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ESTIMATION OF SPECTRAL GAP FOR ELLIPTIC OPERATORS

MU-FA CHEN AND FENG-YU WANG

Abstract. A variational formula for the lower bound of the spectral gap of an
elliptic operator is presented in the paper for the first time. The main known
results are either recovered or improved. A large number of new examples
with sharp estimate are illustrated. Moreover, as an application of the march
coupling, the Poincaré inequality with respect to the absolute distribution of
the process is also studied.

1. Introduction

Consider the operator L =
∑d
i,j=1 aij(x)∂i∂j +

∑d
i=1 bi(x)∂i, where ∂i = ∂

∂xi
,

a(x) := (aij(x)) is positive definite, aij ∈ C2(Rd) and bi =
∑d
j=1(aij∂jV + ∂jaij)

for some V ∈ C2(Rd) with Z :=
∫

exp[V (x)]dx < ∞. We denote L by L ∼ (a, b)
or L ∼ (a, V ) and let π(dx) = Z−1 exp[V (x)]dx.

Throughout of this paper, we assume that the L-diffusion process is non-explosive
so that the corresponding Dirichlet form is regular. Then the first (non-trivial)
eigenvalue λ1 or the spectral gap can be characterized as

gap(L) = inf
{
π
(
〈a∇f,∇f〉

)
: f ∈ D, π(f) = 0, π(f2) = 1

}
,(1.1)

where π(f) =
∫
fdπ and D = {f + c : f ∈ C∞0 (Rd), c ∈ R}. The variational

formula (1.1) is particularly useful for a upper bound of gap(L). But it is much
more difficult to handle the lower bound for which many different approaches have
been introduced. The readers are urged to refer to [6] for further comments and
references.

To show the difficulty of the problem, we mention here three simple examples.
Let d = 1 and take a ≡ 1, b(x) = −x. Then the first eigenvalue is λ1 = 1. We
now go to the half line [0,∞) with reflecting boundary and with the same a. Then
λ1 = 2 or 3 according as b(x) = −x or −(x + 1). Surprisingly, the order of the
corresponding eigenfunctions changes from 1, 2 to 3 successively. From these, one
sees that the first eigenvalue is very sensitive.

To get some impression about the results obtained in the paper, let us restrict
ourselves to the half line [0,∞). Denote by F the set of all functions f ∈ L1(π)
with f ′ > 0 on (0,∞). Define C(x) =

∫ x
0
a(y)−1b(y)dy. We will use quite often the
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following mapping I : F → C[0,∞) or its variations.

I(f)(x) =
e−C(x)

f ′(x)

∫ ∞
x

f(u)eC(u)

a(u)
du =

e−V (x)

a(x)f ′(x)

∫ ∞
x

f(u)eV (u)du, x > 0, f ∈ F .

(1.2)

Then, we have

gap[0,∞) ≥ sup
f∈F

inf
x>0

I(f)(x)−1.(1.3)

This is an alternative statement of Theorem 2.1 (2) given below. No doubt, this
is a very convenient formula since it is usually quite easy to choose a test function
f ∈ F to obtain a non-trivial estimate. Moreover, it is proved that equality in
(1.3) actually holds in the regular case (cf. Proposition 6.4). This new variational
formula is clearly a dual of (1.1). It is remarkable that the two formulas have no
common point.

This paper is based on a new probabilistic method, i.e. the coupling approach,
introduced by the authors in [5] and further developed in [3], [6], [15] and [16]. For
the reader’s convenience, let us explain briefly the main ideas of the method. First,

we construct some degenerated elliptic operators L̃ on the product space Rd ×Rd

so that L̃fi(x1, x2) = Lf(xi) for i = 1, 2, all f ∈ C2
b (Rd) and all x1 6= x2, where

fi(x1, x2) = f(xi), i = 1, 2, x1, x2 ∈ Rd. The operator L̃ is then called a coupling
of L (see [3] or [4] for details). Next, choose a distance d(x, y) in Rd. Our main
estimate comes from the following inequality

L̃d(x, y) ≤ −δd(x, y), for all x 6= y(1.4)

where L̃ is a coupling operator and δ > 0 is a constant. From this, we deduce
that gap(L) ≥ δ. Certainly, we have ignored a lot of technical points in this step.
Anyhow, from (1.4), one sees that the estimate depends heavily on the choice

of both the coupling operator L̃ and the distance d(x, y). On the other hand,

it is known from [3] that the couplings L̃ can be classified according to different
classes of distances and moreover for each class (usually quite large) of distances,

there often (sometimes uniquely) exists an optimal L̃. Therefore, constructing a
“good” distance plays a critical role in the study of estimates of the spectral gap
(as well as many applications of the coupling approach), as illustrated in our recent
publications.

The second key point of our method is that the eigenfunction of λ1 has to be
Lipschitz with respect to the distance adopted. This once again gives the choice of
the distance a serious influence on the effectiveness of the approach, especially for
non-compact spaces. From this point of view, our approach seems quite restrictive.
For instance, in [6] we were unable to cover completely the one-dimensional case
for which we employed an analytic approach, a continuous analog of [13]. However,
this serious problem turns out to be helpful. It provides us a way to construct
some effective distances. That is, roughly speaking, choosing the distance from the
eigenfunction or its approximations. Fortunately, this idea is successful as one will
see soon in the next section. This paper should be considered as a critical step
in the study of couplings and the idea of the paper should be useful in various
applications of the coupling method as well as in the study of related topics.

Since the topic is quite technical as one can imagine, we choose a special way to
organize the paper. Starting from the simplest case, i.e. the half line (Section 2),
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then go to the full line (Section 3) and finally studying the general case (Section
4). In each section, we introduce the results, explain the ideas and present a large
number of examples (which should be considered as a critical part of the paper) in
illustration of the results. One sees in a gradual way how the ideas move from a
special case to the general one. The proofs are shorter than the statements of the
results. Having some preparations (Section 5) at hand, the proofs of the results
(except one) of Sections 2–4 are given in Sections 6–8 respectively. The equality in
(1.3) is explored at the end of Section 6 and Section 7.

This paper is a continuation of [6] but it is nevertheless self-contained. Some
ideas come from our previous papers, not only from the study on the estimate of
the spectral gap but also from the study of the estimate of Logarithmic Sobolev
inequality (see [7], [16], [17] and references therein). Besides, the paper is also an
interaction with the study of the same topic for Markov chains and with the study
on path space ([10], [17]). In particular, a result on the Poincaré inequality with
respect to the absolute distributions of the process is included in Section 4 and
proved in Section 9. Finally, the paper [12], introduced to one of the authors by S.
Kotani, is very helpful.

2. The Case of the Half Line

Consider a reflecting diffusion on the half line [x0,∞) with operator L ∼ (a, b).
Set C(x) =

∫ x
x0
b(u)a(u)−1du. Then, the condition “Z < ∞” and the well-known

Feller non-explosive criterion can be stated as follows.

Z =

∫ ∞
x0

eC(x)

a(x)
dx <∞,

∫ ∞
x0

dxe−C(x)

∫ x

x0

eC(y)

a(y)
dy =∞.(2.1)

The left-end point of the half line is not essential in this section but it will be
critical in the next section. To emphasize the half line, we use gap[x0,∞] instead
of gap(L). Recall that the mapping I(f) was defined in (1.2) but in which the
function C(x) is replaced by the one just defined here.

Theorem 2.1. Assume that (2.1) holds.

(1) For every function f ∈ C1[x0,∞)∩C2(x0,∞) with f > 0 on (x0,∞), we have

gap[x0,∞] ≥ inf
x>x0

[
(−af ′ − bf)′/f

]
(x)(2.2)

= inf
x>x0

[
− b′ −

(
af ′′ + (a′ + b)f ′

)
/f
]
(x).(2.3)

(2) For every function f ∈ C[x0,∞) ∩ C1(x0,∞) ∩ L1(π) with π(f) ≥ 0 and
f ′ > 0 on (x0,∞), we have

gap[x0,∞) ≥ inf
x>x0

I(f)(x)−1.(2.4)

In particular, if moreover f ∈ C2[x0,∞), then

gap[x0,∞] ≥ c provided − (af ′′ + bf ′) ≥ cf for some c > 0.(2.5)

Remark 2.2. (1) At the first look, the differentiation form (2.2) and the integration
form (2.4) seem quite different but they are indeed equivalent. To see this, let
f2 be given in part (2) such that the right-hand side of (2.4) is positive. Take
f1 = f ′2I(f2), then f ′1 > 0 on (x0,∞). Since

f ′1(x) = − b(x)

a(x)
e−C(x)

∫ ∞
x

f2(y)eC(y)

a(y)
dy − f2(x)

a(x)
,
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we have −af ′1 − bf1 = f2. Hence

[−af ′1 − bf1]′/f1 = f ′2/f1 = I(f2)−1.(2.6)

Then (2.2) implies (2.4).
Next, let f1 be given in part (1) such that the right-hand side of (2.2) is positive.

Fix p > x0 and let c1 = f1(p)eC(p)(
∫ p
x0
a−1eCdx)−1. Set f = c1 − af ′1 − bf1. Then

f ∈ C[x0,∞) ∩ C1(x0,∞) and f ′ > 0 on (x0,∞). Since∫ p

x0

feC

a
dx = f1(x0)eC(x0) ≥ 0,

we have f(x) > 0 for x > p and

0 <

∫ ∞
x0

feC

a
dx = f1(x0)eC(x0) + c1Z − lim

y→∞
f1(y)eC(y).(2.7)

Hence c := limy→∞ f1(y)eC(y) ≥ 0 exists and is finite. Now, we set f2 = c/Z −
af ′1 − bf1. Then f2 ∈ C[x0,∞) ∩ C1(x0,∞), f ′2 > 0 on (x0,∞) and π(f2) =
Z−1

∫∞
x0
a−1f2e

Cdx = Z−1(f1e
C)(x0) ≥ 0. Finally, it is easy to see that

I(f2)−1 ≥ f ′2/f1 = [−af ′1 − f1]′/f1.(2.8)

Then (2.4) implies (2.2).
Of course, each of (2.2) and (2.4) has its own advantage. The computation for

(2.2) is much easier than (2.4). While, (2.4) is very helpful to see whether the
spectral gap is positive or not and to find out an effective test function f . The last
differential form (2.5) is deduced from (2.4), it is generally weaker than (2.4) and
hence weaker than (2.2). But for specific f , (2.5) is not comparable with (2.2). See
also Example 2.12 below.

(2) Next, if the function f is the derivative of the eigenfunction corresponding to

the first non-trivial eigenvalue λ1 = gap(L), then the function −
[
af ′+bf

]′
/f , given

on the right-hand side of (2.2), equals λ1 identically. Conversely, if the function
just mentioned is a constant α > 0 and the function

g(x) := c0 +

∫ x

x0

f(y)dy, c0 := − (af ′)(x0)

α
(2.9)

belongs to L2(π) with f(x0) = 0 and limx→∞ f(x)eC(x) = 0, then g is indeed an
eigenfunction (cf. Lemma 6.2) and so the lower bound α given by (2.2) is sharp. In
this way, one may construct many examples for which our estimates are exact. Due
to the correspondence explained in (1), a similar conclusion holds for the estimate
(2.4).

(3) In general, the idea is to regard functions g of the form

c+

∫ x

x0

f(y)dy or c+

∫ x

x0

f ′(y)I(f)(y)dy(2.10)

as an approximation of the eigenfunction. To examine the effectiveness of the
approximation, when g ∈ L2(π), simply note by (1.1) that

gap[x0,∞) ≤
1

π
(
g2
)
− (πg)2

∫ ∞
x0

ag′2dπ.(2.11)
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In the case g /∈ L2(π), instead of (2.11), we adopt

gap[x0,∞) ≤ lim n→∞
1

πn
(
g2
)
− (πng)2

∫ n

x0

ag′2dπn,(2.12)

where πn(dx) = I[x0,n)(x)π(dx)/
∫ n
x0
π(dy) (cf. Lemma 5.1). Furthermore, if g ∈

L1(π) \ L2(π), then (2.12) becomes

gap[x0,∞) ≤ lim n→∞
1

πn
(
g2
) ∫ n

x0

ag′2dπn.(2.13)

Clearly, for each test function f , we obtain from (2.3) a lower bound for the
spectral gap. The correspondence of some elementary functions f and the lower
bounds are listed below.

Corollary 2.3.

(1) f(x) = (c1 + x− x0)δ, c1 ≥ 0, δ ∈ R.

gap[x0,∞) ≥


inf
x>x0

[
− b′(x) − δ(δ − 1)a(x)

(c1 + x− x0)2
− δ(a′ + b)(x)

c1 + x− x0

]
,

inf
x>x0

[
− b′(x)

]
if δ = 0,

inf
x>x0

[
− b′(x) − (a′ + b)(x)

c1 + x− x0

]
if δ = 1.

(2) f(x) = (c1 + c2(x− x0))eδ(x−x0), c1, c2 ≥ 0, c1 + c2 > 0 and δ ∈ R.

gap[x0,∞) ≥ inf
x>x0

[
− b′(x) − δ2a(x)−δ

(
a′ + b

)
(x)

− c2
c1 + c2(x− x0)

[
2δa+ a′ + b

]
(x)

]
.

(3) f(x) = c1 + c2(x− x0) + (x− x0)2, c2 > −2
√
c1 or c1 = c2 = 0.

gap[x0,∞) ≥ inf
x>x0

[
− b′(x) −

2a(x) +
(
a′ + b

)
(x)
(
c2 + 2(x− x0)

)
c1 + c2(x− x0) + (x− x0)2

]
.

By Corollary 2.3, it is easy to obtain some explicit estimates.

Corollary 2.4.

(1) If there exist c1 and ε ≤ 1 (resp. ε ≥ 1) such that (a′ + b)(c1 + x− x0) ≤ εa
(resp. (a′ + b)(c1 + x− x0) ≥ εa), then

gap[x0,∞) ≥ inf
x>x0

[
a(x)(1− ε)2

4(c1 + x− x0)2
− b′(x)

]
.

(2) If there exists ε1, ε2 ≤ 0 such that a′+b ≤
(
ε1+ε2(x−x0)

)
a, then gap[x0,∞) ≥

infx

[(
ε2

1

4
− ε2

)
a(x) − b′(x)

]
.

(3) If a′ + b ≤
(
ε1 + ε2(x − x0)

)
a for some ε1 ≤ −

√
−ε2 < 0, then gap[x0,∞) ≥

infx{−b′(x) − 2ε2a(x)}.

The next result is deduced from (2.4). Sometimes, it is convenient to decompose
the function f given in Theorem 2.1 (2) as f = f1 +c for some f1 ≥ 0 and c ≤ π(f).
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Corollary 2.5.

(1) Suppose that infx>x0 a(x)/(c1 + x − x0)γ := c > 0 for some c1 > 0 and
γ ≥ 2. If there exists ε ∈ (−∞, γ − 1) such that (c1 + x − x0)b(x) ≤ εa(x)
for large enough x (resp. for all x ∈ [x0,∞)), then gap[x0,∞) > 0

(
resp.

gap[x0,∞) ≥ c
4 (γ−1−ε)2cγ−2

1

)
. When γ = 2 and c1 = 0, the same conclusion

holds by removing the term cγ−2
1 .

(2) If there exist some ε1 and ε2, either ε2 = 0 and ε1 < 0 or ε2 < 0, such
that b(x) ≤ (ε1 + ε2(x − x0))a(x) for large enough x, then gap[x0,∞) > 0.
Furthermore if the condition holds for all x ∈ [x0,∞), then

gap[x0,∞) ≥ max

{
1

4
(ε1 ∧ 0)2− ε2, −ε2

[
1+

∫ ∞
0

eu+ε2u
2/(2(ε1∨0)2)du

]−1

,

1

4

[∫ ∞
0

eε1u+ε2u
2/2du

]−2}
inf
x
a(x).

(3) If

c1 := sup
x>x0

e−C(x)

∫ ∞
x

eC(u)

a(u)
du <∞

and

c2 := sup
x>x0

e−C(x)

∫ ∞
x

eC(u)du <∞,

then gap[x0,∞) ≥ 1/(4c1c2).

(4) If c := supx>x0

a(x)

eC(x)

∫ ∞
x

eC(u)

a(u)
du <∞, then gap[x0,∞) ≥ infx a(x)/(4c2). In

particular, if limx→∞ e
C(x)/a(x) = 0 and lim x→∞a(x)/[a′(x) − b(x)] < ∞,

then gap[x0,∞) > 0.

(5) If b ≡ 0, then gap[x0,∞) ≥
{

4 supx>x0
(x− x0)

∫∞
x
a(u)−1du

}−1

.

Observe that it is usually not difficult to find a test function so that the estimates
(2.2) and (2.4) are non-trivial out of a local region. That is, replacing “x > x0”
with “x > N” for large enough N , we obtain a positive lower bound. For instance,
if a(x) ≡ 1, then the function f(x) = exp[−εC(x)], (ε ∈ (0, 1)) works for (2.4) out
of a local region. Next, if infx>N

[
− b′(x)

]
> 0, then the function f(x) = x is

enough for (2.2) out of a local region. We are now going to show that this is indeed
sufficient for a non-trivial estimate since we can always modify the test function
so that the infimum over the whole space [x0,∞) is positive. Besides, the results
given below actually provide us some optimizing methods to improve the resulting
estimate.

Corollary 2.6. Given f ∈ C1[x0,∞) with π(f) ≥ 0, f ′(x) > 0 for large enough x
and

lim x→∞I(f)(x) <∞.(2.14)

Then, we have

gap[x0,∞) ≥ sup
c>0

inf
x>x0

I(f1)(x)−1 > 0,(2.15)

where f1(x) = cx/(1 + x) + f(x).
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This corollary is deduced from (2.4) by using f1 instead of the original f . The
additional term cx/(1 + x) changes the sign of f ′ locally but without interfering
with the convergence in (2.14). The next corollary is quite convenient in practice
since the test function is fixed and it is also very effective if the decay of the drift
b(x) is not slower than linear.

To state the result, we need some notations which will be used several times in
what follows. Let K ∈ C(x0, D) be a non-decreasing function so that
(x− x0)K(x)/a(x) is locally integrable. Define

F r(s) =

∫ s∧r

x0

u− x0

a(u)

[
K(r)−K(u)

]
du, r ∈ (x0, D).(2.16)

δ(K) = sup
r∈(x0,D)

K(r) inf
s∈(x0,r]

(s− x0) exp[−F r(s)]∫ s
x0

exp[−F r(u)]du
.(2.17)

Then, we have

δ(K) ≥ sup
r∈(x0,D)

K(r) exp[−F r(r)] = K
(
r0
)

exp

[
− 1 +

∫ r0

x0

(u− x0)K(u)

a(u)
du

]
,

(2.18)

where r0 is the unique solution to the equation

K(r) =

(∫ r

x0

u− x0

a(u)
du

)−1

, r ∈ (x0, D).(2.19)

When D <∞ and (2.19) has no solution in (0, D), we set r0 = D.

Corollary 2.7. Choose a non-decreasing function K ∈ C(x0,∞) such that

K(r) ≤ inf
x≥r

[−(a′ + b)(x)/(x− x0)− b′(x)] + sup
y
b′(y)

(resp. K(r) ≤ infx>r[−b(x)/(x − x0)] (r > x0)). Assume that (x − x0)K(x)/a(x)
is locally integrable. Then, we have

gap[x0,∞) ≥ β0 + δ(K),

where β0 = − supx b
′(x) (resp. β0 = 0).

The following examples illustrate the power of the above results. Here, we con-
sider the half line [0,∞) only.

Example 2.8. Take b(x) = −b (b > 0), a(x) ≡ a. By Corollary 2.3 (2) with
δ = b/(2a), we get gap[0,∞) ≥ b2/(4a) which is sharp (see [6, example 1.10]).
Corollary 2.4 (2) or Corollary 2.5 (2) with ε1 = −b/a and ε2 = 0 as well as
Corollary 2.5 (5) give us the same bound.

Example 2.9. Take a(x) ≡ 1 and b(x) = −αxβ , (α > 0, β > −1). Applying
Corollary 2.6 to f(x) = exp

[
εxβ+1

]
(ε < α/(β + 1)), it follows that gap[0,∞) > 0.

To get some explicit bounds, we apply Corollary 2.7 which is available iff β ≥ 1.
The linear case (β = 1) will be treated in the next example. We now assume that
β > 1. Then, the lower bounds provided by Corollary 2.7 and (2.18) for the two
choices of K are

2
β−1
β+1 [α(β + 1)]

2
β+1 exp

[
− 1 +

2

β + 1

]
and 2

β−1
β+1α

2
β+1 exp

[
− 1 +

2

β + 1

]
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respectively. Clearly, the first bound is bigger than the second one. However, if we
consider a(x) = (1 +x2)2 and b(x) = −αx3, then the alternative choice of K works
for all α > 0 but the first choice of K works only for α > 1. Therefore, the two
choices of K in Corollary 2.7 are not comparable.

Example 2.10. Take b(x) = −αx (α > 0), a(x) ≡ 1. By Corollary 2.3 (1) with
c1 = 0 and δ = 1 (or Corollary 2.4 (2) with ε1 = 0 and ε2 = −α, or Corollary
2.7), we get gap[0,∞) ≥ 2α. This estimate is sharp since g(x) = x2/2− 1/(2α) is an
eigenfunction and so Remark 2.2 (2) is suitable. The same bound can be obtained
by using (2.4) or (2.5) with f(x) = x2 − 1/α.

Example 2.11. Take b(x) = −αx− β. Then

V (x) = −
(

log a(x) +

∫ x

0

(αr + β)a(r)−1dr
)
.

If (2.1) holds, by Corollary 2.3 (1) with δ = 0, it follows that gap[0,∞) ≥ α+.
This provides us a non-trivial lower bound for a large number of concrete examples
since a(x) is quite arbitrary. If we take a(x) ≡ 1, then, Corollary 2.4 (3) gives
us gap[0,∞) ≥ 3α provided β ≥

√
α > 0. Moreover, in the case that α = β = 1,

the estimate is indeed sharp by Remark 2.2 (2). This is quite interesting since
the change of β from 0 to 1 leads to not only the change of the spectral gap
from 2 to 3 but also the change of the eigenfunction from quadratic to cubic. We
now consider the particular case that a(x) = (1 + x)2 and β = α. Then V (x) =
−(2+α) log(1+x) and (2.1) holds iff α > −1. By Corollary 2.4 (1) or applying (2.3)
to the function f(x) = (1 +x)(α−1)/2 or applying (2.4) to f(x) = (1 +x)(α+1)/2, we
obtain gap[0,∞) ≥ (α + 1)2/4 ≥ α+. The last equality holds iff α = 1. Note that

when α > 1, even though g(x) := x + 1 is in L2(π) and satisfies ag′′ + bg′ = −αg,
but this g is still not the eigenfunction of λ1 since g′(0) 6= 0. For general α > −1,
the function g(x) := (1 + x)(α+1)/2 satisfies ag′′ + bg′ = −(α+ 1)2g/4 but g is not
the eigenfunction of λ1 since g /∈ L2(π). Thus, Remark 2.2 (2) is not suitable for
this example. However, applying (2.13) to g(x) = (1 + x)(α+1)/2, we obtain

gap[0,∞) ≤ lim n→∞

∫ n
0 ag′2eV dx∫ n
0 g2eV dx

≤ lim n→∞
a(n)g′(n)2eV (n)

g(n)2eV (n)
=

(1 + α)2

4
.

We have thus achieved the exact bound. This example shows that in order to attain
the sharp estimate, we do have some freedom of the choice of test functions rather
than using the eigenfunction only.

Example 2.12. Take b(x) ≡ 0 and a(x) = (1 + x)α. Obviously, (2.1) holds iff
α > 1. By Corollary 2.4 (1) with c1 = 1 and ε = α or by Corollary 2.5 (1) with
γ = α and c1 = 1, we get gap[0,∞) ≥ (α − 1)2/4 for all α ≥ 2. This is similar

to the last example. Next, applying (2.13) to g(x) = (1 + x)(α−1)/2, we obtain
gap[0,∞) = 0 for all α ∈ (1, 2), which is the same as the lower bound given by
Theorem 2.1. Therefore, gap[0,∞) > 0 iff α ≥ 2 and our estimate is sharp for all
α ≤ 2. However, the lower bound (α − 1)/2 is not sharp when α > 2. To see this,
applying (2.4) to the family {f(x) = (1 + x)ε − (α− 1)/(α− 1− ε) : ε > 0}, we get

gap[0,∞) ≥ sup
ε∈(0,α−2)

[
(α− 1− ε)(α− 2 + ε)

(
α− 2 + ε

α− 2

)(α−2)/ε]
≥ e(α− 1)(α− 2).

(2.20)
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Setting ε = 1/2 and then letting α ↓ 2, the first estimate of (2.20) gives us
gap[0,∞) ≥ 1/4, which is sharp. We will show in the next section (Example 3.6)

that the principal term eα2 of the lower bound is also exact as α→∞. Applying
(2.2) to the family {f(x) = (1 + x)ε : ε > 0}, we obtain gap[0,∞) ≥ (α − 1)2/4. As
for (2.5), we get gap[0,∞) ≥ 1/4 (independent of α). Replacing f with f − π(f),
π(f) = (α− 1)/(α− 1− ε), it follows from (2.5) that

gap[0,∞) ≥ sup
ε∈(0,1∧(α−2))

[
(1− ε)(α− 2 + ε)

(
π(f)(α − 2 + ε)

α− 2

)(α−2)/ε]
≥ e2−1/(α−1)(α− 2).

All these estimates are exact at α = 2. From these, we see that (2.5) is weaker than
(2.4) but it is not comparable with (2.2) for the specific functions.

Example 2.13. Take a(x) = (1 + x)3 and b(x) = (1 + x)2. By Corollary 2.4 (1)
or Corollary 2.5 (1), we have gap[0,∞) ≥ 1/4. On the other hand, applying (2.4) to

f(x) = log(1 + x) − 1, we get gap[0,∞) ≥ infx>0
1+x

log(1+x) = e.

3. The Case of the Full Line

Set C(x) =
∫ x

0 b(u)a(u)−1du. Then “Z <∞” becomes∫ ∞
−∞

eC(x)

a(x)
dx <∞.(3.1)

The process is non-explosive iff

min

{∫ ∞
0

dxe−C(x)

∫ x

0

eC(y)

a(y)
dy,

∫ 0

−∞
dxe−C(x)

∫ 0

x

eC(y)

a(y)
dy

}
=∞.(3.2)

Intuitively, the idea in this section is to divide the full line into two half lines.
However, there are some technical problems. Note that the spectral gap for the
full line can not be bigger than the maximum of the ones for the half lines. Thus,
the test function f must be connected in some way around the reference point x0.
For instance, in order for the approximating function g of the eigenfunction to be
in C2(R), we require that f ∈ C1(R) in the first term below and f ∈ C(R) with
f(x0) = 0 in the second term below. Actually, what we have in mind is taking the
reference point x0 to be the place at which the eigenfunction vanishes, even though
the precise place is usually unknown in advance.

As a variation of I(f), define

I−(f)(x) =
e−C(x)

f ′(x)

∫ −∞
x

f(u)eC(u)

a(u)
du, x < x0.

Theorem 3.1. Assume that (3.1) and (3.2) hold. Let x0 ∈ R.

(1) For every function f ∈ C2(R) with f(x) > 0 for all x, we have

gap(L) ≥ inf
x

[
(−af ′ − bf)′/f

]
(x)(3.3)

= inf
x

[
− b′ − [af ′′ + (a′ + b)f ′]/f

]
(x).(3.4)

(2) Let C(x) =
∫ x
x0
a−1b. For every function f ∈ C(R) ∩ C1(R \ {x0}) ∩ L1(π)

with f(x0) = 0, f ′(x) > 0 for all x 6= x0, we have

gap(L) ≥ (δ1 ∨ δ2)−1,(3.5)
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where

δ1 = sup
x>x0

I(f)(x), δ2 = sup
x<x0

I−(f)(x).(3.6)

In particular, if moreover f ∈ C2(R), then

gap(L) ≥ inf
x 6=x0

[
− af ′′ − bf ′

]
(x)/f(x).(3.7)

Applying (3.4) to the functions f(x) = c1 + |x − x0|δ (c1 ≥ 0, δ = 0 or δ > 1)
and f(x) = eδ(x−x0) (δ ∈ R), we obtain the following result.

Corollary 3.2.

(1) If there exists ε ≤ 1 (resp. ε ≥ 1) such that (a′ + b)(x − x0) ≤ εa (resp.

(a′ + b)(x− x0) ≥ εa), then gap(L) ≥ infx 6=x0

[
a(x)(1− ε)2

4(x− x0)2
− b′(x)

]
.

(2) If there exists ε ≤ 0 such that a′+ b ≤ εa, then gap(L) ≥ inf
x

[
ε2

4 a(x)− b′(x)
]
.

Corollary 3.3.

(1) Suppose that infx 6=x0 a(x)/(x− x0)2 := c > 0. If there exists ε < 1 such that
(x − x0)b(x) ≤ εa(x) for large |x| (resp. for all x 6= x0), then gap(L) > 0(
resp. gap(L) ≥ c

4 (1− ε)2)
)
.

(2) If there exist some ε1 and ε2, either ε2 = 0 and ε1 < 0 or ε2 < 0, such that
sgn(x−x0)b(x) ≤ (ε1 + ε2|x−x0|)a(x) for large enough |x|, then gap(L) > 0.
Furthermore if the condition holds for all x 6= x0, then

gap(L) ≥ 1

4

[∫ ∞
0

eε1u+ε2/2du

]−2

inf
x
a(x).

In particular, if ε2 = 0, then gap(L) ≥ 1
4ε

2
1 infx a(x).

(3) If

c1 : = sup
x>x0

e−C(x)

∫ ∞
x

eC(u)

a(u)
du, c−1 := sup

x<x0

e−C(x)

∫ x

−∞

eC(u)

a(u)
du,

c2 : = sup
x>x0

e−C(x)

∫ ∞
x

eC(u)du, c−2 := sup
x<x0

e−C(x)

∫ x

−∞
eC(u)du

are all finite, then gap[x0,∞) ≥ 1/max{4c1c2, 4c−1 c
−
2 }.

(4) If

c := max

{
sup
x>x0

a(x)

eC(x)

∫ ∞
x

eC(u)

a(u)
du, sup

x<x0

a(x)

eC(x)

∫ x

−∞

eC(u)

a(u)
du

}
<∞,

then gap(L) ≥ inf
x

a(x)

4c2
. In particular, if lim|x|→∞ e

C(x)/a(x) = 0 and

lim |x|→∞a(x)/[a′(x)− b(x)]<∞, then gap(L)>0.
(5) If b ≡ 0, then

gap(L) ≥ 1

4

[
max

{
sup
x>x0

(x− x0)

∫ ∞
x

a(u)−1du, sup
x<x0

(x0 − x)

∫ x

−∞
a(u)−1du

}]−1

.

Part (3) and (4) of the corollary improve respectively the first two parts of [6,
Theorem 1.3] which were proved by using an analytic approach rather than the
coupling one. Moreover, the present proof becomes very simple.
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By adding a new term, c tan−1(x) or cx/
√

1 + x2 for instance, to the original
function f , from Theorem 3.1 (2), we obtain the following result.

Corollary 3.4. Suppose that there exists a function f ∈ C(R)∩C1(R\{x0}) with
f(x0) = 0, f ′(x) > 0 for all large enough |x| and

max
{

lim x→+∞I(f)(x), lim x→−∞I
−(f)(x)

}
<∞.

Then, we have gap(L) > 0.

Corollary 3.5. Choose K ∈ C(R \ {x0}) such that K(x) is non-decreasing as
|x − x0| increases, moreover, K(r) ≤ infx≥r b(x)/(x0 − x) for all r ≥ x0 and
K(r) ≤ infx≤r b(x)/(x0 − x) for all r ≤ x0. Assume that (x − x0)K(x)/a(x) is
locally integrable. Define F r(s) as in (2.16) for x0 ≤ s ≤ r or r ≤ s ≤ x0 and then
define δ(K) as in (2.17) with D = ∞. Next, define δ−(K) in the same way but
replacing “r > x0” and “s ∈ (x0, r]” with “r < x0” and “s ∈ [r, x0)” respectively.
Then, we have gap(L) ≥ δ(K) ∧ δ−(K).

We are now ready to mention a nice result due to Kac and Krein [11] and Kotani
[12] by using a different approach: Let b ≡ 0. Then

1

4
δ−1 ≤ gap[0,∞) ≤ δ−1,

1

4
(δ ∨ δ−)−1 ≤ gap(L) ≤ (δ ∨ δ−)−1,(3.8)

where δ = supx≥0 x
∫∞
x
a(u)−1du and δ− = supx≤0 x

∫ −∞
x

a(u)−1du. Clearly, the
lower bounds coincide with Corollary 2.5 (5) and Corollary 3.3 (5) respectively. To
illustrate the power of (3.8), it suffices to look at an example with the half line.

Example 3.6. Consider the Example 2.12 again. Then, by (3.8), we have δ−1 = 1
if α = 2 and

δ−1 =
(α− 1)α

(α− 2)α−2
= (α − 1)2

(
1 +

1

α− 2

)α−2

∼ eα2 if α > 2.

Combining this with the lower bound given in Example 2.12, we see that the upper
bound here has the correct order as α → ∞ and the lower bound is exact when
α = 2.

The examples given below not only illustrate the use of the our results but also
show some difference between the half line and the full line.

Example 3.7. Take b(x) = −αx− β. If (3.1) and (3.2) hold, then as in Example
2.11, we have gap(L) ≥ α+. When α > 0 and β = 0, we indeed have gap(L) = α for
every a(x) having the properties: symmetric with respect to the origin, satisfying
(3.1) and (3.2) and

∫
x2dπ <∞, since then g(x) = x is an eigenfunction of λ1 = α.

Especially, when a(x) ≡ 1, we have gap(L) = α but not 2α given in Example 2.10.

Example 3.8. Consider the special case of the above example, b(x) = −αx and
a(x) = 1 + x2. Then, C(x) = −α2 log(1 + x2) and (3.1) holds iff α > −1. We have
just seen that gap(L) = α for all α > 1. This is different from Example 2.12. Next,
applying Theorem 3.1 (2) to the test function f(x) = x(1 +x2)ε, ε = (α− 1)/4, we
obtain

δ1 = δ2 = sup
x>0

(1 + x2)α/2

(1 + x2)ε + 2εx2(1 + x2)ε−1

∫ ∞
x

u(1 + u2)−α/2+ε

1 + u2
du

= sup
x>0

1 + x2

[1 + (1 + 2ε)x2](α− 2ε)
≤ 1

(1 + 2ε)(α− 2ε)
=

4

(1 + α)2
.
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Finally, applying (2.12), we get

gap(L) ≤ lim
n→∞

∫ n
−n a(x)f ′(x)2eV (x)dx∫ n
−n f(x)2eV (x)dx

= lim
n→∞

∫ n
−n(1 + x2)−α/2[(1 + x2)ε + 2εx2(1 + x2)−1+ε]2∫ n

−n x
2(1 + x2)−1−α/2+2εdx

=
(1 + α)2

4
.

Therefore, gap(L) = (α+ 1)2/4 for all α ∈ (−1, 1].

Example 3.9. Take b(x) = −αx3 (α > 0) and a(x) = (1 + x2)2. Applying (3.7)
to f(x) = x(1 + x2)−1/2, we obtain gap(L) ≥ 3 which is independent of α. On the
other hand, by Corollary 3.5 with x0 = 0, K(r) = αr2 and r2

0 =
(√

2α+ 1 + 1
)
/α,

we obtain K(r0) =
√

2α+ 1 + 1 and

gap(L) ≥ K(r0)
(
1 +K(r0)/α

)α/2
exp

[
− 1− αK(r0)

2
(
α+K(r0)

)] v √2α+ 1 e−1/2.

(3.9)

Especially, when α = 4, then the first bound equals 16e−2 ≈ 2.1654.

Example 3.10. Take a(x) ≡ 1 and b(x) = −x + cosx. This is clearly a pertur-
bation of the ordinary O.U.-process. However, when we apply (3.4) to f(x) ≡ 1,
which gives the exact eigenvalue of the O.U.-process, we get the trivial bound. We
now adopt a comparison technique (see also Proposition 4.5). Note that

C(u)− C(x) = −u2/2 + x2/2 + sinu− sinx ≤ −u2/2 + x2/2 + 2.

Inserting this into (3.6) with f(x) = x, it follows that gap(L) ≥ e−2. The estimate
can be further improved by noticing

C(u)− C(x) ≤ −u2/2 + x2/2 + ε sinu− ε sinx+ 2(1− ε)

and using f(x) = x+ ε cosx instead of f(x) = x. Then we obtain gap(L) ≥ (2e)−1

by setting ε = 1/2.

To conclude this section, we mention some examples for which the eigenfunction
g ∈ C2(R) ∩ L2(π) but non-linear.

Examples 3.11. Let a(x) ≡ 1. Then we have gap(L) = 1 for the following choices
of b(x).

(1) g(x) = x(c+ x2), c > 0. b(x) = −x
3

[
1 +

2(9 + c)

3x2 + c

]
.

(2) g(x) =
∫ x

0 e
cy2n

dy, n ∈ Z+, c ∈ R. b(x) = −2ncx2n−1 − e−cx2n ∫ x
0 e

cy2n

dy.

(3) g(x) = cx+ sinx, c > 1. b(x) = − cx

c+ cosx
.

To prove the assertion, simply use (3.4) with f = g′ and note that both g and b are
odd functions.
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4. The General Case

In contrast to the cases of the half line or full line, the structure of the eigen-
function of λ1 in the higher dimensional case is too complex to be understood and
it is often not monotone with respect to the ordinary semi-order. Here, a diffusion
semigroup Pt is said to be monotone if Ptf(x) ≤ Ptf(y) holds for all x ≤ y and
all monotone (non-decreasing) continuous functions f . Even in the case that the
eigenfunction is monotone, one still requires the process to be monotone which is
a quite strong restrictive condition especially for the higher dimensional diffusions
(refer to [8] for details). Thus, in general, it is not practical to use the eigenfunction
or its approximation as the distance we required and so we should adopt a differ-
ent strategy. Roughly speaking, our goal is as follows. First, we use the coupling
method on some simple distances in Rd and reduce our problem to the case of the
half line. Then, applying the idea given in Section 2 we construct a new distance
f ◦ d for some suitable function f . Fortunately, in this way, we still obtain good
enough estimates for the spectral gap.

Let L̃ be a coupling operator of L, d(x, y) be a distance which is in C2 away from
the set {(x, x) : x ∈ Rd} and let D = supx,y d(x, y). Then there exist two functions

A and B on Rd ×Rd such that for each f ∈ C2[0, D) (refer to [4]),

L̃f ◦ d(x, y) = A(x, y)f ′′(d(x, y)) +B(x, y)f ′(d(x, y)), x 6= y.(4.1)

Note that L̃ is a degenerate elliptic operator on Rd×Rd, we have A(x, y) ≥ 0 for all
x and y. One key step of the coupling approach is to find a function f ∈ C2[0, D)
with f(0) = 0, f ′ > 0 and f ′′ ≤ 0 on [0, D) such that

L̃f ◦ d(x, y) ≤ −δf ◦ d(x, y), x 6= y,(4.2)

for some constant δ > 0. Next, choose functions α, β ∈ C(0, D) such that

α(r) ≤ inf
d(x,y)=r

A(x, y), β(r) ≥ sup
d(x,y)=r

B(x, y).(4.3)

Then, for (4.2), it suffices that

α(r)f ′′(r) + β(r)f ′(r) ≤ −δf(r), r ∈ (0, D).(4.4)

We have thus reduced (4.2) to (4.4). Denote by λ∗ the largest constant δ in (4.2)
as f varies. Clearly, λ∗ dominates the largest δ in (4.4). The next result is parallel
to Theorem 2.1.

Theorem 4.1.

(1) For every function f ∈ C2[0, D) with f(0) = 0, f ′ > 0 and f ′′ ≤ 0 on [0, D),
we have

λ∗ ≥ inf
r∈(0,D)

[
(−αf ′′ − βf ′)/f

]
(r).(4.5)

(2) Define C(r) =
∫ r

0
α−1β and then define I(f) as in (1.2) but replacing a(u)

and [0,∞) with α(u) and [0, D) respectively. For every function f ∈ C[0, D)∩
L1(π) with π(f) ≥ 0 on (0, D) and satisfying

f(r) ≥ −β(r)e−C(r)

∫ D

r

f(u)eC(u)

α(u)
du,(4.6)
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we have

λ∗ ≥ inf
r∈(0,D)

{
f(r)−1

∫ r

0

dse−C(s)

∫ D

s

f(u)eC(u)

α(u)
du

}−1

,(4.7)

In particular, if moreover f ∈ C1(0, D), f(0) = 0 and f ′ > 0 on (0, D), then

λ∗ ≥ inf
r∈(0,D)

I(f)(r)−1.(4.8)

Theorem 4.1 is also meaningful for diffusion processes on a manifold which
will be treated in a separate paper. Next, if there exists a coupling such that
infx,y A(x, y) > 0 and λ∗ > 0, then the L-diffusion process is ergodic. Part (1) of
Theorem 4.1 is rather simple but it has the following useful consequence, which is
an analog of the alternative choice of Corollary 2.7.

Corollary 4.2. Choose a non-decreasing function K ∈C(0, D) such that K(r) ≤
infs∈[r,D)[−β(s)/s], r ∈ (0, D). Assume that rK(r)/α(r) is locally integrable on
(0, D). Define F r(s) as in (2.16) and then define δ(K) in (2.17) with x0 = 0.
Then, we have λ∗ ≥ δ(K).

Remark 4.3. (1) The condition (4.6) is used for the non-positive property of the
second derivative of the function required by (4.2) or (4.4). However, when A(x, y)
in (4.1) is indeed a function of d(x, y) only and α(r) is taken to be the common
value of A(x, y) when d(x, y) = r, we do not need (4.6). In this case, the resulting
function f ◦ d may not be a distance but this does not interfere with our proof.

(2) When β(r) ≥ 0 on (0, D), the condition (4.6) is trivial. In the case of β(r) < 0
on (0, D) and limr→D f(r)e−C(r)/β(r) = 0, (4.6) can be rewritten as follows:∫ D

r

(
f

β

)′
(u)eC(u)du ≥ 0.(4.9)

More simply,

f ′β − β′f ≥ 0 on (0, D)(4.10)

is enough for (4.9).

By virtue of (4.8), part (2) of Theorem 2.1 and its Corollaries 2.6 and 2.7 are
available with a slight modification. We omit the details here to save space. The
reason why we use λ∗ here rather than gap(L) is the following. Our approach
requires that the eigenfunction be Lipschitz with respect to the distance we adopted.
In the compact case, this is not a problem. But for the non-compact case, this may
not be true. To overcome this difficulty, we adopt a localizing procedure [6], which
then yields some technical problems. So, in general, we are still unable to claim
that λ∗ is indeed a lower bound of gap(L). However, the conclusion holds for the
one-dimensional case.

Corollary 4.4. When d = 1, Theorem 4.1 and Corollary 4.2 hold if λ∗ is replaced
by gap(L).

Before moving further, we mention a simple comparison result which is a direct
consequence of (1.1) (refer to [6] and [16]).

Proposition 4.5. (1) Let L ∼ (ā, V ), if a(x)− ā(x) ≥ 0 for all x, then

gap(L) ≥ gap(L).(4.11)
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(2) Let L ∼ (a, V ), we have

gap(L) ≥ gap(L) exp[−δ(V − V )],(4.12)

where δ(f) = sup f − inf f.

Let us also mention a sufficient condition for the regularity of Dirichlet forms.
In general, [9, Theorem 1.6.3] says that the semi-group is recurrent if there exists
{un} ⊂ C∞0 (Rd) such that un → 1 and limn→∞

∫
〈a∇un,∇un〉dπ = 0. From this

we conclude that the Dirichlet form is regular if there exists rn ↑ ∞ such that

lim
n→∞

∫
rn≤|x|≤rn+1

tr a(x)dπ = 0.(4.13)

Actually, choose h ∈ C∞(R) such that ‖h′‖∞ ≤ 2 and h(r) = 1 for r ≤ 0, h(r) = 0
for r ≥ 1.Take un(x) = h(|x|−rn), then un → 1 and (4.13) implies

∫
〈a∇un,∇un〉dπ

→ 0.
To study the spectral gap of diffusions in Rd, we consider three concrete dis-

tances: the Euclidean distance, the L1-distance and the Riemannian distance in-
duced by a positive definite diagonal matrix which is dominated by a(x). To state
the result, we need some notations. Choose positive functions ai ∈ C2(Rd) (i ≤ d)
such that a− diag{a1, a2, · · · , ad} ≥ 0 (non-negative definite) and infi,x ai(x) > 0.
Let b̄i = ai∂iV + ∂iai (i ≤ d). Next, set α2 = 4 and choose α1, α3 ∈ C(R+) such
that

0 < α1(r) ≤ inf
|x−y|=r

{
min
i

(√
ai(x) −

√
ai(y)

)2

+ 4 min
i

√
ai(x)ai(y)

}
,

0 < α3(r) ≤ inf
|x−y|1=r

{∑d
i=1

(√
ai(x) −

√
ai(y)

)2

+ 4 min
i

√
ai(x)ai(y)

}
,

where | · | is the ordinary Euclidean norm and |x−y|1 =
∑d
i=1 |xi−yi|. Next, choose

βj (j = 1, 2, 3) as follows.

(1) Put σ =
√

diag{a1, a2, · · · , ad} and choose β1 ∈ C(0,∞) so that

β1(r) ≥ sup
|x−y|=r

|x− y|−1
{
‖σ(x)− σ(y)‖2 − |x− y|−2|(σ(x) − σ(y))(x− y)|2

+〈b̄(x)− b̄(y), x− y〉
}
.

(2) If ai(x) depends on xi only for all i. Set

ρ(x, y) =

[ d∑
i=1

(∫ yi

xi

ai(r)
−1/2dr

)2]1/2

, D = sup
x,y

ρ(x, y),

and hi =
√
ai∂iV + ∂i

√
ai, i ≤ d. Choose β2 ∈ C(0, D) so that

β2(r) ≥ sup
ρ(x,y)=r

ρ(x, y)−1
d∑
i=1

[hi(y)− hi(x)]

∫ yi

xi

ai(r)
−1/2dr, r ∈ (0, D).

(3) If ai(x) depends on xi only and b̄i(x) is non-decreasing in xk for k 6= i.
Choose β3 ∈ C(0,∞) so that

β3(r) ≥ sup
x≥y,|x−y|1=r

d∑
i=1

[b̄i(x) − b̄i(y)], r > 0.
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Finally choose non-decreasing functions K1,K3 ∈ C(0,∞) and K2 ∈ C(0, D) so
that Kj(r) ≤ infs≥r[−βj(s)/s].

Theorem 4.6. Theorem 4.1 and Corollary 4.2 are valid if the functions α, β, K
and λ∗ are replaced by αj, βj, Kj and gap(L) respectively for each j = 1, 2, 3.

Let a(x) = α(x)σ2 for some positive α ∈ C2(Rd) and positive definite matrix
σ. To use Theorem 4.6, by Proposition 4.5, one may compare a(x) with a diagonal
matrix directly. But, as was pointed out in [3], [6], the result should be better if we
directly use the distance |σ−1(x−y)| instead of the Euclidean one. To this end, take

the coordinate transformation y = σ−1x. Then ∂/∂xi =
∑d
k=1(σ−1)ik∂/∂yk, i ≤ d,

and the operator L ∼ (a, b) becomes

L(y) = α(σy)
d∑
k=1

∂2

∂y2
k

+
d∑
k=1

( d∑
i=1

bi(σy)(σ−1)ik

)
∂

∂yk

which is in the desired form of Theorem 4.6.
The following result simplifies the form of Kj ’s given above. It can be considered

as an extension of [7, Theorem 1.3] to multidimensional diffusion processes in the
context of spectral gap.

Corollary 4.7. Let ai, b̄i and αj be the same as in Theorem 1.1. Suppose that
ai(x) depends only on xi for all i. Set κ = maxi ‖∇

√
ai‖2∞. Fix a point p ∈ Rd

and let λmin(A) be the smallest real part of eigenvalues of matrix A. According to
the three cases in Theorem 4.6, we define θj (j = 1, 2, 3) as follows.

(1) θ1(r) = inf |x−p|≥r λmin

(
− ∂j b̄i(x)

)
, r ≥ 0.

(2) θ2(r) = infρ(x,p)≥r λmin

(
− XiXjV (x)

)
, where Xi =

√
ai(xi) ∂i and V = V +

log
√
a1 · · ·ad.

(3) If b̄i(x) is non-decreasing in xk for i 6=k, let θ3(r)= inf
|x−p|1≥r

[
−max

j

∑
i

∂j b̄i(x)
]
.

Next, define γj(r)=r−1
∫ r

0 θj(u)du (j = 1, 2, 3), K1(r)=γ1(r/2)−(1−d−1)κ, K3(r))
= γ3(r/2) for r > 0 and K2(r) = γ2(r/2) for r ∈ (0, D). Then, Corollary 4.2 holds
for these Kj’s with the same replacements made in Theorem 4.6. In particular,
if max{θ1(∞) − κ(1 − d−1), θ2(D), θ3(∞)} > 0, then we have gap(L) > 0. Here,
θi(∞) (i = 1, 3) and θ2(D) are understood as the limits as r → ∞ and r → D
respectively.

Obviously, when d = 1, the case of j = 1 coincides with the case of j = 3 for
both Theorem 4.6 and Corollary 4.7. As for d > 1, the first may be better than the
latter. For example, this is the case for d = 2, a = I and V (x) = − 1

2x
2
1 +x1x2−x2

2.
Conversely, the latter may be better if ‖∇ai‖∞ is large for some i ≤ d. From these
and Example 4.8 below, we conclude that the cases of j = 1, 2, 3 are not comparable
to each other.

Example 4.8. Consider Example 3.9 again. We have V (x) = α/2−α/[2(1+x2)]−
(2 + α/2) log(1 + x2) and (4.13) holds. For r > 0, we have infx(b(x + r) − b(x)) =
−αr3/4. Take K1(r) = αr2/4 and α1(r) = 4, then F r1 (r) = αr4/64. By Theorem
4.6 with j = 1 or 3, we obtain gap(L) ≥

√
2α exp[−1/2]. This is weaker but close

to (3.9).
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Next, we have V (x) = −α/[2(1 + x2)] − (1 + α/2) log(1 + x2). Let X(x) =
(1 + x2) d

dx , then

−X2V (x) = (2 + α)(1 + x2)− 2α

1 + x2
+ α ≥ 2, x ∈ R.

By Corollary 4.7 (2) we obtain gap(L) ≥ 2 which is independent of α.

Example 4.9. The lower bound gap(L) ≥ α+ given in Example 3.7 can be also
obtained by using Corollary 4.7 with j = 1 or 3.

Example 4.10. We now return to Example 3.10. Let h(r) = − supx[b(y)−b(x)], r
≥ 0. It is easy to check that h(2π + r) − 2π − r = h(r) − r and h(r) = r − 2 sin r

2

for r ∈ [0, 2π]. Since r−1h(r) is increasing, it can be taken as K1(r). By Theorem
4.6 we have

gap(L) ≥ sup
r∈[0,π]

(
1− r−1 sin r

)
exp[cos r + (r sin r)/2− 1].

By setting r = 1.95, we obtain gap(L) ≥ 0.329.

Example 4.11. When a = I we take α = 4 and then the estimate provided by
(4.7) with f(r) ≡ 1 coincides with the one obtained by using the first moment of the
coupling time (refer to [6]). Note that the test function f(x) ≡ 1 can not be allowed
for (4.8) since f ′ ≡ 0. But (4.8) does often produce better estimates. Especially,
take d = 1 and b(x) = −4x3. Choose β(r) = −r3. By (4.7) we get the lower bound
[Γ(5/4) + 1/8)]−1 ≈ 0.9695 which is the same as in [6, Example 1.9]. Nevertheless,
applying (4.8) to the test function f(x) = log(1 + x) and noticing Remark 4.3 (1),
a numerical computation shows that gap(L) ≥ 2.4395.

Example 4.12. Take a = I and bi(x) =
∑
j bijxj , where (bij) is symmetric with

bij ≥ 0 for i 6= j and
∑
i bij = −1 for all j. Next, take g(x) =

∑
i xi. We have

V (x) =
1

2

d∑
i,j=1

bijxixj ≤
1

2

d∑
i=1

(
biix

2
i +

1

2

∑
j 6=i

bij(x
2
i + x2

j)

)
= −1

2
|x|2.

Thus (4.13) holds and g ∈ L2(π). Moreover, it is easy to check that π(g) = 0.
Hence gap(L) = 1 which is just the lower bound provided by Corollary 4.7 with
j = 3.

To conclude this section, we study the Poincaré inequality with respect to the
absolute distribution of the process generated by L. This provides a new way to
estimate gap(L) and may be useful in the study of the spectral gap on path space.
The idea used here comes from [10] and [17] in which the logarithmic Sobolev
inequalities on path space were studied for diffusions over a Riemannian manifold.

Theorem 4.13. Suppose that there exists ā > 0 such that 〈a(x)u, u〉 ≤ ā|u|2 for
all x, u ∈ Rd. Let a(x) = σ(x)σ(x)∗ and set

K = sup
x 6=y
|x− y|−2

[
‖σ(x)− σ(y)‖2 + 〈b(x)− b(y), x− y〉

]
.

We have

Ptf
2(x) ≤ K−1ā(exp[2Kt]− 1)Pt|∇f |2(x) + (Ptf(x))2(4.14)

for all x ∈ Rd, t ≥ 0 and f ∈ C1(Rd) with Ptf
2(x) < ∞. When K = 0, the

coefficient on the right-hand side is understood as the limit as K → 0.
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We mention that (4.14) can be sharp. For example, take L = ∆, then 2t is the
smallest constant so that (4.14) holds. The bounded assumption of a is unnatural,
due to the limitation of the present proof, but we do not know how to remove it.

Remark 4.14. The process considered in Theorem 4.13 is not necessarily reversible.
Next, the L-diffusion process is ergodic if K < 0. Then, by letting t→∞ in (4.14),
we obtain

gap(L) ≥ −Kā−1 inf
x
λmin(a(x)).(4.15)

5. Preparations for the Proofs

Lemma 5.1. Suppose that Dn ↑ Rd is a sequence of normal domains and let
gap(Dn) denote the first Neumann eigenvalue of L on Dn, then we have gap(L) ≥
limn→∞gap(Dn). When d = 1, we indeed have gap(Dn) ↓ gap(L).

Proof. a) Note that (refer to [1] and [15])

gap(Dn) = inf
{
πn(〈a∇f,∇f〉) : f ∈ C1(Dn), πn(f) = 0, πn(f2) = 1

}
,(5.1)

where πn(f) = π(IDnf). For any ε > 0, choose f ∈ C1(Rd) such that π(f) =
0, π(f2) = 1 and π(〈a∇f,∇f〉) ≤ gap(L) + ε. Then, there exists n0 ≥ 1 such that∫

Dn

(
f −

∫
Dn

fdπ

)2

dπ ≥ 1− ε, n ≥ n0.

Hence

gap(Dn) ≤
∫
Dn
〈a∇f,∇f〉dπ∫

Dn
(f −

∫
Dn

fdπ)2dπ
≤ gap(L) + ε

1− ε .

b) Next, when d = 1, we need only to prove that gap[p1,q1] ≥ gap[p2,q2] ≥ gap(L)
for [p1, q1] ⊂ [p2, q2]. Let u be an eigenfunction with respect to gap[p1,q1], then
u′(p1) = u′(q1) = 0. We extend u to R by setting u(r) = u(p1) for r ≤ p1 and
u(r) = u(q1) for r ≥ q1. Then u ∈ C1(R), by (5.1) we obtain gap[p2,q2] ≤ gap[p1,q1].

c) If in addition (4.13) holds, there exist non-negative functions un ∈ C∞0 (R)
such that un ↑ 1 and

∫
a(u′n)2dπ → 0 as n → ∞. By (1.1) together with an

approximation argument, we have

gap(L) ≤ lim
n→∞

∫
a
[
(uun)′

]2
dπ∫

(uun)2dπ −
( ∫

uundπ
)2 ≤ gap[p1,q1].

d) To avoid the use of the sufficient condition (4.13), take Vε = V − εa, Zε =∫
eVεdx, ε > 0. Then Vε ↑ V and Zε ↑ Z as ε ↓ 0. Let Lε ∼ (a, Vε), then Lε satisfies

(4.13). By (1.1) we have

gap(L) ≤ lim ε→0gap(Lε) ≤ gap[p,q].

Suppose that a(x) = σ(x)σ(x)∗ for all x. Let L̃ ∼ (ã, b̃) be the operator of the
coupling by reflection [4]:

ã(x, y) =

(
a(x) c(x, y)

c(x, y)∗ a(y)

)
, b̃(x, y) =

(
b(x)
b(y)

)
,

where c(x, y) = σ(x)(I − 2ūū∗)σ(y)∗ and ū = (x− y)/|x− y|.
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Lemma 5.2. Let S =
∏d
i=1[pi, qi] and (xt, yt) be the coupling by reflection of the

reflecting L-diffusion process on S. If σij = δijσii(xi) and bi(x) is non-decreasing
in xk for k 6= i, then the coupling preserves the ordinary semi-order: x0 ≥ y0

implies P x0,y0(xt ≥ yt, t ≥ 0) = 1.

Proof. One may compare the conditions of the lemma with the criteria given in [8].
Let T = inf{t ≥ 0 : xt = yt} be the coupling time, then we need only to prove the
order-preservation up to time T .

a) For n ≥ 1, choose Cn ∈ C(R) with suppCn ⊂ (0, n−1), 0 ≤ Cn ≤ 2n, and∫
Cn(u)du = 1. Define φn(r) =

∫ r
0

ds
∫ s

0
Cn(u)du, then 0 ≤ φ′n(r) ≤ 1, 0 ≤ φ′′n(r) ≤

2/(nr2) and φn(r) ↑ r+. Next, note that bi(x) is non-decreasing in xk for k 6= i and
φ′n(yi − xi) = 0 for yi ≤ xi, we have

L̃φn(yi − xi) = φ′n(yi − xi)(bi(y)− bi(x))

+ φ′′n(yi − xi)
[ d∑
j=1

(σjj(yj)− σjj(xj))2

+
4

|x− y|2
d∑
j=1

(yj − xj)2σjj(xj)σjj(yj)

]

≤ N
d∑
j=1

(yi − xi)+ +
N

nε2

(5.2)

for some constant N and all x, y ∈ S with |x − y| ≥ ε > 0. Let L
(1)
i+ , L

(1)
i− be the

local times of xt on {xi = qi}, {xi = pi} respectively, and let L
(2)
i+ , L

(2)
i− be those of

yt. Note that φ′n(yi − xi) = 0 for yi ≤ xi and

I[qi−ε,qi](xi) ≤ I[qi−ε,qi](yi), I[pi,pi+ε](yi) ≤ I[pi,pi+ε](xi)

for qi ≥ yi ≥ xi ≥ pi. We have∫ t2

t1

φ′n(yi(s)− xi(s))d
(
L

(1)
i+ (s) + L

(2)
i− (s)− L(2)

i+ (s)− L(1)
i− (s)

)
= lim
ε→0

∫ t2

t1

φ′n
(
yi(s)− xi(s)

)(
I[qi−ε,qi]

(
xi(s)

)
− I[qi−ε,qi]

(
yi(s)

)
+ I[pi,pi+ε]

(
yi(s)

)
− I[pi,pi+ε]

(
xi(s)

))
ds ≤ 0, t1 ≤ t2.

(5.3)

b) Let Tε = inf{t ≥ 0 : |xt − yt| ≤ ε}, by (5.2) and (5.3) we have

Ex0,y0

d∑
i=1

[
φn
(
yi(t2 ∧ Tε)− xi(t2 ∧ Tε)

)
− φn

(
yi(t1 ∧ Tε)− xi(t1 ∧ Tε)

)]
≤ Ex0,y0

∫ t2∧Tε

t1∧Tε

d∑
i=1

L̃φn
(
yi(t)− xi(t)

)
dt

≤ (t2 − t1)
dN

nε2
+N

∫ t2

t1

Ex0,y0

d∑
i=1

(
yi(t ∧ Tε)− xi(t ∧ Tε)

)+
dt, t1 ≤ t2.
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By letting n→∞, we obtain

d

dt
Ex0,y0

d∑
i=1

(
yi(t ∧ Tε)− xi(t ∧ Tε)

)+ ≤ NEx0,y0

d∑
i=1

(
yi(t ∧ Tε)− xi(t ∧ Tε)

)+
.

Therefore

Ex0,y0

d∑
i=1

(
yi(t ∧ Tε)− xi(t ∧ Tε)

)+
= 0

which implies P x0,y0
(
yi(t ∧ Tε) ≤ xi(t ∧ Tε)

)
= 1, t ≥ 0. Since Tε ↑ T as ε ↓ 0, the

lemma follows by letting ε→ 0.

The following result summarizes our approach to estimate gap(L) by using cou-
pling.

Theorem 5.3. Let Dn ↑ Rd be a sequence of normal domains with inward normal
vector fields Vn of ∂Dn under the Riemannian metric (g(∂i, ∂j)) = a−1. Next, let
d(x, y) : Rd × Rd → [0,∞) be in C2 out of {(x, x) : x ∈ Rd} and having the
properties: d(x, y) = 0 iff x = y, for each n and x ∈ Dn, Vnd(x, ·)(y)|∂Dn ≤ 0 and
there exists cn > 0 such that d(x, y) ≥ cn|x − y| for x, y ∈ Dn. If there exists a

coupling operator L̃ of L such that L̃d(x, y) ≤ −δd(x, y) for some δ > 0 and all
x 6= y, then gap(L) ≥ δ.

Proof. Fix n ≥ 1, let (xt, yt) be the reflecting L̃-diffusion process on Dn×Dn under
the Riemannian metric

(
g(∂i, ∂j)

)
= a−1. Let Lt be the local time of the process

on ∂(Dn ×Dn), then

d d(xt, yt) = dMt + L̃d(xt, yt)dt+
(
Vnd(·, yt)(xt) + Vn(xt, ·)(yt)

)
dLt

≤ dMt − δd(xt, yt)dt

up to the coupling time T for some martingale Mt. Here, we take Vnf(x) = 0
for x /∈ ∂(Dn). By Lemma 5.2, [15, Lemma 2.4] and [3, Theorem 6.2] we obtain
gap(Dn) ≥ δ which proves Theorem 5.3.

6. Proofs of Theorem 2.1 and its Corollaries

Proof of Theorem 2.1. a) Let f ∈ C1[x0,∞)∩C2(x0,∞) with f > 0 on (x0,∞) and
define g(x) =

∫ x
x0
f . Then g is strictly increasing and so d(x, y) := |g(x) − g(y)| is

a distance in [x0,∞). Because the process is monotone (see [8]), we simply use the

classical coupling: L̃h(x, y) = (Lh(·, y))(x) + (Lh(x, ·))(y) for all h ∈ C2([x0,∞)2)
and x 6= y. Then

L̃d(x, y) = L̃d(x, ·)(y) − L̃d(·, y)(x) = Lg(y)− Lg(x)

≤ −d(x, y) inf
y>x

[(
− (ag′′ + bg′)(y) + (ag′′ + bg′)(x)

)
/
(
g(y)− g(x)

)]
≤ −d(x, y) inf

z>x0

[
(−af ′ − bf)′/f

]
(z), x ≤ y.

Here in the last step, we have used the Mean Value Theorem. Part (1) of Theorem
2.1 then follows from Theorem 5.3.

b) For part (2) of Theorem 2.1, the proof is similar but applying the coupling to
the function

g(x) =

∫ x

x0

f ′(y)I(f)(y)dy.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ESTIMATION OF SPECTRAL GAP FOR ELLIPTIC OPERATORS 1259

To prove (2.5), note that (
f ′eC

)′
= (af ′′ + bf ′)eC/a.(6.1)

By assumption, we have −
(
f ′eC

)′ ≥ cfeC/a. Therefore, I(f)(x) ≤ c−1 and so the
conclusion follows from (2.4). It remains to check that g′ > 0 on (x0,∞). But this
holds iff π(f) ≥ 0 due to the fact that f ′ > 0 on (x0,∞).

Proof of Corollary 2.4. The assertions follow from that of Corollary 2.3 correspond-
ingly with the specific parameters given below.

(1) δ = (1− ε)/2.
(2) c1 = 0, c2 = −ε2 and δ = −ε1/2.
(3) c1 = (ε2 + ε2

1)/ε2
2, c2 = 2ε1/ε2.

To prove Corollary 2.5, we need a simple result which is an extension of [6,
Lemma 3.1].

Lemma 6.1. Let m ∈ C([x0,∞); R+) and n ∈ C([x0,∞); (0,∞)).

(1) If
∫∞
x
m(y)/n(y)dy ≤ c1m(x) and

∫∞
x
m(y)dy ≤ c2m(x) for all x ≥ x0.

Then for every γ ∈ [0, 1/c2), we have∫ ∞
x

eγ(y−x0)m(y)

n(y)
dy ≤ c1

1− γc2
eγ(x−x0)m(x), x ≥ x0.

(2) If (x− x0)
∫∞
x0
m(y)dy ≤ c for all x ≥ x0, then for every γ ∈ [0, 1), we have∫ ∞

x

(y − x0)γm(y)dy ≤ c

1− γ (x− x0)γ−1, x ≥ x0.

Proof. Here, we prove part (1) only since the proof of (2) is simpler. Without loss
of generality, assume that m(x) has finite support. Set M(x) =

∫∞
x m(y)/n(y)dy.

Then ∫ ∞
x

eγ(y−x0)m(y)

n(y)
dy = −

∫ ∞
x

eγ(y−x0)dM(y)

≤ c1eγ(x−x0)m(x) + c1γ

∫ ∞
x

eγ(y−x0)m(y)dy.

(6.2)

Consider the special case that n(x) ≡ 1 and c1 = c2. Then, (6.2) gives us∫ ∞
x

eγ(y−x0)m(y)dy ≤ c2
1− γc2

eγ(x−x0)m(x), x ≥ x0.

Inserting this into (6.2), we obtain the required assertion.

Proof of Corollary 2.5. a) Note that

C(u)− C(x) ≤ ε
∫ u

x

dy

c1 + y − x0
= ε log

c1 + u− x0

c1 + x− x0
, u > x.
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We have for f(x) = (c1 + x− x0)δ,

I(f)(x) ≤ 1

cδ(c1 + x− x0)δ+ε−1

∫ ∞
x

(c1 + u− x0)δ+ε

(c1 + u− x0)γ
du

=
−1

cδ(δ + ε− γ + 1)
· 1

(c1 + x− x0)γ−2

≤ −1

cδ(δ + ε− γ + 1)
· 1

cγ−2
1

(γ ≥ 2).

Setting δ = (γ−ε−1)/2, we prove part (1) of the corollary. Obviously, when γ = 2,
c1 is allowed to be zero.

b) For part (2), by assumption, we have

C(u)− C(x) ≤ ε1(u− x) + ε2(u2 − x2)/2− ε2(u− x)x0

= [ε1 + ε2(x− x0)](u− x) + ε2(u− x)2/2.
(6.3)

Without loss of generality, assume that infx a(x) = 1. Consider the test function
f(x) = (c1 − ε2(x− x0))eδ(x−x0), δ > 0. We obtain

I(f) ≤ 1

−ε2 + c1δ − ε2δ(x− x0)

∫ ∞
x

[c1 − ε2(u− x0)]e[ε1+δ+ε2(x−x0)](u−x)+ε2(u−x)2/2

=
1

−ε2 + c1δ − ε2δ(x− x0)

∫ ∞
0

[c1 − ε2u− ε2(x− x0)]e[ε1+δ+ε2(x−x0)]u+ε2u
2/2du

=
1

−ε2 + c1δ − ε2δ(x− x0)

[
(c1 + ε1 + δ)

∫ ∞
0

e[ε1+δ+ε2(x−x0)]u+ε2u
2/2du+ 1

]
.

If ε1 < 0, by setting c1 = δ = −ε1/2, we get

I(f) ≤ 1

−ε2 + ε2
1/4

.

Next, assume that ε1 ≥ 0 and set c1 = 0. Since ε2 < 0, by (6.3), we have

I(f) ≤ 1

−ε2 − ε2δ(x− x0)

[
(ε1 + δ)

∫ ∞
0

e[ε1+δ]u+ε2u
2/2du+ 1

]
≤ 1

−ε2

[
(ε1 + δ)

∫ ∞
0

e[ε1+δ]u+ε2u
2/2du+ 1

]
=

1

−ε2

[
1 +

∫ ∞
0

eu+ε2u
2/[2(ε1+δ)2]du

]
.

Then by letting δ ↓ 0, we obtain the estimate in the middle of the expression.
The last estimate in the expression simply follows from (6.3) and Lemma 6.2 (1)

with the choice of m(x) = eC(x), n(x) ≡ 1, f(x) = eγ(x−x0) and

γ =
1

2

[ ∫ ∞
0

eε1+ε2u
2/2du

]−1

.

c) To prove part (3), simply apply Lemma 6.1 (1) to m(x) = eC(x), n(x) = a(x),
f(x) = eγ(x−x0) and γ = 1

2c2
.

d) Part (4) also follows from Lemma 6.1 (1) but with m(x) = eC(x)/a(x), n(x) ≡
1, f(x) = eγ(x−x0) and γ = 1

2c . The particular assertion is then deduced by using
the Mean Value Theorem.

e) Finally, part (5) follows from Corollary 6.1 (2) by setting m(x) = 1/a(x),
f(x) =

√
x− x0 and γ = 1/2.
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Proof of Corollary 2.6. Let x0 = 0 for simplicity. By assumption, there exists N >
0 so that

f ′(x) > 0 for all x ≥ N and sup
x≥N

I(f)(x) <∞.

Since f ′1(x) = c/(1 + x)2 + f ′(x), we have f ′1(x) ≥ f ′(x) > 0 for all x ≥ N . As
for x ≤ N , choose c small enough so that f ′1(x) ≥ c/(1 +N)2 + minx≤N f

′(x) > 0.
We now fix c. Because f is an increasing function, there exits M > 0 such that
f1(x) ≤ c+ f(x) ≤Mf(x) for all x ≥ N . Thus, for x ≥ N , we have

0 < I(f1)(x) ≤MI(f)(x) <∞.

Finally, for x ≤ N , we have

0 < I(f1)(x) =
e−C(x)

f ′1(x)

∫ N

x

f1(u)eC(u)

a(u)
du+

f ′1(N)

f ′1(x)
eC(N)−C(x)I(f1)(N).

The right-hand side is bounded in [x0, N ] and so the required conclusion follows
from (2.4).

Proof of Corollary 2.7. For a proof of (2.18), refer to [7, Proof a) of Theorem 1.3].
a) Consider the case that K(r) ≤ infx≥r[−(a′+b)(x)/(x−x0)−b′(x)]+supy b

′(y).

Fixed r1 ∈ (x0,∞) so that K
(
r1
)
> 0. Otherwise, we have nothing to do. Define

f(x) =

∫ x

x0

dy exp

[
−
∫ y

x0

u− x0

a(u)
[K(r1)−K(u)]I{u≤r1}du

]
, x > x0.

Since f ′′ ≤ 0, f ′ is decreasing and so f(x) ≥ (x− x0)f ′(x). By (2.2), we have

−b′(x) − af ′′ + (a′ + b)f ′

f
(x) = β0 +

−af ′′ − (a′ + b)f ′ + (−b′ − β0)f

f
(x)

≥ β0 +
−af ′′ − [a′ + b+ (x− x0)(b′ + β0)]f ′

f
(x)

≥ β0 +K(r1)(x− x0)f ′(x)/f(x).

Here in the last step, we have used the properties of f just mentioned above.
Noticing that (x − x0)/f(x) is non-decreasing, we have (x − x0)f ′(x)/f(x) =
(x − x0)f ′(r1)/f(x) ≥ (r1 − x0)f ′(r1)/f(r1) for all x ≥ r1. This completes the
proof of the main case.

b) The proof of the alternative case is similar, but uses (2.5) instead of (2.2).

To conclude this section, we discuss when the equality in (1.3) holds. Suppose
that we have a C2-eigenfunction f of λ1 > 0. That is, −af ′′ − bf ′ = λ1f with
f ′(x0) = 0. Then, as we will prove later, f has the following properties: i) f ∈ L1(π),
ii) f ′ > 0 (or < 0) on (x0,∞) and iii) limx→∞ f

′(x)eC(x) = −λ1π(f)Z. Now, by

(6.1) we have −
(
f ′eC

)′
= λ1fe

C/a. Thus

f ′(x)eC(x) = λ1

∫ ∞
x

feC/a− λ1π(f)Z ≥ λ1

∫ ∞
x

[f − π(f)]eC/a

since π(f) ≤ 0 by ii) and iii). Set f̃ = f−π(f). We have π(f̃) = 0 and f̃ ′(x)eC(x) ≥
λ1

∫∞
x
f̃eC/a. Hence I(f̃)(x)−1 ≥ λ1 for all x > x0. Combining this with part (2)

of Theorem 2.1, we conclude that the equality of (1.3) holds.
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The remainder of this section is to prove i) – iii) listed above. Where the second
one is essential, from which the first one and then the last one follows immediately
from the next lemma.

Lemma 6.2. If Lf = −λf on [p, q] ⊂ [0,∞) for some λ 6= 0, then we have

−λ
∫ q

p

fdπ =
[(
f ′eC

)
(q)−

(
f ′eC

)
(p)
]
/Z.

Proof. Simply use (6.1).

Lemma 6.3. Let Lf = −λf for some f ∈ C2[x0,∞) and for some λ ≥ 0. If there
exist α < β such that f ≡ 0 on [α, β], then f ≡ 0.

Proof. Due to a(x) > 0, the assertion is indeed a consequence of the maximum
principle (pointed out to the authors by Z. D. Huan). A simple probabilistic proof
goes as follows. If f 6≡ 0, without loss of generality, assume that γ := inf{x ≥ β :
f(x) 6= 0} <∞ and there exists xn ↓ γ so that f(xn) > 0 (one may replace f with
−f if necessary). For each n ≥ 1, choose yn ∈ [γ, xn) such that f(yn) = min{f(x) :
x ∈ [γ, xn]}. Then f(yn) ≤ 0 since f(γ) = 0. Let xt be the L-diffusion process
starting from yn and set τn = inf{t ≥ 0 : xt ∈ {xn, γ − n−1}}. Then

Ef(xt∧τn) = f(yn)− λE
∫ t∧τn

0

f(xs)ds ≤ f(yn)[1− λEτn].

This implies that Ef(xτn) ≤ 0 for large enough n. But for any n with γ − n−1 ≥
α, we have Ef(xτn) ≥ f(xn)P[xτn = xn] > 0. The contradiction implies the
assertion.

Proposition 6.4. Suppose that λ1 > 0 and Lf = −λ1f for some f ∈ C2[x0,∞),
f 6=constant and f ′(x0) = 0. Then f ′ 6= 0 on (x0,∞) and furthermore f ∈ L1(π).

Proof. Suppose that there is a p > x0 such that f ′(p) = 0.
a) We claim that f 6=constant on [x0, p]. Otherwise, we have f = −λ−1

1 Lf = 0
on [x0, p] which implies that f ≡ 0 by Lemma 6.3. We now prove that f(p) 6= 0.
To do so, set g = fI[x0,p]

+ f(p)I(p,∞). If f(p) = 0, then g ∈ C2, Lg = −λ1g and
g ≡ 0 on [p,∞). By Lemma 6.3, we have g ≡ 0 and in particular f ≡ 0 on [x0, p].
This again implies f ≡ 0 on [x0,∞) by Lemma 6.3.

b) By using Lemma 6.2, we have∫ p

x0

fdπ = 0,

∫ p

x0

af ′2dπ = −
∫ p

x0

(fLf)dπ = −λ1

∫ p

x0

f2dπ.(6.4)

Here in the last step, we have used the assumption Lf = −λ1f .
c) Without loss of generality, assume that f(p) = 1. Then π(g) = π[p,∞) < 1.

Therefore, by (6.4), we get

λ1 ≤
π(ag′2)

π(g2)− π(g)2
=

π(ag′2)∫ p
x0
f2dπ + π[p,∞)− π[p,∞)2

=
λ1

∫ p
x0
f2dπ∫ p

x0
f2dπ + π[p,∞)− π[p,∞)2

< λ1.

This is a contradiction.
d) Having the increasing property of f in mind, the last assertion of the lemma

follows from [2, Lemma 4.13 and Lemma 4.11].
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7. Proof of Theorem 3.1 and its Corollaries

Proof of Theorem 3.1. Here we prove part (2) only since the proof of part (1) is
similar and even simpler. Choose δ > 0 such that∫ ∞

x0

f(x)eC(x)

a(x)
dx = δ

∫ −∞
x0

f(x)eC(x)

a(x)
dx.

Define

g(x) =

{∫ x
x0
f ′(y)I(f)(y)dy, x ≥ x0,

δ
∫ x
x0
f ′(y)I−(f)(y)dy, x < x0.

Note that f(x0) = 0. We have g ∈ C2(R) and g′ > 0. Next, let d(x, y) =
|g(x)− g(y)|. Then the proof of Theorem 2.1 gives us

L̃d(x, y) ≤
{
−δ−1

1 d(x, y), if x > y ≥ x0,

−δ−1
2 d(x, y), if x0 ≥ x > y.

As for x > x0 > y, we have

L̃d(x, y) =
[
L̃g(x)− L̃g(x0)

]
+
[
L̃g(x0)− L̃g(y)

]
≤ −

(
δ1 ∨ δ2

)−1
d(x, y).

The proof is then completed by using Theorem 5.3.

Having Theorem 3.1 in mind, the proofs of Corollaries 3.2–3.5 are parallel to
Corollaries 2.4–2.7 respectively and hence omitted.

To conclude this section, we study the same problem as in the last part of Section
7. Note that the comment before Lemma 6.2 is the same.

Proposition 7.1. Suppose that λ1 > 0 and Lf = −λ1f for some f ∈ C2(R) ∩
L2(π), f 6=constant and (1 + |f |)f ′eC(x)→ 0 as x→∞. Then f ′ 6= 0.

Proof. a) Suppose that there is a p so that f ′(p) = 0. Then, we should have
f(p) 6= 0. Otherwise, set g = fI[p,∞) + f(p)I(−∞,p). Then, f ′′(p) = −

[
(bf ′ +

λ1f)/a
]
(p) = 0. Hence, g ∈ C2(R), Lg = −λ1g and g ≡ 0 on (−∞, p]. By Lemma

6.3, we have g ≡ 0 and hence f ≡ 0 which is impossible.
b) Without loss of generality, assume that f(p) = 1 = Z. Note that f ′feC(x)→

0 as x→∞, we have∫ ∞
p

af ′2dπ =

∫ ∞
p

f ′2eC(x)dx = −
∫ ∞
p

f
(
f ′eC

)′
dx

= −
∫ ∞
p

(fLf)dπ = −λ1

∫ ∞
p

f2dπ.

On the other hand, it follows from Lemma 6.2 that
∫∞
p fdπ = 0 and so π(g) =

π(−∞, p) < 1. Hence

λ1 ≤
π(ag′2)

π(g2)− π(g)2
=

∫∞
p
af2dπ∫∞

p
f2dπ + π[−∞, p)− π[−∞, p)2

< λ1.

This is a contradiction.
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8. Proofs of Theorem 4.1, Theorem 4.6 and Their Corollaries

Proof of Theorem 4.1. Part (1) follows directly from (4.1)–(4.4). The conclusion
(4.7) follows by replacing the function f in (4.4) with

g(r) =

∫ r

0

e−C(s)ds

∫ D

s

f(u)eC(u)

α(u)
du.

Then (4.8) follows from (4.7) by using the Mean Value Theorem.

Proof of Corollary 4.2. We remark that the corollary in the present case is deduced
directly from part (1) of Theorem 4.1 by taking

f(r) =

∫ r

0

ds exp

[
−
∫ s

0

u

α(u)
[K(r1)−K(u)]I{u≤r1}du

]
, r ∈ [0, D).(8.1)

The details are very much the same as in the proof of Corollary 2.7.

Proof of Corollary 4.4. Simply use Lemma 5.1.

Proof of Theorem 4.6. By Proposition 4.5, we may assume that a=diag{a1, · · · , ad}
and then b̄i = bi, i ≤ d.

a) When j = 1, we may assume that
∫ 1

0
s|K1(s)|ds <∞. Let L̃ be the coupling

operator with [14]

c(x, y) =
√
a(x)

(√
a(y)− 2

√
a(y)−1(x− y)(x− y)∗

|
√
a(y)−1(x− y)|2

)
.

Take d(x, y) = |x − y| and choose α(r) = α1(r) and K(r) = K1(r) (see [18]). Let
r1 ∈ (0, D) so that K1(r1) > 0 and define f(r) as in (8.1) but replacing K with
K1. It follows from Corollary 4.2 that λ∗ ≥ K(r1) infs∈(0,r1) f

′(s)/f(s). Next, for

n ≥ 1, let Dn =
∏d
i=1[−n, n]. Since a = diag{a1, · · · , ad}, the normal vector on

∂Sn coincides with that under the Riemannian metric (g(∂i, ∂j)) = a−1. Then
d(x, y) := f(|x− y|) satisfies the boundary condition given in Theorem 5.3. From
this we claim that gap(L) ≥ λ∗ and so the assertion of the theorem in the case of
j = 1 follows.

b) Take d(x, y) = ρ(x, y) and c(x, y) =
√
a(x) (I − 2uu∗)

√
a(y), where ui =

1
ρ(x,y)

∫ yi
xi

1√
ai(r)

dr, x 6= y. Then the proof for the case of j = 2 is similar to that

for j = 1 (refer to [6, Theorem 4.2]).
c) To prove the case of j = 3, we use the coupling by reflection and take d(x, y) =

|x− y|1. For x0 ≥ y0, Lemma 5.2 gives d(xt, yt) =
∑d
i=1(xi(t) − yi(t)), P x0,y0-a.s.

On the other hand, for d(x, y) =
∑
i(xi − yi), we have

A(x, y) ≥ α2(r), K3(r) ≤ − sup
x≥y,d(x,y)≥r

B(x, y).

Next, let un be the first Neumann eigenfunction on Dn, then there exists x ≥ y
such that un(x) 6= un(y). Lemma 2.1 and the proof of [15, Lemma 2.4] then give
gap(Dn) ≥ δ. This proves the theorem in the case of j = 3.

Proof of Corollary 4.7. We consider the cases of j = 1 and j = 3 only since the
proof of j = 2 is similar. Actually, by [7, Theorem 1.3], the lower bound given for
j = 2 is also a lower bound of the logarithmic Sobolev constant. To see this, take
the Riemannian metric g(∂i, ∂j) = δija

−1
i . Then {Xi} is a normal orthogonal basis
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with ∇XiXj = 0 for all i, j, the sectional curvature is zero, ρ is the Riemannian

distance and L = ∆g +∇gV .
a) For |x− y| = r, let ψ(s) = x+ s(y − x), s ∈ [0, 1]. We have

‖σ(x)− σ(y)‖2 − |x− y|−2|(σ(x) − σ(y))(x− y)|2 + 〈b̄(x) − b̄(y), x− y〉

≤ r2κ(1− d−1) +
d∑

i,j=1

(xi − yi)(xj − yj)
∫ 1

0

∂ib̄i(ψ(u))du

≤ r2κ(1− d−1)− r2λmin

(
−
∫ 1

0

∂j b̄i(ψ(u))du

)
≤ r2κ(1− d−1)− r2

∫ 1

0

λmin

(
− ∂j b̄i(ψ(u)

)
du.

Next, choose u0 ∈ [0, 1] such that |ψ(u0)− p| = minu∈[0,1] |ψ(u)− p|. Then |ψ(u)−
p| ≥ |ψ(u)− ψ(u0)| = |u− u0|r. Note that θ1 is non-decreasing, we obtain

∫ 1

0

λmin

(
− ∂j b̄i(ψ(u))

)
du ≥

∫ 1

0

θ1(|u− u0|r)du ≥
2

r

∫ r/2

0

θ1(u)du = γ1(r/2).

Hence we can take K3(r) = γ3(r/2).
b) Finally, note that

d∑
i=1

(
b̄i(y)− b̄i(x)

)
=

d∑
j=1

(yj − xj)
∫ 1

0

d∑
i=1

∂j b̄i(ψ(u))du

≤ −|y − x|1
∫ 1

0

(
−max

j

d∑
i=1

∂j b̄i(ψ(u))
)
du

≤ −|y − x|1
∫ 1

0

θ3(|ψ(u)− p|)du ≤ −|y − x|1γ3(r/2),

we can take K3(r) = γ3(r/2).

9. Proof of Theorem 4.13

Lemma 9.1. Let (xt, yt) be a coupling of the L-diffusion process. If

Ex,y|xt − yt|2 ≤ |x− y|2 exp[2ct]

for all t ≥ 0, x, y ∈ Rd and some c ∈ R, then we have |∇Ptf |2 ≤ exp[2ct]Pt|∇f |2
for all t ≥ 0 and f ∈ C1

0 (Rd).

Proof. Since f ∈ C1
0 (Rd), for any ε > 0, there exists δ > 0 such that

|f(x)− f(y)|
|x− y| ≤ |∇f(x)|+ ε, |x− y| ∈ (0, δ).
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Let T be the coupling time. We have

|Ptf(x)− Ptf(y)|
|x− y| ≤Ex,y

{
|f(xt)− f(yt)|
|xt − yt|

· |xt − yt||x− y| I{T>t}
}

≤ exp[ct]

{
Ex,y

|f(xt)− f(yt)|2
|xt − yt|2

I{T>t}

}1/2

≤ exp[ct]
{
Ex,y(|∇f(xt)|+ ε)2 + ‖∇f‖∞P x,y(|xt − yt| ≥ δ)

}1/2

≤ exp[ct]
{
Pt|∇f |2(x) + 2ε‖∇f‖∞

+ ε2 + ‖∇f‖∞δ−2|x− y|2 exp[2ct]
}1/2

.

The assertion now follows by letting y → x and then ε→ 0.

Proof of Theorem 4.13. a) Suppose that f ∈ C1
0 (Rd). Let L̃ be the operator of

march coupling (see [3] or [4]), i.e., c(x, y) = σ(x)σ(y)∗. Let h(x, y) = |x− y|2, we
have

L̃h(x, y) = 2‖σ(x)− σ(y)‖2 + 2〈b(x)− b(y), x− y〉 ≤ 2Kh(x, y), x, y ∈ Rd.

Then Ex,y|xt − yt|2 ≤ |x− y|2 exp[2Kt], t ≥ 0. By Lemma 9.1 we have

|∇Ptf |2 ≤ exp[2Kt]Pt|∇f |2, f ∈ C1
0 (Rd).(9.1)

For given t > 0, let H(r) = Pr(Pt−rf)2, r ∈ [0, t]. By (9.1) we have

H ′(r) = PrL(Pt−rf)2 − 2Pr(Pt−rf)LPt−rf

= 2Pr〈a∇Pt−rf,∇Pt−rf〉 ≤ 2ā exp[2K(t− r)]Pt|∇f |2.

By integrating over r from 0 to t, we obtain (4.14).
b) In general, fix x and t, let πt = δxPt. Next, given f ∈ C1(Rd) with πt(f) = 0

and πt(f
2) = 1. Let Bn = {y : |y − x| ≤ n}, n ≥ 1. For any ε > 0, there

exists nε such that ā
∫
Bcn

(|∇f |2 + f2)dπt + πt(B
c
n) < ε for all n ≥ nε. Choose

h ∈ C∞(R) such that 0 ≤ h ≤ 1, h(r) = 1 for r ≤ 0 and h(r) = 0 for r ≥ 1. Let
fn(y) = f(y)h(|y − x| − n). Then fn ∈ C1

0 (Rd) and

ā

∫
|∇fn|2dπt ≥ ā

∫
|∇f |2dπt − (ā‖h‖2∞ + 1)ε,∫ (

fn −
∫
fndπt

)2

dπt ≥ 1− 3ε, n ≥ nε.

Combining these with a) and letting ε→ 0, we complete the proof.
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