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Time series regression models that have autoregressive errors are often estimated by two-stage proce-
dures which are based on the Cochrane-Orcutt (1949) transformation. It seems natural to also attempt
the estimation of spatial regression models whose error terms are autoregressive in terms of an analo-
gous transformation. Various two-stage least squares procedures suggest themselves in this context,
including an analog to Durbin’s (1960) procedure. Indeed, these procedures are so suggestive and
computationally convenient that they are quite “tempting.” Unfortunately, however, as shown in this
paper, these two-stage least squares procedures are generally, in a typical cross-sectional spatial con-
text, not consistent and therefore should not be used. 0 

INTRODUCTION

The spatial autoregressive model studied by Cliff and Ord (1973, 1981),
which is a variant of the model considered by Whittle (1954), is widely used to
describe the properties of the error terms in spatial regressions. As typically
specified, the error terms of a spatial autoregressive model depend on two
unknown parameters. One is an autoregressive parameter, say ρ, and the other is
a variance, say . Interest often focuses on ρ as a measure of spatial depen-
dence, and also because it is a component of the generalized least estimator of the
regression parameters. However, consistent estimation of both ρ and  is
important for making inferences based on the regression model.

Based on an analogy with the Cochrane-Orcutt (1949) transformation in a
linear time series model with autocorrelated error terms, one might think that, in
a spatial context, the parameter ρ can be estimated consistently by two-stage least
squares (2SLS) procedures. In particular, one might consider the estimation of
the parameter ρ by a procedure that is analogous to that suggested by Durbin
(1960) for linear time series models, referred to in the spatial literature as the spa-
tial Durbin procedure. Unfortunately, however, as shown below, under typical
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assumptions these procedures are, in general, not consistent. This point is impor-
tant, especially since these 2SLS procedures are computationally convenient and
therefore their use is “tempting.”

In this paper, the basic model is first specified, then results concerning the
inconsistency of the 2SLS procedures are presented, and finally some concluding
remarks are given in the last section. Technical details are relegated to the
Appendix.

THE MODEL

In this section, the regression model is specified, along with its assumptions.
Those assumptions are then discussed. The following concept will be needed for
the discussion. Let aij denote the (i, j)-th element of an n by n matrix A. Then, the
row and column sums of A are said to be uniformly bounded in absolute value if

where ca is a finite constant.1

The model considered is

, (1)

, (2)

where y is the n by 1 vector of observations on the dependent variable, X is the n
by k matrix of observations on k exogenous regressors, β is the k  by 1 vector of
regression parameters, ε is the n by  1 vector of regression disturbances, ρ is the
scalar autoregressive parameter, W is an n by n  weights matrix, and u is an n by
1 vector of innovation error terms.

Let ui be the i-th element of u, let Z be an n  by q , q≥k , matrix of instru-
ments, and let . Then, assume the following:

 ASSUMPTION 1: The ui’s are i.i.d. with mean 0 and finite variance .

 ASSUMPTION 2: The elements of the weights matrix W are known constants,
and rank  for all .

1It can be shown that if two matrices, say A and B, are conformable for multiplication and their
row and column sums are uniformly bounded in absolute value, then the row and column sums of the
product matrix AB are also uniformly bounded in absolute value (see, e.g., Kelejian and Prucha
1995). Of course, if the row or column sums of a matrix are uniformly bounded in absolute value,
then this is also the case for each element.

aij
j 1=

n

∑ ca   for all  i≤ 1 … n n 1≥;, ,=

aij
i 1=

n

∑ ca   for all  j≤ 1 … n n 1≥;, ,=

y Xβ ε+=

ε ρWε u+=

P Z W′Z,( )=

σ2

I ρW–( ) n= ρ 1<
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 ASSUMPTION 3: The row and column sums of W and 
are uniformly bounded in absolute value.

 ASSUMPTION 4: The elements of the regressor matrix X are nonstochastic,
and X has full column rank.

 ASSUMPTION 5: The elements of the instrument matrix Z are nonstochastic
and bounded in absolute value, and Z has full column rank.

 ASSUMPTION 6:  and  where Qx and Qp
are finite and nonsingular. Furthermore,  and 
are finite.

Assumptions 1 and 2 imply that  and furthermore that
, where

. (3)

These two assumptions are typical in spatial autoregressive models unless special
complications are considered2 (e.g., Cliff and Ord 1981: 198–9). Assumption 3 is
reasonable and should hold for most weights matrix specifications. For example,
the row and column sums of W will be uniformly bounded if W becomes a suffi-
ciently sparse matrix as n → ∞. Another example where this condition is satisfied
is the case in which the elements of W are row normalized and the maximum
number of nonzero elements in any given column remains bounded as n → ∞.
Next observe from (3) that, except for the scale factor , 
is the variance-covariance matrix of ε. The assumption that the row and column
sums of this matrix are uniformly bounded therefore restricts the extent of corre-
lations relating to the elements of ε. In particular, the assumption implies, as is
easily seen, that there exists some finite constant, say , such that

 ,

where  denotes the correlation between  and . Virtually all large
sample analyses restrict the extent of correlations in some way (see, e.g.,
Amemiya 1985, Ch. 3, 4; Pötscher and Prucha 1997, Ch. 5, 6; Anselin and Kele-
jian 1997). Assumption 4 is a standard condition in the context of the general lin-
ear regression model. Essentially, Assumption 4 rules out perfect
multicollinearity. Assumption 5 maintains that the instruments are nonstochastic.
One interpretation of this assumption is that the instruments are exogenous vari-
ables, and that the analysis is conditional upon their realized values. Assumption
6 relates to second order sample moments and is similar to those typically made

2Among other things, these complications could relate to heteroskedasticity concerning the
innovation error terms, more general patterns of spatial correlation, and parametric specifications of
the weights matrix (see, e.g., Case 1991; Anselin 1990; Dubin 1988). 

I ρW–( ) 1– I ρW′–( ) 1–

 n 1– X′X Qx=
n ∞→
lim lim n

n ∞→
1– P′P Qp=

lim  n
n ∞→

1– Z′X lim n
n ∞→

1– Z′WX

ε I ρW–( ) 1– u=
E εε′( ) Ωε=

Ωε σ2 I ρW–( ) 1– I ρW′–( ) 1–=

σ2 I ρW–( ) 1– I ρW′–( ) 1–
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n
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in large sample analyses involving instrumental variable estimators (e.g., Judge
et al. 1985: 167–9).

TWO-STAGE LEAST SQUARES PROCEDURES

Applying the analog of a Cochrane-Orcutt (1949) transformation to (1) and
(2) and rearranging terms in analogy to Durbin’s (1960) approach yields

, (4)

which can also be written in an over-parameterized form as

(5)

where the restriction  is not considered. Note that the model formula-
tions (4) and (5) have been called the spatial Durbin model (see, e.g., Anselin 1988).3

The model in (1) implies that . It then follows from (2) and
Assumptions 1 and 2 that

.

Therefore, as noted in Anselin (1988: 58), the spatially lagged regressor, , is
correlated with the error term, u. One implication of this is that the parameters of
(5) cannot be consistently estimated by ordinary least squares, nor can the param-
eters of (4) be consistently estimated by nonlinear least squares.

In light of the correlation between  and u, one might think of estimating
(4) by nonlinear 2SLS, or (5) by (linear) 2SLS. However, as will be demon-
strated, these procedures are, in general, not consistent. For this discussion, it
proves convenient to denote with  the stacked vector of the true
model parameters in (4). Furthermore, let denote some arbitrary a
priori permissible parameter vector (of corresponding dimensions). Rewrite (4)
as

with

. (6)

The function f(θ) is often referred to as the response function. The nonlinear
2SLS estimator of , say , based on the instruments Z is
now defined as the minimizer of

. (7)

3These model formulations have also been considered by Burridge (1981) and Blommestein
(1983) and have been referred to in the spatial literature as the spatial common factor model.

y ρWy X ρWX–( )β u+ +=

y ρWy Xβ WXγ u+ + +=

γ ρβ–=

Wy WXβ Wε+=

E Wyu′( ) σ2 I ρW–( ) 1– 0≠=

Wy

Wy

θ ρ β′,( )′=
θ ρ β′,( )′=

y f θ( ) u+=

f θ( ) ρWy X ρWX–( )β+=

θ ρ β′,( )′= θ̂ ρ̂ β̂′,( )′=

Rn θ( ) n 1– y f θ( )–[ ]′Z Z′Z( ) 1– Z′ y f θ( )–[ ]=
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Amemiya (1985: 246) gives conditions under which the nonlinear 2SLS esti-
mator is consistent. In terms of the model presented in this paper, one of
Amemiya’s conditions for the consistency of is that the matrix

(8)

has full column rank. For purposes of interpretation, if a model were linear in the
parameters, then the derivative of the response function with respect to the
parameters would be the regressor matrix, say S. In this case, H would then corre-
spond to the probability limit of .4

From (6),

(9)

Note that the expected value of the first column of the n by k+1 matrix in (9) is a
vector of zero. Given this and the maintained assumptions, it is shown in the
appendix that the first column of H is also a vector of zeroes. It follows that H
does not have full column rank. The violation of Amemiya’s rank condition
implies that his proof of consistency does not apply to the nonlinear 2SLS estima-
tor corresponding to (4). It also suggests that there may be a fundamental “identi-
fication problem” in the sense that the objective function 
becomes flat in the direction of  as n tends toward infinity. That is, it suggests
that in the limit the minimum of  is not associated with a unique value of

. That this is indeed the case for  is now demonstrated.
The nonlinear 2SLS estimator can be viewed as a special case of an M-esti-

mator. A basic condition maintained in the general literature on M-estimators is
that the parameters be identifiably unique (see, e.g., Gallant and White 1988;
Pötscher and Prucha 1991, 1997). For the problem at hand, this translates into the
requirement that the limiting objective function

has a unique minimum at the true parameter value, i.e., for all
. Now observe that, for any given value of ,

4In somewhat more detail, consider for a moment the classical case of a linear model, say
 with , where S is the regressor matrix. In this case, the minimizer of (7),

i.e., the 2SLS estimator, can be expressed explicitly (in terms of the usual formula) as
. Furthermore, observe that in this case, .

Thus, in the linear case, Amemiya’s condition reduces to the standard requirement that 
has full column rank.

θ̂ ρ̂ β̂′,( )′=

H p n 1– Z′ f θ( )∂
θ∂

------------
n ∞→
lim

θ θ=

=

n 1– Z′S

y f θ( ) u+= f θ( ) Sθ=

θ̂ S ′Z Z ′Z( ) 1– Z ′S[ ] 1– S ′Z Z ′Z( ) 1– Z ′y= f θ( )∂ θ∂⁄ S=
plim
n ∞→

n 1– Z ′S

f θ( )∂
θ∂

------------

θ θ=

W y Xβ–( ) X ρWX–( ),[ ]=

Wε X ρWX–( ),[ ] .=

Rn θ( ) Rn ρ β,( )=
ρ
Rn ρ β,( )

ρ β β=

R ρ β,( ) p Rn ρ β,( )
n ∞→
lim=

R ρ β,( ) R ρ β,( )>
ρ β,( ) ρ β,( )≠ ρ
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(10)

Note that , for all values of . Given this and the maintained
assumptions, it is demonstrated in the appendix that

(11)

for all values of . That is, as conjectured above, the limiting objective function
of the nonlinear 2SLS estimator is indeed flat in the direction of , and thus the
identifiably uniqueness condition does not hold. Again, this indicates that, in gen-
eral, the nonlinear 2SLS estimator  will be inconsistent. This incon-
sistency is demonstrated in the appendix for a special case of the model in (4).

Completely analogous observations hold for the linear 2SLS estimator corre-
sponding to the model in (5). While a formal demonstration of the inconsistency
of the linear 2SLS estimator is not given, the result should be evident from the
discussion above. For example, the model in (5) is an over-parameterization of
the model in (4) and therefore contains less information. Since the parameters of
(4) are not identifiably unique, it is intuitively clear that the parameters of (5) are
also not identifiably unique. Finally, it should be evident that corresponding
results also hold for cases in which the error terms of a linear regression model
are spatially autoregressive of order . For example, Amemiya’s condition
corresponding to (8) would then not hold because the first q columns of the
matrix involved would be columns of zeroes.

CONCLUSION

It has been shown in this paper that typically specified linear spatial regres-
sion models with spatially autoregressive errors cannot be consistently estimated
by 2SLS procedures based on a Cochrane-Orcutt transformation of the model. In
a sense, this is unfortunate because these procedures are computationally conven-
ient and feasible, and hence their use is “tempting.” Also noted here, as well as
elsewhere in the literature, is that the parameters of the spatial Durbin form of the
model, obtained from a Cochrane-Orcutt transformation, cannot be consistently
estimated by OLS.

On a more constructive note, Kelejian and Prucha (1995) suggest a three-
step procedure for estimating the parameters of the model in (1) and (2). Their
procedure is computationally feasible even with large samples; for example,
there are more than 3000 counties in the U.S. In Kelejian and Prucha’s first stage,
β is estimated by OLS from (1) and the residuals are obtained. These residuals
are then used in their second stage to estimate ρ, as say , by a generalized
moments technique. In their third stage, β is estimated by feasible generalized
least squares based on the estimator . Kelejian and Prucha demonstrate that this

y f ρ β,( )– y ρWy– X ρWX–( )β–=

I ρW–( )ε=

I ρW–( ) I ρW–( ) 1– u .=

E y f ρ β,( )–[ ] 0= ρ

R ρ β,( ) p  Rn
n ∞→
lim ρ β,( ) 0= =

ρ
ρ

θ̂ ρ̂ β̂′,( )′=

q 1>

ρ̂

ρ̂
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feasible estimator of β is asymptotically equivalent to the true generalized least
squares estimator, which is based on ρ. They also demonstrate under an explicit
set of assumptions that their feasible generalized least squares estimator is
asymptotically normal. In doing this, they do not assume that the error terms are
normally distributed.

The model in (1) and (2) is also frequently estimated by maximum likeli-
hood assuming that the error terms are normally distributed. One reason for the
importance of the three-step procedure in Kelejian and Prucha (1995) is that the
maximum-likelihood estimator may not be computationally feasible in large
samples unless the weights matrix satisfies special (simplifying) conditions such
as sparseness, symmetry, and so on.
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APPENDIX

Proofs Relating to Probability Limits

To demonstrate a preliminary result, let Γ be an n by  n  nonstochastic
matrix whose row and column sums are uniformly bounded in absolute value by,
say, . Let ; then the elements of A are bounded in absolute value
for all .

To see this, let  be the (i, j)-th element of A, and let  be the bound for
the elements of Z, i.e.,  (Assumption 5). Then

(A.1)

To show that the first column of H is indeed a column of zeroes, Cheby-
shev’s inequality is employed. Let  be the first column of H. Then, in light of
(8) and (9), . Note first that the mean vector of  is ;
also note that its variance-covariance matrix is

,

where  is defined in (3). Assumption 3 implies that row and column sums of
W and  are uniformly bounded in absolute value, and so therefore are the row
and column sums of ; see footnote 1. It then follows from the prelimi-
nary result relating to (A.1) that  and hence, via Chebyshev’s
inequality, that .

Next, to prove that equation (11) holds, let . Then by
(10), . It follows that  and

where . By Assumption 3, the row
and column sums of W, and hence of , and those of

 are bounded uniformly in absolute value. It then follows
that the row and column sums of  are also bounded uniformly in absolute
value. Thus, again from the preliminary result relating to (A .1), ,
and hence by Chebyshev’s inequality, . Observing that

,

the result in (11) now follows trivially from this and Assumption 6.

cγ A n 1– Z′ΓZ=
n 1>

aij cz

zij cz≤

aij n 1– zti zsj γts

s 1=

n

∑
t 1=

n

∑ n 1– zti zsj γts
s 1=

n

∑
t 1=

n

∑≤ ≤

n 1– cz
2 γts cz

2 cγ .≤
s 1=

n

∑
t 1=

n

∑≤

ϕn

ϕn n 1– Z′Wε= ϕn E ϕn( ) 0=

E ϕnϕ′n( ) n 2– Z′ WΩεW′( )Z=

Ωε
Ωε

WΩεW′
E ϕnϕ′n( ) 0→

p limϕn 0=
ψn n 1– Z′ y f ρ β,( )–[ ]=

ψn n 1– Z′ I ρW–( ) I ρW–( ) 1– u= E ψn( ) 0=

E ψnψ′n( ) σ2n 2– Z′ Γ* Z=

Γ* I ρW–( ) I ρW–( ) 1– I ρW′–( ) 1– I ρW′–( )=
I ρW–( )

I ρW–( ) 1– I ρW′–( ) 1–

Γ*

E ψnψ′n( ) 0→
p limψn 0=

Rn ρ β,( ) n 1– y f ρ β,( )–[ ]′Z Z′Z( ) 1– Z′ y f ρ β,( )–[ ]=
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Inconsistency Results for a Special Case

Consider the special case of (4) in which  and β is known. In this case,
if Z is a vector, the 2SLS estimator  would be

Now define , with  and . Recall-
ing that , you have . Given the assumptions main-
tained in this paper, and the central limit theorem for triangular arrays presented
in Kelejian and Prucha (1995, Theorem A),5 it follows that

.

Using the continuous mapping theorem (see, e.g., Serfling 1980: 24), it then fol-
lows that

where . Recall that  is nonsingular by Assumption
6, and hence  and  are not perfectly correlated. Consequently,

 for  and thus .

5This central limit theorem follows readily from a corollary to the Lindeberg-Feller central limit
theorem for triangular arrays. The corollary itself is given in, e.g., Billingsley (1979: 319, Problem
27.6). The need for a central limit theorem for triangular arrays arises because, in general, the ele-
ments of depend on the sample size.

ρ 0=
ρ̂

ρ̂ Z′W y Xβ–( )[ ] 1– Z′ y Xβ–( )=

n 1 2⁄– Z′u
n 1 2⁄– Z′Wu
------------------------- .=

ξn ξn1 ξn2,( )′= ξn1 n 1 2⁄– Z′u= ξn2 n 1 2⁄– Z′Wu=
P Z W′Z,( )= ξn n 1 2⁄– P′u=

Z ′W

ξn ND 0 σ2Qp,( )→

ρ̂
ξn1

ξn2

-------
ξD 1

ξ2

-------→=

ξ ξ1 ξ2,( )′= N 0 σ2Qp,( )∼ Qp

ξ1 ξ2

Pr ξ1 ξ2⁄ δ>( ) 0> δ 0> p lim
n ∞→

ρ̂ 0≠


