
r
] (38)

Rv = diag[Rṽy , Rγ , RF
y

f
, RF

y
r
]. (39)

In principle, the covariance matrices are not necessarily

diagonal. However, treating the noise covariance matrix as

a diagonal matrix (i.e., individual noise components are not

cross-correlated) is advantageous since it reduces computation

time. In selection of covariance matrices, it should be noted

that the less noise in sensor measurements compared to the

uncertainty in dynamics model, the more the states will

be adapted to follow sensor measurements. Since the new

measurements for lateral tire forces are much more accurate

than the prior estimates, we put the high uncertainty on

states (i.e., lateral tire forces). The states (e.g., roll angle and

roll rate) are modeled using reliable vehicle roll dynamics.

Therefore, the process noises are relatively small. The suitable

process noise variances for other states (e.g., lateral vehicle

velocity and yaw rate) are selected based on comparison to

the corresponding measurement noise variances. The noise

variances of three sensor measurements are determined from

statistical data analysis (e.g., a statistical evaluation of the

histogram) using Matlab software.

The Kalman filter, designed based on (33)–(39), performs

filtering and prediction [35]. The basic steps of computational

procedure for the Kalman filter are illustrated in Fig. 8.

V. EXPERIMENTAL VERIFICATION

The proposed estimation method was implemented on the

experimental electric vehicle shown in Fig. 9. In order to

evaluate estimation results of the Kalman filter, the vertical

potentiometers and a roll rate sensor were used to accurately

[ ]u k

[ ]y k

Linear model, Initial estimate, Noise covariance

Project the 
state forward

Calculate 
Kalman gain

Update state 
estimate

Update error 
covariance

Sensor 
measurement

Project the 
covariance forward

:Time update

:Measurement update

( ) ( ) ( )ˆ,  ,  ,  [0],  [0] ,  ,   w vG H C x P Q R

ˆ [ 1]x k− + = ˆ[ ] [ ]Gx k Hu k+

( )
1

[ ] [ ] [ ] [ ] [ ] [ ]T T

vK k P k C k C k P k C k R
−

− −= +

ˆ[ 1]x k + = ˆ [ ] [ ]x k K k− + ( )ˆ[ ] [ ] [ ]y k C k x k−−

( )[ ] [ ] [ ] [ ]P k I K k C k P k−= −

[ 1] [ ] T

wP k GP k G Q− + = +

Fig. 8. Recursive structure of the Kalman filter algorithm.

measure the roll angle and roll rate. The random steering test

and pulse steering test on dry asphalt were conducted and field

tests on wet asphalt and a slippery road were also carried out

to verify the robustness against road conditions. Moreover,

the same driving conditions, described in Section III. C, were

applied in field tests.

A. Experimental Electric Vehicle: FPEV–II Kanon

The experimental electric vehicle named “FPEV–II Kanon”,

shown in Fig. 9, was used for field tests. The “FPEV–II Kanon”

was developed by the Hori/Fujimoto research team and it has

following special features.

1) In-wheel motors (i.e., Permanent magnet motors) are

mounted in each wheel as shown in Fig. 11(a). There-

fore, we can control each wheel torque completely and

independently for vehicle motion control. Regenerative

braking is also available. The specifications of “FPEV–II

Kanon” are listed in Table I.

2) MSHub units for measuring lateral tire forces in real-

time are installed in each wheel. Fig. 11(b) shows the

MSHub unit invented by NSK Ltd. [36].

3) 4WS (4 Wheel Steering) control is possible through

front and rear EPS (Electric Power Steering) systems.

As shown in Fig. 10, sensor outputs from the MSHub

units, gyro sensor, and steering angle sensor are connected to
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Fig. 9. Experimental electric vehicle: FPEV–II Kanon.

TABLE I
SPECIFICATIONS OF FPEV–II KANON

Type

Maximum Torque

Maximum Power

Weight

In-wheel motor

Direct drive outer rotor type

500Nm(Front*)/340Nm(Rear*)

20.0kW(Front*)/10.7kW(Rear*)

32kg(Front*)/26kg(Rear*)

Battery

Type

Capacity

Numbers

Lithium-ion type

5kWh

10 modules (1module=4cell)

Control system

Controller

Sampling Time

Sensors

AutoBox-DS1103

0.001sec

Gyro sensor , Wheel speed sensor ,

Steering angle sensor , Multi-

sensing hub unit

Front*: one front wheel motor,  Rear*: one rear wheel motor

dSPACE AutoBox (DS1103), used for real-time data acquisi-

tion. The dSPACE AutoBox (DS1103), which is a powerful

controller board for rapid control prototyping, consists of

a power PC 750GX controller board running at 933 MHz,

16 channel A/D converter and 8 channel D/A converter.

Additionally, a non-contact optical sensor, Correvit (Corrsys–

Datron), is used for accurate measurements of sideslip angle,

lateral vehicle velocity and longitudinal vehicle velocity, and

its outputs are connected to AutoBox. The Correvit sensor

uses optical means to capture planar road texture and evaluate

the motion of the vehicle by measuring the direction and

magnitude of change with respect to the road texture. The

sensor outputs from vertical potentiometers and a roll rate

sensor are also connected. The sampling time is set at 1ms.

Contrary to other experimental electric vehicles, the electric

vehicle used in this research provides lateral tire forces in real-

time. By directly using lateral tire forces, we can accurately

estimate vehicle states. In addition, the heuristic tire models

are not required in estimator and control design. MSHub

units, including rolling bearings used to support wheels of

the vehicle, can measure the loads applied to the rolling

bearing. In many conventional vehicles, wheel hub units with

built-in active ABS sensors (i.e., wheel velocity sensor) were

equipped. Comparing MSHub units with wheel hub units

which are currently used in vehicles, MSHub units have almost

the same mechanical structure except for rolling elements in

MSHub

Fig. 10. Schematic of the electrical system of FPEV–II Kanon.

(a) (b)

Fig. 11. (a) Rear In-wheel motor, (b) Multi-sensing hub (MSHub) unit.

a pair of rows and is capable of being constructed at a low

cost. The measurement principle is as follows: the revolution

speeds of rolling elements in a pair of rows are sensed by

a pair of revolution speed sensors and difference of sensed

revolution speeds is used to calculate the radial or axial loads

[36]. Therefore, accurate lateral tire force measurements using

MSHub units can be realized without much additional cost

and, due to cost-effective aspects, MSHub units are recently

considered practically applicable to vehicles by automotive

manufacturers.

B. Experimental Results

Experimental results obtained from field tests are presented

to validate the estimator and to compare the Fy-based method

and Ay-based method. Fig. 12 shows experimental results for

the random steering test on dry asphalt. Driving conditions

including vehicle speed and steering angle (i.e., wheel angle)

are illustrated in Fig. 12(a). Fig. 12(b)–(d) present estimates

of yaw rate, roll angle, and roll rate compared with sensor
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Fig. 12. Experimental results for roll state estimation in a random steering
test on dry asphalt (i.e., µ≃0.9): (a) Driving condition. (b) Yaw rate. (c) Roll
angle. (d) Roll rate.
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Fig. 13. Experimental results for roll state estimation in a random steering
test on wet asphalt (i.e., µ≃0.7): (a) Driving condition. (b) Yaw rate. (c) Roll
angle. (d) Roll rate.
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Fig. 14. Experimental results for roll angle estimation: (a) Driving at vx=50
km/h on dry asphalt (i.e., µ≃0.9). (b) Driving at vx=40 km/h on dry asphalt
(i.e., µ≃0.9). (c) Driving at vx=40 km/h on wet asphalt (i.e., µ≃0.7). (d)
Driving at vx=30 km/h on a slippery road (i.e., µ≃0.3).

(a) (b) (c) (d)

Fy-based method

Ay-based method

Fig. 15. Calculated RMS errors for estimation.

measurements. It can be seen that the estimated roll angle

and roll rate track the sensor measurement values with small

errors.

Experimental results obtained from the Fy-based and Ay-

based methods are compared using Fig. 12(c) and (d). We

can confirm that the Fy-based method shows more accurate

results without noticeable phase lag. This agrees with earlier

discussion about roll moments, which are calculated from

lateral tire forces and lateral acceleration respectively. Fig.

13 shows experimental results of the random steering test at

vx=40 km/h on wet asphalt. Similarly, the proposed Kalman

filter in this case provides accurate estimation with no phase

lag.

In order to verify the robustness of the proposed Kalman

filter, several field tests on different roads were performed

and those results are shown in Fig. 14. The RMS values

of estimation errors are shown in Fig. 15. The experimental

results shown in Fig. 14(a)–(d) correspond to (a)–(d) in Fig.

15, and are explained as follows: (a) shows the result of a sine

steering test at vx=50 km/h on dry asphalt. As shown in Fig.

15, the roll angle estimated by the Kalman filter using lateral

tire forces shows relatively low RMS values (in this case, the

maximum roll angle is |φ|max≈ 4 degree). (b) and (c) show

the results of sine steering and pulse steering tests at vx=40

km/h on dry asphalt and wet asphalt respectively. Roll angles

estimated with the proposed Kalman filter track the measured

values with small errors. It is noted that result (d), obtained

from the field test on a slippery road, also shows the low RMS

value. This implies that the proposed Kalman filter is robust

to road conditions.

VI. CONCLUSION

This paper presents novel estimation methods to accurately

estimate the vehicle sideslip angle and roll angle using lat-

eral tire force sensors. The RLS algorithm and a Kalman

filter were used in estimator design. Characteristics of the

proposed estimation methods, such as estimation performance

and robustness, were discussed and evaluated through field

tests under different road conditions. It was shown that the

estimation methods utilizing lateral tire forces provide even

more improved estimation of the vehicle sideslip angle and

roll angle. Additionally, the experimental results demonstrated

that Kalman filter design using lateral tire forces could provide

reliable estimation without noticeable phase lag. By using
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lateral tire force measurements, important vehicle states for

vehicle stability control could be estimated without using

expensive sensors and we could confirm the possibilities of the

practical applications of MSHub units to vehicle stability con-

trol systems for in-wheel-motor-driven electric vehicles. This

is one of the important results of this paper. From experimental

results of proposed estimators, it is anticipated that lateral tire

forces, measured from MSHub units, will provide practical

solutions to challenging issues in vehicle state estimation.

Since the proposed estimator for sideslip angle estimation

is designed based on linear tire models, some estimation

errors may occur during severe driving on low friction roads.

Therefore, in future works, we will improve the tire model

by taking into account nonlinear tire characteristics and an

effect of road-bank angle. Moreover, advanced motion control

systems based on proposed estimators will be presented.

APPENDIX

NOMENCLATURE

ax Longitudinal acceleration at center of gravity

(CG) (m/s2).

ay Lateral acceleration at CG (m/s2).

aym Sensor measurement of lateral acceleration

(m/s2).

d Track width = 1.3 m.

g Acceleration due to gravity = 9.81 m/s2.

hroll Height of the center of sprung mass above roll

center (RC) = 0.32 m.

hRC Height of the RC above the ground = 0.21 m.

i 1, 2, 3, 4 corresponding to front left, front right,

rear left, and rear right (= fl, fr, rl, rr).

lf Distance from CG to front axle = 1.013 m.

lr Distance from CG to rear axle = 0.702 m.

vx Longitudinal velocity at CG of vehicle (m/s).

vy Lateral velocity at CG of vehicle (m/s).

ṽy Estimated lateral vehicle velocity (m/s).

m Total mass of vehicle = 875 kg.

ms Sprung mass = 670 kg.

Ci Tire cornering stiffness at the ith tire (N/rad).

Cf Front tire cornering stiffness = 11200 N/rad.

Cr Rear tire cornering stiffness = 31600 N/rad.

Croll Roll damping coefficient = 3200 N·m·s/rad.

F x
i Longitudinal tire force at the ith tire (N).

F y
i Lateral tire force at the ith tire (N).

F y
left Lateral tire force on the left track wheels

(=F y
fl+F

y
rl) (N).

F y
right Lateral tire force on the right track wheels

(=F y
fr+F y

rr) (N).

Ix Roll moment of inertia = 250 kg·m2.

Iz Yaw moment of inertia = 617 kg·m2.

Kroll Roll stiffness coefficient = 12000 N·m/rad.

L Observer gain matrix.

Mx Roll moment (N·m).

Mz Yaw moment (N·m).

αi Slip angle at the ith tire (rad).

αf Front tire slip angle (rad).

αr Rear tire slip angle (rad).

β Vehicle sideslip angle (rad).

β̂com Estimated sideslip angle from combined method

(rad).

β̂kin Estimated sideslip angle from kinematics-based

estimation method (rad).

β̂mod Estimated sideslip angle from model-based esti-

mation method (rad).

δf Front steering angle (rad).

φ Roll angle (rad).

φ̇ Roll rate (rad/s).

φ̈ Roll acceleration (rad/s2).

γ Yaw rate (rad/s).

λ Forgetting factor in RLS algorithm.

µ Road friction coefficient.
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