
,y1-81 -3 (> . -9 1;
ANL-81 -39

ESTIMATION OF SPARSE JACOBIAN MATRICES

AND GRAPH COLORING PROBLEMS

by

Thomas F. Coleman and Jorge J. More

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS

Prepared for the U. S. DEPARTMENT OF ENERGY

under Contract W-31-109-Eng-38
isim Wa u U S b

RPQTIR

Distribution Category:

Mathematics and Computers

(UC-32)

ANL -81-39

ARGONNE NATIONAL LABORATORY

9700 South Cass Avenue

Argonne, Illinois 60439

ESTIMATION OF SPARSE JACOBIAN MATRICES

AND

GRAPH COLORING PROBLEMS

by

Thomas F. Coleman

Jorge J. More

Applied Mathematics Division

June 1981

DISCL AIML R

*This work was supported by the Applied Mathematical Sciences Research Program
(KC-04-02) of the Office of Energy Research of the U.S. Department of Energy
under Contract W-31-109-Eng-38.

3

TABLE OF CONTENTS

Abstract .. 5

1. Introduction ... 5

2. Estimation of Jacobians and Graph Theory 7

3. Properties of the Graph Coloring Problem 13

4. Graph Coloring Algorithms ... 19

5. Band Problems .. 28

6. Data Structures ... 32

7. Numerical Results ... 34

8. Concluding Remarks ... 43

Acknowledgments ... 43

References...44

5

ESTIMATION OF SPARSE JACOBIAN MATRICES
AND

GRAPH COLORING PROBLEMS

Thomas F. Coleman

Jorge J. More

ABSTRACT

Given a mapping with a sparse Jacobian matrix, we investigate
the problem of minimizing the number of function evaluations needed
to estimate the Jacobian matrix by differences. We show that this
problem can be attacked as a graph coloring problem and that this
approach leads to very efficient algorithms. The behavior of these
algorithms is studied and, in particular, we prove that two of the
algorithms are optimal for band graphs. We also present numerical
evidence which indicates that these two algorithms are nearly
optimal on practical problems.

1. Introduction

Nonlinear problems in optimization and differential equations usually

require the estimation of the Jacobian matrix of a mapping F: Rn *Rm. For

large scale problems, the Jacobian matrix is invariably sparse, and then esti-

mation by differences is attractive because the number of function evaluations

needed is often quite small. For example, if the Jacobian matrix is

tridiagonal then only three function evaluations are needed. In this paper we

consider the problem: Given a mapping F: Rn + Rm, what is the number of

function evaluations needed to estimate the Jacobian matrix o F?

We assume that it is more efficient to evaluate F(x) than to evaluate

seoarately the components f1(x),f2(x),.. .,fm(x) of F(x). If this assumption

is not satisfied, then it may be desirable to estimate a sparse Jacobian

matrix element by element. However, in many applications the components f1i

have common sub-expressions, and then it is more efficient to approximate the

Jacobian matrix F'(x) by estimating F'(x)d for suitable choices of d. Note

that F'(x)d can be estimated, for example, by forward differences,

F(x+d) - F(x) = F'(x)d + o(idm)

,

or by central differences,

6

F(x+d)-F(x-d = F'(x)d + o(udu2)

The problem of estimating a Jacobian matrix can thus be formulated in the

following terms: For a given m by n matrix A, how many evaluations of Ad are

required to uniquely determine all the elements of A?

Curtis, Powell, and Reid [1974] made the crucial observation that if A is

sparse then it may be possible to determine A in just a few evaluations of

Ad. Moreover, Curtis, Powell, and Reid proposed an algorithm for estimating

sparse Jacobian matrices. It turns out that their algorithm -- the CPR

algorithm -- can be viewed as a graph coloring algorithm, and that this obser-

vation has important consequences. It has led us to investigate the

properties of algorithms for estimating sparse Jacobian matrices, and we have

shown that it is possible to improve significantly on the CPR algorithm.

Improvements in algorithms for the estimation of sparse Jacobian matrices

are important because it is usually necessary to estimate many Jacobian

matrices with the same structure. For example, if an improvement allows a

Jacobian matrix to be estimated with 3 fewer function evaluations and if the

problem (e.g. solution of a system of nonlinear equations or differential

equations) requires 100 evaluations of the Jacobian matrix, then an overall

improvement of 300 function evaluations is achieved.

In Section 2 we show that it is possible to determine an m by n matrix A

by coloring a related graph G(A). We then study some of the special

properties of the graph G(A) in Section 3, and in particular, we prove that

obtaining an optimal coloring of G(A) is an NP-complete problem. Several

graph coloring algorithms are presented in Section 4, and we demonstrate that

these algorithms can perform poorly even on relatively simple graphs, and that

this behavior is typical of graph coloring algorithms. On the other hand, we

prove that the worse possible behavior on graphs of the form G(A) is

considerably better than on general graphs. Moreover, in Section 5 we show

that two of the algorithms are optimal for band graphs -- a generalization of

band matrices. The data structure used to implement the algorithms is

described in Section 6, and numerical results for several algorithms are

presented in Section 7.

7

The graph theory necessary to understand this paper is minimal, but for

completeness it is presented as needed. We have tried to use the same

notation and terminology as Bondy and Murty [1976].

If the Jacobian matrix is symmetric, then the techniques used in this

paper can be improved, and we are currently investigating the techniques used

by Powell and Toint [1979] for this case.

2. Estimation of Jacobians and Graph Theory

In the introduction we noted that the problem of estimating sparse

Jacobian matrices can be formulated as follows: For a given m by n matrix A,

obtain vectors d1,d2,...,dp such that Ad1,Ad2,...,Ad, determines A uniquely.

Specifying Ad1 ,Ad 2 ,...,Ad% gives rise to a system of mp linear equations

in the unknowns a1 . If there are t nonzeroes in A, then we want to obtain

the a1 's by satisfying T equations. Thus z < mp and this provides a lower

bound on p. A better lower bound can be obtained by noting that each evalua-

tion of Ad only gives rise to one equation in the unknowns in the ith row. If

there are pi unknowns in the ith row then we must have pi < p and hence,

max{pi: 1 < i < m}

is a lower bound on the number of evaluations of Ad needed to determine A.

If the choice of d1,d2,...,d, is such that the system of equations that

defines the unknowns can be ordered to diagonal form, then Ad1,Ad2,...,Adp

determines A directly. Equivalently, Ad1 ,Ad 2 ,...,Ad 1 determines A directly if

for each nonzero a there is a d in {d1 ,d 2 ,...,d} such that

a..6. = (Ad).

where 6. is the jth component of d.

It is also possible to determine A indirectly, but this is the subject of

future work. In this paper we only consider direct methods for determining A.

Problem. Obtain vectors dl,d2 .,dp such that Ad1 ,Ad 2 ... ,Ad determines A

directly with the least value of p.

8

To determine an m by n matrix A directly, Curtis, Powell, and Reid [1974]

observed that a group of columns can be determined by one evaluation of Ad if

no two columns in this group have a nonzero in the same row position. To see

this, let a1,a2,...,an be the columns of A, and let {a.: j E C} be a group of

columns such that no two columns in this group have a nonzero in the same row

position. If

6. $ 0 for j E C

,

6. = 0 for j / C

then

Ad = 1 6.a.
jEC 33

and it follows that if a1 10 for some j E C then there is an index i such

that

(Ad)1 = 6.a..

Thus all the columns a for j E C are determined by Ad.

In this paper we apply the above approach to the problem of estimating

sparse Jacobian matrices. This approach can be formalized as follows: A

partition of the columns of A is a division of the columns into groups

C1,C2,...,Cp such that each column belongs to one and only one group. A

partition of the columns such that columns in a given group do not have a non-

zero in the same row position is consistent with the direct determination of

A.

These definitions lead to the main problem of this paper.

Partition Problem. Obtain a consistent partition of the columns of A with the

least number of groups.

We are interested in a consistent partition with the least number of

groups since each group requires an evaluation of Ad. Stan Eisenstat [1980]

has pointed out that in some cases it is possible to determine A directly with

less than y(A) vectors where y(A) is the number of groups in an optimal

partition. For example, if

9

A = A

\A2

and

y(A) > y(A1) + y(A'2

)

then it is clearly possible to determine A directly with less than y(A)

vectors. To illustrate this possibility, let

A1 = (D1 D2

)

where D1 and D2 are nonsingular diagonal matri(.s of order n, and let

IzT 0

A2=

2\D3 B

where z is an n-vector with nonzero components, D3 is a nonsingular diagonal

matrix of order n, and B is an n by n matrix with zero diagonal elements and

nonzero off-diagonal elements. It is not difficult to show that

y(A) = 2n , y(A 1) = 2 , y(A2) = n

,

and thus A can be determined with only n+2 evaluations of Ad.

This example suggests that it may be worthwhile to investigate the

general problem of determining A. In this paper we will show, however, that

on practical problems the approach based on consistent partitions yields

nearly optimal results. This point is discussed further in Section 7.

To attack the problem of minimizing the number of groups in a consistent

partition of A, it is advantageous to establish a connection between the

partition problem and a graph coloring problem. For this, let us recall some

basic graph theory definitions.

A grah G is an ordered pair (V,E) where V is a finite and nonempty set

of vertices, and the edges E are unordered pairs of distinct vertices. Thus

10

E C {(u,v): u # v, u,v E V}

.

The vertices u and v are adjacent if (u,v) is an edge with endpoints u and

v. The number of edges is denoted by JEl.

A p-coloring of a graph G is a function

": V + {1,2,...,p}

such that 0(u) i *(v) if u and v are adjacent. If G has a p-coloring then G

is p-colorable and the smallest p for which G is p-colorable is the chromatic

number x(G) of G. A p-coloring is optimal if p = x(G).

A p-coloring * of a graph G = (V,E) induces a partition of the vertices

with components C1,C2,.- .,Cp where

C. = {v E V: (v) = i}

This suggests that we can associate the partition problem with the coloring of

a particular graph. To define this graph, let A be an m by n matrix with

columns a1,a2,.. . ,an. The graph G(A) has vertices

V = {a1,a2,...,anl

and edge (a 1,aj) if and only if i j and columns a1 and a have a nonzero in

the same row position. For example, if

x 0 0 0 0 x x x

A= 0 x 0 0 x 0 x x

0 0 x 0 x x 0 x

0 0 0 x x x x 0

then G(A) is the graph in Figure 2.1.

04

0g

002

050

O3

03

Figure 2.1

The following result is now a direct consequence of the definition of G(A).

Theorem 2.1. m is a coloring of G(A) if and only if * induces a consistent

partition of the columns of A.

Once noted, the connection between the partition problem and the graph

coloring problem is trivial, and yet it is important because the structure of

the graph G(A) is invariant under row and column permutations of A, and thus

it is easier to visualize algorithms for the graph coloring problem than for

the partition problem.

In view of Theorem 2.1 the partition problem is equivalent to the

following problem.

Graph Coloring Problem. Obtain an optimal coloring for G(A).

To illustrate the connection between estimation of Jacobian matrices and

graph coloring problem, consider tridiagonal matrices. The graph G(A) for a

tridiagonal matrix of order 10 is shown in Figure 2.2, and it is clear that in

general the chromatic number of G(A) is 3. It follows that A can be

11

I

12

determined with 3 evaluations of Ad. In fact, if d only has nonzero

components for those vertices (columns) of G(A) with a given color, then all

the columns with this color can be determined by evaluating Ad.

Figure 2.2

We conclude this section by discussing the connection between G(A),

adjacency graphs, and intersection graphs. We begin by proving that the

adjacency graph of the symmetric matrix ATA is isomorphic to G(A).

If B is a symmetric matrix then the adjacency graph of B has vertex set

{1,2,...,n}

and edge s-t

{(i,j): #i j and b.. 0}

Two graphs G1 = (V1,E1) and G2 = (V 2 ,E 2) are isomorphic if there is a

bijective function 4: V1 + V2 such that

(u,v) c E1 => (4(u),4i(v)) E E2

Theorem 2.2. If A is a nonnegative m by n matrix then G(A) is isomorphic to

the adjacency graph of ATA.

Proof: Let B = ATA. Then

m

b = k= akiakj

'

k=1

and since A is nonnegative, bij 1 0 if and only if aki # 0 and ak 1 0 for

some index k. Thus i and j are adjacent in the adjacency graph of AXA if and

only if a1 and aj are adjacent in G(A). This establishes our result.

13

Note that there is no loss of generality in assuming that A is non-

negative because only the sparsity pattern of A is relevant to the solution of

the partition problem.

It is also worthwhile noting that the construction used to define G(A) is

associated with intersection graphs in the graph theory literature (e.g.

Harary [1969], page 19). Given a family F = {S1,S2 ...,Sn } of nonempty

subsets of

n

S = U Si,

i=1

the intersection graph of F has vertex set F and edge set

E = {(S.,S.): i # j and Si n S. not empty}

It is clear that if

S. = {i: a.. / 0}

then G(A) is isomorphic to the intersection graph of this family.

3. Properties of the Graph Coloring Problem

We have related the problem of determining a sparse matrix A to a graph

coloring problem. In view of this relationship, it is important to study the

graph coloring problem to see if any particular features are present which may

facilitate the solution of this problem. In this section we investigate two

related questions:

1. Given a graph G with n vertices and a positive integer m, is there an m

by n matrix A such that G(A) is isomorphic to G?

Since isomorphic graphs have the same structure, an appropriate 'answer to this

question will allow us to relate properties about general graphs to properties

about graphs of the type G(A).

14

2. Is the problem of determining the chromatic number of G(A) NP-complete?

We refer to Garey and Johnson [1979] for an excellent introduction to the

theory of NP-complete problems. The crux of the matter is that NP-complete

problems are difficult, and it is believed that NP-complete problems can only

be solved by exponential algorithms.

To motivate our answer to the first question, consider the graphs in

Figure 3.1.

Figure 3.1

It is not difficult to show that there is an m by 5 matrix A such that G(A) is

isomorphic to G1 if and only if m > 6. For G2 it is only necessary to require

that m > 3. The reason is that G1 can be covered by 6 lines while G2 can be

covered by 3 triangles. The following definitions generalize the notions of

lines and triangles.

A graph G0 = (V0,E0) is a subgraph of the graph G = (V,E) if VO c V and

EO c E. Given a nonempty subset VO of V, the subgraph G0 = (V0,E0) is induced

by VO if

E= {(u,v): (u,v) e E, u,v e V0}'

If each pair of distinct vertices in VO are adjacent then G0 is a complete

subgraph or clique of G.

15

Some authors (including Bondy and Murty [1976]) use the term clique to

refer to the vertex set of a complete subgraph, but we prefer the above

terminology.

The following simple result shows that cliques are important in graph

coloring problems.

Lemma 3.1. A lower bound for the chromatic number of a graph G is the size of

any clique of G. In particular, if A is an m by n matrix and if p is the

number of nonzeroes in row i then

max{p.: 1 < i K m} K X[G(A)]

Proof: If GO = (V0,E0) is a clique of G then vertices in VO are pairwise

adjacent, and hence the chromatic number of G is at least the number of

vertices in V0. To complete the proof note that the subset

Vi= {a : ai 0}

induces a clique in G(A) with p vertices.

Definition. A graph G = (V,E) is covered by p cliques G1,G2,. . .,G, if

p
E = u E.

i=1 1

where Ei is the edge set of G1

.

To illustrate this definition consider the graph in Figure 3.2.

Figure 3.2

16

This graph has 4 cliques but it can be covered by 3 cliques. In general, a

graph may have an exponential number of cliques (Moon and Moser [1965]), but

since each edge is a clique, a graph can always be covered by n(n-1)/2

cliques.

The next result answers the first question of this section.

Theorem 3.2. Given a graph G with n vertices and a positive integer m, there

is an m by n matrix A such that G(A) is isomorphic to G if and only if G is

covered by m cliques.

Proof: We first show that for any m by n matrix A, the graph G(A) can be

covered by m cliques. For th; note that the subset

V. = {a.: a.. # 0}
1 3 13

induces a clique of G(A), provided V1 is not the null set. Moreover, if

(a1,aj) is an edge of G(A) then columns a and a have a nonzero in some row

k, and thus a1 and a are in Vk. It follows that G(A) is covered by the

cliques induced by V1,V2 ,... ,Vm, and thus if G is isomorphic to G(A) then G

can also be covered by m cliques.

Conversely, assume that G is a graph with n vertices v1,v2,...,vn, and

that G can be covered by m cliques G1,G2,... ,Gm. To complete the proof,

define the m by n matrix A by setting

a.. = 1 if v. E V.,

a.. = 0 if v. V.,

where Vi is the vertex set of G1 and verify that G(A) and G are isomorphic.

We have already noted that the smallest number of cliques which cover a

graph G is at most n(n-1)/?. This bound is almost optimal. If we consider

the graph with vertices v1,v2,...,vn and edge set

E = {(viv): i even, j odd}

,

17

then the smallest number of cliques which cover this graph is .n2 I/41. It is

not difficult to show (by induction) that a graph with n vertices can always

be covered by 1n2/4J cliques and thus this bound is optimal.

This discussion shows that the graphs G(A) where A is an m by n matrix

with m less than Ln2/4J are special; in particular graphs G(A) with A a square

matrix of order n > 2. Thus it may be possible to obtain an algorithm which

produces an optimal ;.oloring for these graphs in a polynomial amount of

time. The next result shows, however, that this possibility is unlikely, even

if we restrict our attention to graphs G(A) where A is a square matrix with

order n.

Theorem 3.3. If a graph G with n vertices is covered by m cliques, then there

is a square matrix with

order (A) = max(n, 2m-n)

such that G is p-colorable with p > 3 if and only if G(A) is p-colorable.

Proof: Let G = (V,E) have vertices v 1 ,v 2,....,vn and define a graph Gk with

vertex set

Vk = V u {u1,u2,...,uk} u {w1,w2,...,wk

and edge set

Ek = E u {(u.,v.),(v.,w.),(w.,u): 1 <_ i < k}.

For k = 3, this construction is illustrated in Figure 3.3 for a graph G with 6

vertices which can be covered by 9 cliques.

18

U1 WI U2 W2 U3 W3

VIVV

V4 V5 V6

Figure 3.3

Note that in general Gk has n+2k vertices and can be covered by m+k cliques.

Moreover, since the additional vertices u1,wi only require 2 colors, it is

clear that G is p-colorable with p > 3 if and only if Gk)s p-colorable. To

complete the proof we show that Gk is isomorphic to an appropriate G(A). For

this, note that if

k = max{0, m-n}

and R = 2k+n then Gk has t vertices and can be covered by 4 cliques. Theorem

3.2 now shows that there is a matrix of order A such that G(A) is isomorphic

to Gk, and this completes the proof.

Since a graph G can be covered by Lr2 /4J cliques, Theorem 3.3 shows that

it is possible to choose a matrix A of order n2 such that G(A) is isomorphic

to G. Thus, if an algorithm requires f(n) operations to produce an optimal

coloring of any graph G(A) where A is a square matrix of order n, then this

algorithm can produce an optimal coloring for any graph G with n vertices in

f(n2) ooerations. Since the general graph coloring problem is NP-complete, it

follows that the partition problem for square matrices is NP-complete, and

thus optimal algorithms for this problem are likely to be exponential. What

19

is needed is an algorithm which is optimal or nearly optimal in practice; this

is the subject of the next section.

It is also worthwhile noting that even restricted graph coloring problems

can be NP-complete. For example, the following two problems are known to be

NP-complete.

u) Given a graph G, decide if G is 3-colorable.

b) Given a graph G, decide if G is p-colorable with

p K a1 x(G) + a2

for some constants a1 and a2 with a1 < 2.

For references to the literature on NP-complete graph coloring problems,

consult Garey and Johnson [1979].

4. Graph Coloring Algorithms

The literature on graph coloring algorithms is extensive; see Brilaz

[1979] for some references and recent work. However, some of the literature

is not relevant. For example, algorithms for coloring planar graphs are not

suitable because if a row of A contains 5 nonzero elements then G(A) has a

clique on 5 vertices, and then Kuratowski's theorem (e.g., Bondy and Murty

[1976]) implies that G(A) is not planar. The graph coloring algorithms which

are most likely to be useful are those designed for general graphs. On the

other hand, the computational results available for these algorithms have not

been helpful because they are usually restricted to graphs with at most 100

vertices, and in our applications we are interested in mach larger graphs.

We are interested in coloring algorithms for G(A) which run in time

proportional to

m 2

i=1

20

where p i is the number of nonzero elements in the ith row of A; algorithms for

coloring G(A) which run in time proportional to n2 are not acceptable. This

requirement eliminates many coloring algorithms.

We now present a class of graph coloring algorithms and investigate some

of the members of this class.

iagorithm. Let G = (V,E) be a graph with the vertices ordered v1,v2,.. .,vn.
For k = 1,2,...,n the sequential algorithm assigns vk to the smallest possible

color.

For graphs of the form G(A) it is natural to consider the vertices in the

order a1,a2,...,an. The sequential coloring algorithm with this ordering is

precisely the Curtis, Powell, and Reid [1974] algorithm. Note, however, that

the chromatic number of G(A) is independent of the ordering of the columns,

but that the coloring produced by a sequential algorithm is dependent on the

ordering of the vertices. To illustrate this remark, consider bipartite

graphs: A graph G = (V,E) is bipartite if and only if it is 2-colorable.

Equivalently, G = (V,E) is bipartite if and only if V is the union of two

disjoint sets V1 and V 2 such that any edge has one endpoint in V1 and the

other in V2

.

Bipartite graphs are particularly interesting because as noted in Section

3, deciding that a graph is 3-colorable is an NP-complete problem.

Consider now the bipartite graph (due to Johnson [1974]) with vertex set

(4.1) {u1 ,u 2,...,u u {v 1,v2 ... ,vn

and with edge set

(4.2) {(uiv): i j}

.

For n = 4, this graph is shown in Figure 4.1.

21

UI U2 U3 U!4

V V2 V3 V4

Figure 4.1

With the ordering

(4.3) u1,v1,u2,v2,...,un,vn

the sequential algorithm requires n colors, but with the ordering

u1,u2,...,un,vl,v2,...,vn

the sequential algorithm requires 2 colors.

The above example shows that the sequential algorithm with an arbitrary

order may perform very poorly. On the other hand, it is not difficult to show

that for any graph G there is an ordering of the vertices for which the

sequential algorithm produces an optimal coloring. In fact, if " is an

optimal coloring of G and if the vertices are ordered so that { (v1)} is

nondecreasing, then the sequential algorithm produces an optimal coloring.

There are several techniques for ordering the vertices of G a priori so

as to improve the performance of the sequential algorithm. The largest-first

(LF) ordering of Welsh and Powell [1967] orders the vertices so that {d(v)}

is nonincreasing where d(v) is the degree of vertex v; that is, the number of

edges with v as an endpoint. The motivation for this ordering is that the

sequential algorithm produces a coloring with at most

max{min[d(v.)+1, i]: 1 < i < n}(4.4)

22

colors, and thus the LF ordering minimizes this bound. Note, however, that

the ordering (4.3) in the bipartite graph with vertex set (4.1) and edge set

(4.2) is an LF ordering and therefore the sequential algorithm with the LF

ordering may still perform poorly on bipartite graphs.

The smallest-last (SL) ordering of Matula, Marble, and Isaacson [1972] is

an improvement of the LF ordering. To define this ordering, assume that the

vertices vk4.1,...,vn have been selected, and choose vk so that the degree of

vk in the subgraph induced by

V - {vk+l,...,vn}

is minimal. This Lhuice guarantees that the sequential algorithm with the SL

ordering produces a coloring with at most

(4.5) max{1+6(G0): G0 a subgraph of G}

colors where 6(G0) is the smallest degree of G, and it is clear that this

bound is never worse than (4.4). The sequential algorithm with the SL

ordering, however, may still perform poorly on bipartite graphs. To show this

consider the graph with vertex set

{uivipiqris : 1 < i < n}

and whose edge set is the union of the following three sets:

{(u1,v): i $ j, i,j = 1,2,...,n}

,

(u ,p),(viq): j > i, i,j = 1,2,...,n},

{(rip), (s.,q.): ij = 1,2,...,n}

For n = 3 this graph is shown in Figure 4.2.

23

P1 U1 V, qI

r2P2 U2 V2 q2r2 s

P .,

V3S 3

Y3

Figure 4.2

It is not difficult to show that the ordering

ql,sl,...,q ,sn, pl,rl,...,pn,rn, u1,V1,...,U ,Vn

is an SL ordering and that the sequential algorithm produces a coloring + such

that

(p) = (q1) = 1

S(ri) = (s.) = 2

0(u) = (v1) = i+1

Thus the SL ordering requires n+1 colors. On the other hand, it is clear that

this graph is bipartite.

One of the interesting properties of the incidence degree (ID) ordering

is that it is optimal for bipartite graphs. To define this ordering, assume

that v1 ,v 2,...,vk-1 have been selected and choose vk so that the degree of vk

in the subgraph induced by

{v 1 ,v 2 ,...,vkj

is maximal. The incidence degree of vk is the degree of vk in this subgraph.

This ordering is based on the work of Brelaz [1979]. To define the

algorithm proposed by Brelaz, assume that the vertices v1,v2,...,vk-1 have

been assigned to colors, and for any uncolored vertex v, define the saturation

24

degree of v as the number of different colors adjacent to v. The algorithm of

Brilaz now chooses vk as a vertex with maximal saturation degree and assigns

vk to the smallest possible color. The reason for using incidence degree

instead of saturation degree is that the calculation of the saturation degree

for G(A) requires an excessive amount of time or space.

To prove that the ID ordering is optimal for bipartite graphs, it is

convenient to introduce additional graph theory terminology. A sequence of

vertices

v0,v1,...,vx , k > 0

,

such that v_11 is adjacent to vi for 1 K i < R is a path of length 9 if

v 0 ,v1 ,...,vx are distinct, and it is a cycle of length 9 if v1 ,v 2,...,v, are

distinct and v0 = v . We also need to note that if G is a bipartite graph

then it has no cycle of odd length. In fact, if v0 ,v1 ,...,vX is a cycle in G,

and if 0 is an optimal coloring of G, then

(v0) = 1(v2) = 4(v4) =...

and since v0 = v., it follows that 9 must be even.

Theorem 4.1. The sequential algorithm with the ID ordering is optimal for

bipartite graphs.

Proof: Assume that the sequential algorithm with the ID ordering has used

color 3 on a bipartite graph, and let w be the first such vertex. By the

definition of the algorithm, w must be adjacent to vertices w1 and w2, colored

1 and 2, respectively. Moreover, w1 and w2 must be connected by a path

w1 = v0,v1,...,v9 = w2

of vertices colored 1 or 2. Since w1 is colored 1, it follows that

v0, v2,v4,...are also colored 1, and since w2 is colored 2, this implies that

the length of the path must be odd. Hence,

w,vo,v1, ... ,v ,w

25

is a cycle of odd length, but this is not possible in a bipartite graph. This

contradiction concludes the proof.

Although the sequential algorithm with the ID ordering is optimal for

bipartite graphs, it may fail miserably on 3-colorable graphs. To illustrate

this point consider the graph with vertex set

{ui,v1,wi: i=1,2,...,n}

and whose vertex set consists of the union of the sets

{(ui,v): j < i, i,j = 1,2,...,n}

{(v ,w.): i $ j, i,j = 1,2,...,n}

{(u ,w): i=1,2,...,n}

.

For n = 4, this graph is shown in Figure 4.3.

U, U 2 U 3 U 4

WI W 2 w 3 W4

Figure 4.3

26

It is not difficult to show that the ordering

v ,u1,w ,v2,u2,w2''''' n,un'wn

is an ID ordering, and that in this case the sequential algorithm uses n

colors. The chromatic number of this graph is, however, 3.

In a very interesting paper, Johnson [1974] considered thirteen coloring

algorithms and showed that they all could fail miserably on 3-colorable

graphs. More precisely, Johnson showed that on a graph with n vertices,

twelve of the coloring algorithms may require

a1nx(G)

colors for some positive constant ai, and that for the thirteenth algorithm

this bound could be improved to

a2 log n]X(G)

for some positive constant a2 . It turns out that for graphs of the form G(A),

this bound can be improved still further. In particular, we show below that

on G(A) any reasonable coloring algorithm requires at most

(4.6) a3m/2 x[G(A)]

colors for some positive constant a3. This bound is optimal for the coloring

algorithms that we have considered. In fact, since any graph G with n

vertices can be covered by n2 cliques, G is isomorphic to a G(A) where A is an

n2 by n matrix. In view of the examples presented in this section, it follows

that the bound (4.6) is achieved for these examples.

To establish (4.6) we need a preliminary result.

Lemma 4.2. Consider any coloring algorithm for a graph G = (V,E) which

produces a coloring " such that every vertex v is adjacent to vertices with

colors 1,2,..., (v)-1. Then

max{o(v): v V V} < 1 + [2IEI/2.

27

Proof: If (v) = R then for any colors i and j such that

1< i <j<t

there is an edge (vi,v1) such that *(vi) = i and (vj) = j. Hence

2 <)< El,
2-

and the result is a direct consequence of this inequality.

Any reasonable coloring satisfies the assumptions of Lemma 4.2 since

given any coloring c1 of a graph G, there is a coloring 2 of G which

satisfies the assumptions of Lemma 4.2 and such that

$2(v) < (v) , v E V

In fact, 2 can be obtained by applying the sequential coloring algorithm to G

with any ordering v1 ,v2,...,vn such that { 1(v1)} is nondecreasing.

It is now fairly easy to prove that (4.6) holds. If p. is the number of

nonzeroes in row i of the m by n matrix A, then the number of nonzeroes in ATA

is at most

m 2

i=1

and thus Theorem 2.2 implies that

m 2 2

21E1 < p. m max'
i=1 1 m-

where

pmax = max{p.: 1 < i < m}

Lemma 3.1 now shows that any coloring algorithm which satisfies the assump-

tions of Lemma 4.2 requires at most

1 + m/2 mx 1 + m/2x[G(A)]

colors, and this establishes (4.6).

28

5. Band Problems

We have examined the behavior of several coloring algorithms and f,'e
noted that they all may perform poorly on 3-colorable graphs. In this section

we examine the behavior of these coloring algorithms on graphs of the form

G(A) where A is a band matrix.

The m by n matrix A has lower bandwidth

at(A) = max{Ii-jI: i > j, a. o}

and upper bandwidth

Bu(A) = max{Ii-jl: i < j, ai $ o}

The bandwidth of A is

a(A) = 1 + % (A) + gu(A)

The bandwidth of a matrix is dependent on the ordering of the rows and

columns of A. On the other hand, the corresponding notion for graphs is

independent of the ordering of the vertices.

Let G = (V,E) be a graph with n vertices. The bandwidth of an ordering

v1,v2,...,vn of V is

a({vk}) = max{li-jl: (vi,v.) e E}

,

and the bandwidth o G is

8(G) = min{s({vk}): {vk} an ordering of V}

The definition of G(A) implies that ai and a are not adjacent in G(A)

whenever li-jl > (A). Thus

8[G(A)] < <[A]-1

,

29

and equality holds if, for example, A is dense within the band. Note that it

may be possible to choose permutation matrices P and Q such that

s[PAQ] < 6(A)

.

However, since G(PAQ) is isomorphic to G(A),

a[G(A)] < s[PAQ]-1

for all permutation matrices P and Q. Strict inequality may hold for all

choices of P and Q. For example, if A is of the form

D z

A =
0 a

where z is an n-vector with nonzero components, D is a nonsingular diagonal

matrix of order n, and a is a nonzero scalar, then

a[PAQ] = n+1

for all permutation matrices P and Q, but

8[G(A)] = [.1

Also note that this example shows that the chromatic nun 1 r of G(A) may be

much smaller than the bandwidth of G(A). On the other hand, we show below

that this is not the case if G(A) is a band graph.

Definition. Let G = (V,E) be a graph with n vertices. G is a band graph if

there is an ordering v1,v2,....,vn of the vertices of G such thit

li-ji < (G) <> (v 1,v) E E

.

The order v1,v2,...,vn is a natural ordering of the band graph.

One of the main reasons for introducing band graphs is that if A is dense

within the band then G(A) is a band graph. Also note that given any graph G =

(V,E), we can add edges and obtain a band graph with the bandwidth of G. The

30

next result shows, in particular, that the chromatic number of a band graph is

determined by the bandwidth of the graph.

Theorem 5.1. For any graph G,

x(G) < O (G)+1

.

Equality holds if G is a band graph.

Proof: Let v1,v2,...,vn be an ordering of V with bandwidth 8 = 8(G) and let

= +1. If the sequential coloring algorithm uses the ordering

then it requires at most Z colors and hence x(G) is at most 8+1. To show that

if G is a band graph then x(G) is 8+1, just note that if v1,v2,...,vn is a

natural ordering of the vertices of G then

v1,v2,...,vQ+1

are pairwise adjacent and hence X(G) is at least 8+1.

The inequality in Theorem 5.1 is due to Papadimitriou [1976]. Strict

inequality may hold if, for example, G is a star graph; that is, a graph with

vertex set {v 1,v2,..'Vn} and edge set

E = {(v 1,v2,(v1 ,v3),...,(v1,vn)

'

In general, it is easy to show that if A is the maximum degree of a graph G

then

< 8(G).

The next result shows that the sequential algorithm may perform poorly on

band graphs.

31

Theorem 5.2. If G is a band graph then there is an ordering of the vertices

of G for which the sequential algorithm requires 28(G)+1 colors.

Proof: Let v1,v2,...,vn be a natural ordering of a band graph and set

x = 2(G)+1. If the sequential algorithm uses the ordering

vi,v ,RVi+2 ,..., i=1,2,...,t

,

then it is straightforward to verify that the vertices v1,v1+ ,vi+2R,... are

assigned to color i. Hence, the sequential algorithm requires 28(G)+1 colors.

A slight modification of the proof of Theorem 5.2 shows that the

sequential algorithm with the LF ordering may also require 2(G)+1 colors. On

the other hand, we now show that the sequential algorithmn with the SL and ID

orderings are optimal for band graphs.

Theorem 5.3. The sequential algorithm with the SL ordering requires at most

s(G)+1 colors.

Proof: In Section 4 we noted that the sequential coloring algorithm with the

SL ordering requires at most

max{1+6(GO): G0 a subgraph of G}

colors, so it is sufficient to show that 6(GO) (< (G) for any subgraph GO of

G. To show this, let v1,v 2,....,vn be an ordering of the vertices of G with

bandwidth S(G), and if GO has vertex set VO, let

R = min{j: v c Vol

It follows that v is adjacent to at most 8(G) vertices in GO and hence,

6(G0) - 8(G) as required.

Since the chromatic number of a band graph is 8(G)+1, Theorem 5.3 shows

that the sequential algorithm with the SL ordering is optimal for band graphs.

32

Theorem 5.4. The sequential algorithm with the ID ordering is optimal for

band graphs.

Proof: Let G be a band graph with bandwidth 8 = S(G) and let vl,v2''''' n be

a natural ordering of the vertices of G. The sequential algorithm with the ID

ordering first assigns colors to the vertices of a maximal clique Go of G, and

thus the vertex set V0 of Go is of the form

{v1: < i K< +8}

for some integer X. It now follows that at the k-th stage of the algorithm

there is an integer ik such that the colored vertices are of the form

{vi: ik < k+k}

provided k > 8, and that if vertices vj and vj+S+ 1 have been colored then v

and vj+s+l have the same color. Hence, the incidence ordering only uses 8+1

colors and is thus optimal.

Theorem 5.4 is weaker than Theorem 5.3 and this gives the SL ordering a

theoretical advantage over the ID ordering. We conjecture, however, that

Theorem 5.3 is also valid for the ID ordering.

6. Data Structures

The purpose of this section is to present a data structure which allows

implementation of the sequential algorithms for G(A) in time proportional to

m 2

a = p.
i=1

where p. is the number of nonzeroes in row i of the n by n matrix A. This

bound is satisfactory because many computations with sparse matrices require a

operations. For example, the computation of ATA can be done by noting that

ATA = rrI,
i=1

33

where r1 is the i th row of A, and hence requires

m

1 mp (p"+1)2 i=1 1 1

operations.

We assume that the ordered pairs (i,j) for which a 1 1 0 are provided by

two arrays indrow and indcol. Thus, if T is the number of nonzero elements in

A then

(indrow(k),indcol(k)) , k=1,2,...,1

,

are the required pairs.

Given the arrays indrow and indcol, it is possible to sort these arrays

(in time proportional to T) and define two arrays, ipntr and jpntr, so that

the row indices for column j are

{indrow(k): jpntr(j) < k < jpntr(j+1)}

and the column indices for row i are

{indcol(k): ipntr(i) < k < ipntr(i+1)}

These four arrays define the data structure. Note that the sorting of indrow

and indcol necessary to define ipntr and jpntr destroys the relative ordering

of indrow and indcol, and now i = indrow(k), j = indcol(k) may not correspond

to a nonzero entry in A.

The arrays indrow and jpntr (indcol and ipntr) provide a column-oriented

(row-oriented) definition of the sparsity pattern of A. It is evident that

given either definition it is possible to obtain the other definition of the

sparsity pattern in time proportional to T. Thus, we can automatically

generate the data structure given any of the following three pairs of

arrays: indrow and indcol, indrow and jpntr, indcol and ipntr.

The most time-consuming operation in the coloring algorithms for G(A) is

to determine the vertices adjacent to a given vertex. If ak is the given

vertex, note that aj is adjacent to ak in G(A) if and only if there is an

34

index i such that (i,j) E Sk where

Sk = {(i,j): aik 0, ai j 0},

The program segment below generates Sk for k=1,2,...,n.

DO 50 K = 1, N

JPL = JPNTR(K)

JPU = JPNTR(K+1) - 1

IF (JPU .LT. JPL) GO TO 40

DO 30 JP = JPL, JPU

IR = INDROW(JP)

IPL = IPNTR(IR)

IPU = IPNTR(IR+1) - 1

IF (IPU .LT. IPL) GO TO 20

DO 10 IP = IPL, IPU

IC = INDCOL(IP)

10 CONTINUE

20 CONTINUE

30 CONTINUE

40 CONTINUE

50 CONTINUE

Since each (i,j) such that aij 10 belongs to p sets Sk, this program segment

executes in time proportional to a.

The above discussion indicates that it is possible to implement the

coloring algorithms for G(A) so that they execute in time proportional to a.

The details of these implementations, however, can be quite subtle and will be

described elsewhere.

7. Numerical Results

In this section we present some of the results obtained with the coloring

algorithms of Section 4 on a variety of problems of the form G(A). We

consider four algorithms:

CPR. A sequential algorithm with the ordering a1,a2,...,an.

LFO. A sequential algorithm with the LF ordering.

35

SLO. A sequential algorithm with the SL ordering.

IDO. A sequential algorithm with the ID ordering.

Given the matrix A, the coloring produced by CPR is well-defined, but

with the other algorithms, ties may affect the coloring produced. Ties were

broken arbitrarily in LFO and SLO, but in IDO it was helpful to break ties by

scanning the list of vertices with maximal incidence degree and choosing a

vertex (column) with the least number of nonzero elements.

For each problem we cite at least three statistics. These are the matrix

density (MATD) of A, the graph density (GPHD) of G(A), and the maximum number

of nonzeroes in any row (MAXR) of A. If T is the number of nonzeroes in A,

then the matrix density is

T

m'n

and if E is the set of edges of G(A) then the graph density of G(A) is

lEt

[n n-1) 1

'

2'

Also recall that at the beginning of Section 2 we proved that MAXR is a lower

bound on the number of evaluations of Ad needed to determine A by any method.

In some of the problems we generated sequences of uniformly distributed

random numbers with the RAND function of L. Schrage [1979]. Given an integer

seed, RAND generates a random number in (0,1) and changes the seed. Thus a

sequence of random numbers can be generated by repeated calls to RAND.

We now consider the methods used to generate the sparsity patterns of the

matrices. Note that it is only necessary to specify the pattern

S = {(i,j): a1j # 0}

and that the numerical values of a.. are unimportant.

Random Matrices

We first tested the algorithms on matrices with a random sparsity

pattern. The performance of the algorithms on these problems may not be

36

indicative of their performance in practical problems, but these problems may

uncover undesirable behavior in the algorithms.

Given a density u in [0,1], we define a random sparsity pattern S as

follows:

Fo, j=1,2,...,n

For i=1,2,...,m

Generate a random number r in (0,1)

If r < p then (i,j) E S.

For each triple (m,n,p) we generated 5 random patterns and averaged the

results. Table 1 summarizes the results for densities 0.005, 0.01, 0.02,

0.03, and 0.04. These densities are representative of those found in

applications.

The results in Table 1 indicate that with the exception of CPR, all

algorithms perform similarly. CPR colors the graph in a random order, and

Table 1 shows that strategic orderings are worthwhile.

Also note that on these problems the density of the graph is much larger

than the density of the matrix. To explain this note that

Prob {(a.,a.) c E} = 1 - (1-12)m

and that for mp 2 K<1,

1 - (1-p2)m > 0.5mp2

Thus the ratio of the density of the graph to the density of the matrix is at

least 0.5mp. Finally, note that although MAXR is a lower bound on the

chromatic number of G(A), this bound does not seem to be very sharp for these

problems.

37

TABLE 1

Random Matrices

M N MATD(%) GPHD(%)

500

500

500

500

500

1000

1000

1000

1000
1000

2000

2000

2000

2000

2000

500

500

500

500

500

250
250

250

250

250

125

125

125

125

125

0.50
1.00

2.00

2.99

3.98

0.52

1.00

2.00

3.01

4.01

0.50
1.00

2.01

2.99

3.99

1.27

4.78

18.11

36.04

54.87

2.71

9.64

32.99

59.84
80.03

4.97

18.18

55.23
83.07

95.73

MAXR

8.0

12.2
22.0

27.8
34.6

6.2

8.8
13.2
17.8

21.4

4.6
6.8

9.4
11.4
13.8

CPR

9.0

15.2
34.8

59.4
88.6

7.4
14.4

32.0
54.4

81.4

6.2

13.0
28.6

48.6
69.8

LFO

8.0
13.2
29.2

51.6
78.2

6.4

11.8

27.4
48.8

74.4

5.2
11.0
26.0

44.8
65.6

SLO

8.0

12.6
30.0
52.0

79.2

6.4
11.8

28.2
49.0

75.4

5.0
10.8

26.4

45.2
66.6

IDO

8.0

13.2

30.2

52.2

79.2

6.4

12.2

28.2

50.4

77.2

5.0

11.6

26.4

46.6

68.8

Band Matrices

One of the reasons why the results for general random matrices may not be

indicative of their behavior in practice is that the density of the graph is

large relative to the density of the matrix. It is possible to generate

graphs G(A) with a smaller relative density by considering band matrices.

The idea is to generate a permutation of a band matrix with bandwidth

20+1. This can be done by first obtaining a random permutation n(1) ,n (2) , ...

,

wi(n) of the integers 1,2,.. .,n, and then an appropriate sparsity pattern S can

be generated as follows:

For j=1,2,.. .,n

For i = max(1,w(j)-8),...,min(n,ir(j)+8)

Generate a random number r in (0,1)

If r < u then (i,j) e S.

In this construction u is the density within the band. For each triple

(n,8,u) we generated 5 patterns and averaged the results. Table 2 summarizes

38

the results for n = 500, u = 1.0,0.5,0.25, and 8 = 4,8,16,32. These settings

lead to reasonable matrix densities.

The results in Table 2 show that on these problems CPR continues to

perform poorly. LFO performs better than CPR but SLO and IDO perform better

still. Also note that if the density of the graph is not too much larger than

the density of the matrix, then the lower bound provided by MAXR is fairly

sharp.

TABLE 2

Band Matrices (n=500)

8 MATD(%) GPHD(%) MAXR

4

4

4

8

8

8

16

16

16

32

32

32

1.79

0.90

0.45

3.37

1.70

0.83

6.49

3.27

1.62

12.58

6.28
3.14

3.18
2.12

0.80

6.30

5.16
2.49

12.40

11.28

7.40

23.98
22.94

18.65

9.0
8.4

6.6

17.0
14.4

10.4

33.0
25.6
16.4

65.0
44.6

26.6

CPR

13.6

10.8

7.0

25.6
20.2

12.0

47.4

41.4
24.2

86.8
84.0

55.2

LFO

13.8
9.8

6.8

25.0
19.4

10.8

46.8

39.2
21.6

87.2
81.4

52.0

SLO

9.0

8.8

6.8

17.0
16.6

10.4

33.0

32.6
19.6

65.0
64.0

44.0

I DO

9.0

8.8

6.8

17.0

16.4

10.6

33.0

32.6

20.2

65.0

64.2

44.2

Naval Problems

Our third test consists

the David W. Taylor Naval

problems were obtained from

of the matrices described by Everstine [1979] of

Ship Research and Development Center. These

users representing various Navy, Army, Air Force

and NASA laboratories. Table 3 summarizes the results obtained by the

algorithms; to compare the overall performance of the algorithms on this

problem set, we have included below the total number of colors required by the

algorithms.

MAXR

408

CPR LFO SLO IDO

473 461 433 435

The obvious conclusion is that SLO and 100 perform best overall. It is

particularly interesting that the difference between the lower bound MAXR and

the results for SLO and IDO is on the average less than 1 color. Since MAXR

is a lower bound on the number of evaluations of Ad needed to determine A by

any method, this shows that these algorithms are nearly optimal.

TABLE 3

Naval Problems

N MATU(%)

59

66

72

87

162

193

198

209

221

234

245
307

310
346

361

419

492

503

512

592

607

758
869

878

918

992

1005

1007

1242

2680

7.67

7.35

4.28
7.15

4.50
9.38

3.55
3.99

3.34

1.52
2.43

2.68

2.55
2.69

2.27

2.03

1.30

2.38

1.34

1.46

1.39

1.04

.96

.97

.88

1.70
.85

.85

.68

.35

GPHD(%) MAXR CPR

14.96
11.89

6.65

19.41

9.96

30.65

7.80

11.91

8.21

3.65

6.81

6.85

6.18
10.08

5.66
5.57
3.17
7.10
3.38
3.86

4.08

2.49

2.46

2.45

2.31
4.39

2.54

2.16

1.87

1.03

6

6

5

13

9

30

12

17

12

10

13

9

11

19

9

13

11

25

15

15

14

11

14

10

13

18

27

10
12

19

8

6

5

16

11

31

12
17

14

10

16

13

12

24

12

17

13

28

18

17

18

13

16

11

16

18

32

11
17

21

39

NP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

LFO

7

6

5
13

12

31

12

17

13

10

14

14

13

22

10

17

12

28

16

17

18

15

16

12

18

18

27

12

15

21

SLO

6

6

5

13

10

32

12

17

12

10

13

11

11

20

11

15

11

25

16

15

17

12

15

11

14

22

27

11

14

19

I DO

6

6

5

13

10

32

12

17

13

10

13

12

11

21

10

15

11

25

16

15

17

12

15

11

14

20

27

12

15

19

40

All of the matrices in the naval problems are symmetric but the coloring

algorithms ignore this feature; algorithms for determining sparse symmetric

matrices will be discussed in another paper. To test the dependence of the

algorithms on the ordering of the columns and to obtain a nonsymmetric set of

test matrices, we permuted the columns of the naval matrices. The permuted

naval problems were obtained by considering the columns in the same order as

in the tape provided by Everstine -- it turns out that this leads to non-

symmetric matrices. Table 4 summarizes the results obtained by the

algorithms.

The most striking feature of the results in Table 4 is that CPR is so

dependent on the ordering of the columns while the other three algorithms are

relatively insensitive. This can be seen at a glance by comparing the total

number of colors required by the algorithms in each case. The totals for

Table 4 are

MAXR CPR LFO SLO IDO

408 488 462 434 434

and these results show that on the permuted naval problems SLO and IDO again

perform best overall.

41

TABLE 4
Permuted Naval Problems

NP N MATD(%) GPHD(%) MAXR CPR

1

2

3

4

5
6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

59

66

72

87

162

193

198

209

221

234

245

307

310

346

361

419

492

503

512

592

607

758

869

878

918

992

1005
1007

1242

2680

7.67

7.35

4.28

7.15

4.50
9.38

3.55
3.99

3.34

1.52

2.43

2.68

2.55
2.69

2.27

2.03

1.30

2.38

1.34

1.46

1.39

1.04

.96

.97

.88
1.70

.85

.85

.68

.35

14.96

11.89

6.65
19.41
9.96

30.65

7.80

11.91

8.21

3.65

6.81

6.85

6.18

10.08

5.66

5.57

3.17
7.10

3.38

3.86
4.08
2.49

2.46

2.45

2.31

4.39

2.54
2.16

1.87
1.03

6

6

5

13

9

30

12

17

12
10

13

9

11

19

9

13

11

25

15

15

14

11

14

10

13

18

27

10

12

19

8

6

6

13

11

33

15

17

13

10

14

15

13

24

12

18

12

32
20

17

20

12

16

12

16

18

33

11

17

24

LFO

7

6

5

13

12

30

12

17

13

10

14

14

14

22

10

17

12

29

17

16

18

15

16

12

18

18

28

12

15

20

Harwell Problems

The fifth test consists of the matrices described by Duff and Reid [1979]

of the Harwell Atomic Energy Research Establishment. There are 36 matrices in

this collection, but matrices 33 through 36 have the same pattern, so only 33

matrices are used in our results. With the exception of matrices 1,2,3,9,10,

all matrices in this collection are unsymmetric. Moreover, matrices 28,29,30,

31,32 are not square; their dimensions (m,n) are (219,85), (958,292),

(331,104), (608,188), and (313,176), respectively. Table 5 summarizes the

results obtained by the algorithms, and we have included below the total

SLO

6

6

5

13

9

31

12

17

12

10

13

12

11

21

10

15

11

25

18

15

17
11

15

11

14

2?

27

11

15

19

I DO

6

6

5

13

9

32

12

17

13

10

13

13

11

21

10

16

11

25

16

16

17

11

15

11

14

20

27

11

14

19

42

number of colors required by the algorithms.

MAXR

4473

CPR

4530

LFO

4512

SLO

4500

IDO

4495

It is clear that on the Harwell problems algorithms SLO and IDO perform better

than CPR and LFO, and that SLO and IDO are nearly optimal.

TABLE 5

Harwell Problems

NP N MATD(%) GPHD(%) MAXR CPR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

147

147

1176

113

32

54

57

199

292

85

130
663

663

663

363

363

363

363

822

822

822

822

822

822

822

822

822

85

292

104

188

176

541

11.33

11.30

1.34

5.13

12.30
9.98

8.65

1.77

2.59
7.24

7.59
.38

.39

.39

1.86

2.33

2.40

2.49

.48

.56

.60

.62

.67

.69

.70

.71

.72

2.35

.68

1.92

1.06

2.83

1.46

26.44

26.44

3.39
17.68

36.09

23.55

19.05

4.13

6.77

17.25

92.58

40.67

44.21

41.45

5.14
6.06

6.09

6.47

11.34

12.95

14.09

14.77
15.28
15.79
16.06

16.15

15.64

6.13
2.25
6.18

3.46
8.50

4.61

21

21

99

20

8

12

11

6

14

10

124

422

440

426

34

30

33

33

266

283
295

302

304
308

311

311

304

2

2

2

2

6

11

28

28

107

21

9

12

11

9

16

11

124

422

440

426

35

31

34

33

266

283

295

302

304

308

311

311

304

5

7

6

6

10

15

LFO

27

27

99

20

8

12

11

8

16

10

124

422

440

426

34

30

33

33

266

283

295

302

304

308

311

311

304

5

6

6

6

11

14

SLO

24

24

99

20

8

12

11

7

14

10

124

422

440

426

34

30

33

33

266

283

295

302

304

308

311

304

4

6

6

6

10

13

I DO

22

22

99

20

8

12

11

7
14

10

124
422

440

426

34

30

33

33

266

283

295

302

304

308

311

311

304

4

6

6

6

10

12

43

8. Concluding Remarks

The numerical results of Section 7 show that the problem of evaluating a

sparse Jacobian matrix can be attacked quite successfully as a graph coloring

problem, and moreover, that the SL and ID orderings are nearly optimal for

practical problems. In spite of their excellent performance, in some cases it

may be possible to improve the performance of these algorithms. Consider, for

example, the density pattern of a block tridiagonal matrix whose diagonal

blocks are also tridiagonal and whose off-diagonal blocks are diagonal.

Melgaard and Sincovec [1981] have shown that matrices with this pattern can be

estimated (optimally) with 5 evaluations of Ad. It turns out, however, that

our algorithms are not optimal for this pattern, although for the SL ordering

it can be shown that in the worst possible case it requires 7 evaluations of

Ad.

It may also be possible to improve on the graph coloring algorithms by

using a hybrid approach. To be more specific, consider problem 11 of the

Harwell collection -- the laser matrix. This matrix has one dense row with

124 nonzero elements, but the remaining rows have at most 58 nonzero

elements. Our algorithms require 124 evaluations of Ad to determine the laser

matrix A and this is optimal. However, if we could estimate the dense row

separately, then the remaining problem only requires 58 evaluations of Ad.

The success of this approach depends on the cost of estimating the dense

row. If (as assumed in the introduction) it is more efficient to evaluate

F(x) than to evaluate the components f1(x),f2(x),...,fm(x) of F(x) separately,

then this approach may not help, but if the component of F corresponding to

the dense row is relatively easy to compute then a hybrid approach would be

very helpful.

Acknowledgments

This work benefitted from interactions with many people. Julian Araoz

was the first to note the connection between estimation of sparse Jacobian

matrices and the graph G(A); since then many people have told us that they

were aware of this connection but were unable (for various reasons) to pursue

it further. Ed Dean spent a summer implementing and testing variations of the

coloring algorithms. Gordon Everstine and lain Duff kindly supplied us with

tapes of their sparse matrix collections. Ken Hillstrom provided valuable

assistance and, in particular, plots of the sparse matrices. Finally, Judy

Beumer typed this manuscript with incredible speed and accuracy.

44

References

Bondy, J. A., and Murty, U. S. R. [1976]. Graph Theory with Applications,

North Holland.

Brilaz, D. [1979]. Niw methods to color the vertices of a graph, Comm. ACM

22, 251-256.

Curtis, A. R., Powell, M. J. D., and Reid, J. K. [1974]. On the estimated of

sparse Jacobian matrices, J. Inst. Math. Appl. 13, 117-119.

Duff, I. S. and Reid, J. K. [1979]. Performance evaluation of codes for
sparse matrix problems, in Performance Evaluation of Numerical Software,
L. D. Fosdick, ed., 121-135, North Holland.

Eisenstat, S. [1980]. Personal communication.

Everstine, G. C. [1979]. A comparison of three resequencing algorithms for
the reduction of matrix profile and wave front, Internat. J. Numer.
Methods Engrg. 14, 837-853.

Garey, M. R. and Johnson, D. S. [1979]. Computers and Intractability,

W. H. Freeman.

Harary, F. [1969]. Graph Theory, Addison-Wesley.

Johnson, D. S. [1974]. Worst case behavior of graph coloring algorithms, in
Proceedings 5th Southeastern Conference on Combinatorics, Graph Theory,
and Computing, 513-527, Utilitas Mathematica Publishing.

Matula, D. W., Marble, G., and Isaacson, J. D. [1972]. Graph coloring algo-
rithms, in Graph Theory and Computing, R. C. Read, ed., 104-122, Academic
Press.

Melgaard, D. K. and Sincovec, R. F. [1981]. General software for two-

dimensional nonlinear partial differential equations, ACM Trans. Math.
Software 7, 106-125.

Moon, J. and Moser, L. [1965]. On cliques in graphs, Israel J. Math. 3,

23-28.

Papadimitriou, Ch. [1976]. The NP-completeness of the bandwidth minimization

problem, Computing 16, 263-270.

Powell, M. J. D. and Toint, P. L. [1979]. On the estimation of sparse Hessian
matrices, SIAM J. Numer. Anal. 16, 1060-1074.

Schrage, L. [1979]. A more portable Fortran random number generator, ACM
Trans. Math. Software 5, 132-138.

Welsch, D. J. A. and Powell, M. B. [1967]. An upper bound for the chromatic
number of a graph and its application to timetabling problems, Comput. J.
10, 85-86.

