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ABSTRACT Accurate estimation of drought events is vital for the mitigation of their adverse consequences
on water resources, agriculture and ecosystems. Machine learning algorithms are promising methods for
drought prediction as they require less time, minimal inputs, and are relatively less complex than dynamic
or physical models. In this study, a combination of machine learning with the Standardized Precipitation
Evapotranspiration Index (SPEI) is proposed for analysis of drought within a representative case study in
the Tibetan Plateau, China, for the period of 1980-2019. Two timescales of 3 months (SPEI-3) and 6 months
(SPEI-6) aggregation were considered. Four machine learning models of Random Forest (RF), the Extreme
Gradient Boost (XGB), the Convolutional neural network (CNN) and the Long-term short memory (LSTM)
were developed for the estimation of the SPEIs. Seven scenarios of various combinations of climate variables
as input were adopted to build the models. The best models were XGB with scenario 5 (precipitation,
average temperature, minimum temperature, maximum temperature, wind speed and relative humidity) and
RF with scenario 6 (precipitation, average temperature, minimum temperature, maximum temperature, wind
speed, relative humidity and sunshine) for estimating SPEI-3. LSTM with scenario 4 (precipitation, average
temperature, minimum temperature, maximum temperature, wind speed) was relatively better for SPEI-6
estimation. The best model for SPEI-6 was XGB with scenario 5 and RF with scenario 7 (all input climate
variables, i.e., scenario 6 + solar radiation). Based on the NSE index, the performances of XGB and RF
models are classified as good fits for scenarios 4 to 7 for both timescales. The developed models produced
satisfactory results and they could be used as a rapid tool for decision making by water-managers.

INDEX TERMS Drought events, SPEI, machine learning, Extreme Gradient Boost, Tibetan Plateau.

I. INTRODUCTION

Drought is an environmental disaster that can devastate
regional agriculture, water resources and ecosystem services

The associate editor coordinating the review of this manuscript and

approving it for publication was Sotirios Goudos .

as well as human settlements [1]–[3]. Globally, the frequency
and intensity of extreme drought events are expected to
increase [4]. Human impacts on the atmospheric dynamics
could be considered as one of the main reasons for the
increasing severity, frequency and extent of droughts during
the recent decades [5].

VOLUME 9, 2021
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 65503

https://orcid.org/0000-0002-7277-7447
https://orcid.org/0000-0002-6790-2653
https://orcid.org/0000-0001-8925-7918
https://orcid.org/0000-0001-9283-3947
https://orcid.org/0000-0002-1708-0612
https://orcid.org/0000-0002-2671-1180
https://orcid.org/0000-0001-5981-5683


A. Mokhtar et al.: Estimation of SPEI Meteorological Drought Using ML Algorithms

Extreme droughts adversely impact on water resource
imbalance through excessive evapotranspiration andmoisture
deficiency [6]. Some researchers have demonstrated that
drought can result in unaffordable socioeconomic losses,
agriculture productivity reduction, and ecosystem degrada-
tion [7]–[10]. China has experienced severe drought periods
during the last few decades that have resulted in agri-
cultural production reduction and large losses in the eco-
nomic sectors [11], [12]. For instance, in 2011 drought
episodes affected 16.3 million people, and were assessed
as having caused a direct economic loss of about
15.8 billion dollars (http://www.mwr.gov.cn/sj/tjgb/zgshzhgb/
201612/t20161222_776089.html). In order to mitigate the
negative effects of extreme droughts, it is imperative to
develop an efficient early drought warning tool that can be
valuable for mitigating rural community devastation. Based
on previous studies, the Penman-Monteith (PM) equation
was recommended as the sole standard method by the Food
and Agriculture Organization (FAO) to calculate evapo-
transpiration. Further, it is one of the main components
used to estimate the Standardized Precipitation Evaporation
Index (SPEI) drought index based on the water balance
equation. However, a significant limitation of using FAO56-
PM is in its high number of meteorological variables as inputs
and high uncertainties. The dynamic nature of meteorological
variables is non-linear, nonstationary, and highly stochastic,
making it difficult for models to be accurate. Therefore, evap-
otranspiration as a complex phenomenon requires accurate
methods beyond empirical models.
It is very important to find sustainable solutions to man-

age the water scarcity under global warming and accurately
predict drought occurrences [13], [14]. Drought forecasts can
be done using either physical/conceptual or data driven mod-
els. While physical/conceptual models are good at providing
insights into the catchment processes, they have been criti-
cized for being difficult to adopt for forecasting applications,
requiring many different types of data and resulting in models
that are overly complex [15] .
In contrast, data driven models have minimum information

requirements and rapid development time, being also accurate
for various hydrological forecasting applications [16] . With
the development of computer technology, machine learning
(ML), which is a subset of artificial intelligence (AI), models
have been applied in hydrology to deal with complex phe-
nomena [17]–[19], including drought prediction [20]–[23].
Furthermore, the use of ML tools shows outstanding perfor-
mance, being less time consuming and providing good accu-
racy [10] , [24]–[28]. The flexibility and adaptability of AI
could make it useful for predicting the occurrence of droughts
that occur with varying durations, frequencies and intensities.
These characteristics of droughts are not effectively using
empirical relations.
To date, diverse ML models such as support vec-

tor machine (SVM) [29], [30], artificial neural net-
works (ANN) [31], [32] and Extreme Learning Machine
(ELM) [33], have been employed. Among them, SVM is

the most widely used for drought prediction [34]–[36]. For
example, a SVM model was combined with SPEI to predict
drought over Pakistan [5] and with the Palmer Drought
Severity Index (PDSI) to predict drought over Turkey [37].
Other authors have also reported the higher accuracy of
SVM over the ANN algorithm in predicting Standardized
Precipitation Index (SPI) over Iran [38]. Among 5 ML
models, SVM emerged as the best model for estimating
Combined Terrestrial Evapotranspiration Index (CTEI) in
the Ganga (Ganges) River basin in India [39]. ANN was
applied to analyse monthly SPEI in Kansas, USA, during
1980-2010. The confusion matrices from the analyses sug-
gested that ANN better predicted class membership from the
SPEI than the discriminant analysis for prediction of grass
prairies production [40]. Further, ANN provided a greater
accuracy thanmultiple linear regression (MLR) in forecasting
the 1, 3, 6 and 12 months SPEI in Wilsons Promontory
in Victoria, Australia [41]. By contrast, effective Drought
Index (EDI) in eastern Australia was better predicted by
extreme learning machine (ELM) over the ANN model for
the overall test sites [42]. The investigation of [14] applied
the Wavelet-ARIMA-ANN (WAANN) and the Wavelet-
Adaptive Neuro-Fuzzy Inference System (WANFIS) models
to predict the SPEI at the Langat River Basin in Malaysia
for 1-month, 3- months and 6 months aggregation timescales.
The results concluded that theWAANNmodel could be better
for the prediction of SPEI-3 and SPEI-6.

Most of the artificial intelligence models are highly accu-
rate but they are complex and attract high computational
costs through the training phase. On the contrary, Rule-based
Decision Tree (DT) and tree-based ensemble methods, e.g.,
Gradient Boosting (GB), Extreme Gradient Boosting (XGB)
and Random Forest (RF), are increasingly becoming attrac-
tive because they are considered simpler, powerful and
robust predictive algorithms [43]–[45]. Recently, the XGB
was applied for predicting the meteorological drought in
Shaanxi province, China, with promising results [36]. Deep
learning (DL) models, a subset of ML, are now widely
used with high accuracy. Therefore, deep learning is gain-
ing much attention in several research fields [46]–[49]. For
time series predictions, DL models of the long short-term
memory (LSTM) [50], [51] and the one-dimensional con-
volutional neural network (1D CNN) [52], [53] are found
to be more appropriate. However, drought monitoring using
DL is relatively scarce [54]. For example, one study inves-
tigated SPEI-1 and SPEI-3 drought index prediction based
on the LSTM model over the New South Wales region of
Australia during 1901-2018 [55]. This study used precipita-
tion, vapor pressure, cloud cover, potential evapotranspiration
and temperature to predict SPEI. In the meantime, LSTM
architecture was developed to forecast SPEI in Australia
based on hydrometeorological and climatic variables as pre-
dictors [56]. Moreover, LSTM was applied to forecast SPEI
during the period of 1958-2014 [57]. Therefore, the use of
LSTM in drought forecasting is still in its infancy. Deep feed
forward neural networkmodelingwas applied to predict SPEI
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FIGURE 1. The study area, data management scenarios and training/test split used (a), principal component analysis (PCA) for SPEI-3
(b) SPEI-6 (c).

based on multi-source remote sensing data in Wuhan, China,
during the period of 2001-2013 [54].
In this proposed work, the issue addressed is based on the

need to estimate drought in order to minimize its damaging
effects at the regional and local levels. In this regard, two DL
models (CNN and LSTM) were used as rapid decision tools
for SPEI modeling for two different timescales at the regional
and local levels. To the best of our knowledge, the applied
approaches are still poorly investigated for drought studies,
especially those based on different climate inputs at both
regional and local levels. Therefore, the objectives of this
research are to 1) identify drought events and describe their
temporal and spatial characteristics (total drought duration,
severity and intensity) based on 30 meteorological stations
during 1980-2019, 2) develop an alternativemodel (RF, XGB,
CNN and LSTM) to simulate SPEIs and 3) compare the
accuracy and stability of these models in SPEI predictions
and to select the best model based on the prediction accu-
racy. The novel contribution of this work is to develop and
validate the usefulness of the CNN and LSTM architecture
for SPEI estimating at different timescales in China. Thus,
this investigation presents a pioneering modeling strategy
that would lead to improvement of efforts to address the
deficiencies in drought prediction, which in turn may assist
in mitigation plans such as policies for sustainable water use
and the management of water supply systems.

II. STUDY AREA

The study area (419,000 km2) is located in the eastern
edge of the Qinghai-Tibet Plateau which is connected to the

Loess Plateau, Sichuan Basin, and Yunnan-Guizhou Plateau
(Figure 1). The Qinghai–Tibet Plateau is one of the most
sensitive areas to global climate change [58], [59], and has
an average altitude of about 4000 m [60]. Since the 1990s,
there has been accelerated temperature rise on the Tibetan
Plateau, resulting in the rapid melting of glaciers and perma-
nent snow cover, rising snowlines, reduced wetland area, and
a deteriorating ecological environment [61]. The study area
has a typical alpine climate regime with an annual average
temperature of 4.8◦C and an annual average precipitation
of 693.2 mm. More than 80% of the annual precipitation
occurs during the wet period from May to August. The
variability of drought in China is influenced by the anomaly
of atmospheric circulation such as the East Asian summer
monsoon (EASM) [62] and EI Niño-Southern Oscillation
(ENSO) [63]. Soil freezing and snow cover usually occur
from early October to the end of April [64]. The region is rich
in snow and glacier resources and is the source of many rivers
in Asia, including the Yellow, Yangtze and Lancang Rivers.
Due to global warming, accelerated melting of glaciers and
the redistribution of precipitation lead to frequent floods and
snowstorms over the Tibetan Plateau [65].

III. MATERIAL AND METHODS

Figure 2a shows the workflow of this research as explained
in the ensuing.

A. DATA SOURCES

Climate datasets at daily timescale from 30 meteorological
stations for the period of 1980–2019 were retrieved from
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FIGURE 2. Flowchart of the research methodology.

the China National Meteorological Data Sharing Platform
(http://data.cma.cn/en). The climate variables were daily
precipitation amount (mm), temperature (minimum, maxi-
mum, and average (◦C)), solar radiation (Wm−2), sunshine
hours (h), wind speed at 2 m (ms−1), and relative humid-
ity (%). Based on previous studies, the PM equation was rec-
ommended as the sole standard method by FAO to calculate
reference evapotranspiration (ET0) and it has been success-
fully applied in China. It incorporates both physiological and
meteorological parameters and has been widely used globally
as a result of its intrinsic rationality and reliability [66]–[69].
The detailed steps for the calculation of ET0 were reported
in the investigation of Mokhtar et al. (2020) [66]. Therefore,
the PM equation based on the climate variables was used to
calculate the monthly ET0 over the study area. To develop
SPEI indices at different timescales, the monthly climatic
water balance series was aggregated with an n-month moving
sum, i.e., the current monthly value plus the previous n-1
monthly values; n = 3 corresponds to SPEI-3 and n = 6
for SPEI-6. This means that the SPEI-3 value for March is
the sum of monthly SPEI values for January–February–
March [70].

B. SPEI CALCULATION

With over 150 drought indices in the literature, validating
each one and developing a common consensus is not feasible.
However, there seems to be a growing consensus about the

use of SPEI in recent times, primarily because it uses both
rainfall and temperature to determine it rather than only
rainfall as in the case of the Standard Precipitation Index
(SPI) [55], [71]. Moreover, the SPEI is one of the widely used
drought indices for tracking drought evolution over different
timescales of interest (i.e., 1, 3, 6, 9, 12, and 24 months) [70].
The SPEI uses the difference between precipitation and evap-
otranspiration to represent the regional drought [72], [73].
Thus, SPEI was selected as the drought index consider-
ing the effect of temperature-induced evapotranspiration on
droughts.

To calculate the SPEI, the monthly water balance (Di)
which is the difference between the monthly precipitation
(Pi) and monthly potential evapotranspiration (PETi) is first
calculated. These values are then aggregated at the timescales
of interest [74] as:

Di = Pi − PETi (1)

Dkn =

k−1
∑

i=0

(Pn−i − PETn−i), n ≥ k (2)

where k = 6 for SPEI-6 is the aggregation timescale and
n is the 6th month for June. A three-parameter log-logistic
probability distribution was used to fit the D series. The
cumulative distribution function F(x) is given as:

F(x) =

[

1 + (
α

x − γ
)β

]−1

(3)
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where α, β and γ are the scale, shape, and location parame-
ters, respectively.
The SPEI value is obtained as the standardized value given

as:

SPEI = W −
c0 + c1W + c2W

2

1 + d1W + d2W 2 + d3W 3
(4)

W =
√

−2 ln(P) for P ≤ 0.5, (5)

where P is the probability of exceedance of a given D value,
the cumulative distribution of D being F(D). When P> 0.5 it
is replaced with the non-exceedance probability (F(D) =

1 − P) and the sign of the calculated SPEI is reversed.
The constants are c0 = 2.5155, c1 = 0.8028, c2 = 0.0103,
d1 = 1.4328, d2 = 0.1892 and d3 = 0.0013. Generally,
SPEI can be calculated at different time scales of 1, 3, 6, 9,
or 12 months [75]. However, we restricted our study to only
SPEI-3 and SPEI-6 representing 3 and 6 monthly timescales,
respectively, which are considered as representative of agri-
cultural drought where precipitation shortage in a short
period is the main cause of adverse drought effects [76]. The
SPEI category classification is presented in Table 1 based on
the Agnew’s scheme [77]. In this study, we are following a
different SPI/SPEI classification presented in the literature
(e.g., [78], [79]. However, we used a different classification
for drought intensity as proposed by Agnew et al. [77]. It is
based on the SPI as a meteorological drought that is similar
to SPEI. Agnew’s approach uses probability classes rather
than the quantile values of the index for classification. Here,
the impacts are most noticeable as it allows identification of
mild and moderate droughts.

TABLE 1. The Agnew’s scheme for drought categories classification
(Agnew, 2000).

C. DROUGHT CHARACTERISTICS

Several methods have been widely used for drought event
identification, including the threshold level method, run the-
ory, and empirical orthogonal functions [80]. For example,
a drought event is defined as a period in which the SPI
is continuously negative and can reach a value of −1.0 or
less according to McKee et al. [81], [82]. In this study we

determined the drought events based on a threshold value
of SPEI < 0 (i.e. all negative values considered), and also
on a threshold value of SPEI < −0.84 which is more suit-
ably for drought category. Agnew’s approach uses probability
classes rather than the quantile values of the index for classi-
fication. Here, the impacts are most noticeable as it allows
identification of mild and moderate droughts. The drought
characteristics of interest for this study are the Total Drought
Duration (TDD), Drought Severity (DS), drought peak (DP)
and Spatial Extent of Drought (SEoD), which were analyzed
for specific drought events. A drought event was defined as
being when the SPEI values were negative and also when the
SPEI were less than −0.84 [81]. Therefore, the total duration
of a drought episode (TDD) is defined as either the sum
of the number of continuous months ni when the SPEI <

0 [83], [84], [82], or when the SPEI is less than −0.84 (less
than moderate drought), as such, the TDD was expressed for
all drought episodes for a case where SPEI is<0 (TDD0) and
also for a case where SPEI is less than−0.84 (TDD-0.84) over
the whole studied period Ni as:

TDD(%) =
∑ ni

Ni
× 100 (6)

where ni is the sum ofmonthsencompassingdrought episodes,
Ni isthetotalstudied period in months for each station, and
TDD being either TDD0 or TDD-0.84. The DS is the abso-
lute sum of SPEI values during a specific duration DD and
calculated when SPEI is less than -0.84 as:

DS =

∣

∣

∣

∣

∣

DD
∑

i=1

SPEIi

∣

∣

∣

∣

∣

(7)

SPEIi represents the SPEI value in month i. Moreover,
DP refers to the minimum SPEI value during the drought
event [85]. The drought-prone areas were examined by the
percentage of the number of drought locations in the total
study area for the different drought categories. The per-
centage of area affected by drought (SEoD) was deter-
mined [79], [81], [87] as:

SEoD(%) =
m

M
× 100 (8)

where m is the number of stations when SPEI < 0, or SPEI
< −0.84, andM is the total number of stations [81], [86].

D. PRINCIPAL COMPONENT ANALYSIS (PCA)

In order to identify the sub-regional patterns of drought co-
variability in the Qinghai-Tibet Plateau, we performed a
principal component analysis (PCA) in an S- mode for both
SPEI-3 and SPEI-6, which often has been used to obtain
homogenous spatial-temporal patterns of climate including
droughts (e.g., [80] , [87], [88]). This multi-variate statistic
can regionalize spatial patterns of drought, which reflects
the high temporal variability of climate in the Qinghai-
Tibet Plateau, especially at the local and the regional scales.
As such, the PCA was employed to produce a few new
representative SPEI data from the original one and these are
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TABLE 2. Combination of input climate variables for the 7 scenarios used for the machine and deep learning models.

called the principal components (PCs) [84]. PCA can result
in a few linearly unhomogenized PCs to explain most of
the temporal variance from the main SPEI data. The PCA
is used in climatology as Empirical Orthogonal Function
(EOF) analysis [85]. Such a transformation is a linear one
and depends on the eigenvectors of a correlation or covariance
matrix [86], [88] . The study employed a correlation matrix
with the eigenvalues and eigenvectors using a weighted coef-
ficient. After the results of the EOFs, we retained only the
significant PCs which resulted in an eigenvalue higher than
unity [89]. The final eigenvectors, which are called ‘‘load-
ings’’, represent the correlation between the time series of
SPEI and the PCs scores. Ultimately, PCA reduces SPEI time
series dimensions with maximum total variance of SPEI data
and find localized drought patterns. The Varimax orthogonal
rotation methods were applied on the retained PCs. Each
SPEI time series was then set to a specific component based
on the maximum correlation observed between each SPEI
time series and all the PCs, 0.6 being used as the threshold
standard criterion [81], [90] to split the Qinghai-Tibet Plateau
into sub-regional patterns.

E. MACHINE LEARNING MODELS

Based on the results of the principal components analysis
(PCA), five climate zones were identified. At the regional
scale, the highest loaded station in each zone was considered
to be the test station, while the remaining 25 stations con-
stituted the model training datasets (Figure 1a). Therefore,
model development and testing were based on all identified
climatic zones of the region to produce a more practical
model at the regional scale, and not only for a specific area
or station. For the local scale, the performances of the best
models in the regional scale were evaluated separately in the
five PCA zones (local scale). Seven scenarios, consisting of

various combinations of the climatic variables (Table 2), were
investigated for their effects on SPEI-3 and SPEI-6 to provide
an accurate estimation for the area with data scarcity. This
may help improve drought analysis for data scarcity regions,
and also to evaluate the contribution of each climate variable
to the SPEI.

The SPEI timeseries was first calculated using (4) that
involves precipitation and reference evapotranspiration for
the establishment of the drought events and their character-
istics. Then the models were used to estimate the SPEI with
precipitation data and the various combination scenarios of
the climatic variables (temperature, relative humidity, wind
speed, sunshine and solar radiation) data as inputs (Fig. 2).
To facilitate the regression task, the input data were normal-
ized to the range from 0 to 1 as:

Xn =
X0 − Xmin

Xmax − Xmin
(9)

where Xn is the normalized data, X0 is the original data, while
Xmin and Xmax are the minimum and maximum values of the
original data. Performance statistics were then used to select
the best model and climate variable scenarios. Scikit-learn
0.22.1 and TensorFlow 2.1.0 libraries of the Python program-
ming language were used to run the ML models. A virtual
machine from Google Cloud Platform was utilized for the
computations using a graphics processing unit. The hyper-
parameters of the models were optimized using a grid search
method for the machine learning models and random search
for the deep learning models. Below are the descriptions of
the models.

1) EXTREME GRADIENT BOOSTING (XGB)

The Extreme Gradient Boosting (XGB) algorithm suggested
by [91] is a novel improvement of the Gradient Boosting
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Machine based on regression trees. The algorithm is based on
the idea of ‘‘boosting’’, which combines all the predictions
of a set of ‘‘weak’’ learners to develop a ‘‘strong’’ learner
through additive training strategies. The main goal of XGB
is to decrease the overfitting and underfitting problems, and
also to minimize computational costs. The general function
for the prediction at step t is:

f
(t)
i =

t
∑

k=1

fk (xi) = f
(t−1)
i + ft (xi) (10)

where ft (xi) is the learner at step t , f (t)i and f
(t−1)
i are the

predictions at steps t and t − 1, respectively, and xi are the
input variables.
To avoid overfitting problems without influence on

the computational speed of the model, the XGB applies the
analytic expression below to evaluate the ‘‘goodness’’ of the
model from the original function as:

Obj(t) =

n
∑

k=1

l (ȳi, yi) +

t
∑

k=1

� (fi) (11)

where l is the loss function, n is the number of observations
and � is the regularization term which is defined as:

� (f ) = γT +
1

2
λ ‖ω‖2 (12)

In equation (12) ω is the vector of scores in the leaves,
λ represents the regularization parameter, and γ denotes
the minimum loss needed to further partition the leaf node.
Detailed information and the computation procedures of the
XGB algorithm can be found in [91]. We applied the XGB by
using 4000 trees, 20 max depth, learning rate of 0.1 and the
default values of the other hyperparameters. The following
sets of hyperparameters were applied: ’n’ number of trees
(100, 300, 500, 1000, 2000 and 4000); max depth (1, 2, 5,
10, 15, 20, 22) and learning rate (0.05, 0.1 and 0.5).

2) RANDOM FOREST (RF)

The RF model, developed by [92], is based on an ensemble
of decision trees with controlled variance. The RF model has
been widely used for regression and classification problems.
A random forest regression is a specific type of bootstrap
ensemble. It deals with random binary trees that use a subset
of the observations via bootstrapping, where a random subset
of the training dataset is sampled from the raw dataset and uti-
lized to evolve the model. The detailed data and computation
procedure of the RFmodel can be found in [93, 94]. To get the
best score, a RF was trained using 4000 trees, 25 max depth
and the default values of the other hyperparameters. During
the tuning phase, the following hyperparameters sets and their
respective values were used: n estimators (number of trees)
(100, 300, 500, 1000, 2000 and 4000); max depth (1, 2, 5, 10,
15, 20, 25).

3) LONG SHORT-TERM MEMORY (LSTM)

LSTM is a special type of recurrent neural network
(RNN) [94] used to handle sequential data with advantages
over traditional RNN. An LSTM network contains different
memory blocks which are linked through layers. Each layer
includes a set of frequently connected memory pixels and
three multiplicative units, namely the input, forget and output
gates ( [95], [96]. The architecture of the LSTM model is
shown in Figure 2b.

To identify the optimal forecasting strategy, an LSTM
network and LSTM layer with 100 hidden units were used,
followed by a fully connected layer of size 30. The hyperpa-
rameters of the LSTM layers were kept at their default values.
In the first fully connected layer, the tanh activation function
was used, and in the last fully connected layer (output layer),
the sigmoid activation function was used. The Adam training
algorithm [97] was used; learning rate was set to 0. 01,
batch size was set to 128, the number of training epochs was
500 and dropout rates were assessed by 0.5 (Fig. 3a).

4) CONVOLUTIONAL NEURAL NETWORK (CNN)

The convolution layers are the main difference between CNN
and conventional ANN. These layers are able to perform auto-
matic feature extraction, capturing features of the input data
which are key to figure out the relationship between the inputs
and output parameters. Thus, the raw data were handled with-
out a manual feature extraction. CNN is effective in dealing
with high-dimensional data based on their shared-weights
architecture and translation invariance characteristics [98].
In this study, CNN with one-dimensional (1D) convolutional
filters (1D CNN) was used [93], [99]. The CNN model con-
sists of three layers, namely the input, hidden and output
layers (Figure 2c). The input of a three-dimensional array is
usually fed to a convolutional layer where the dimensions are
represented by height, weight and the number of channels.
The hidden layer includes a convolutional layer, pooling
layer, and fully connected layer. The convolutional layer is
set to automatically extract the characteristics at different
regions/zones of the whole raw input or the intermediate
characteristic maps with learnable filters and more layers
can iteratively extract complex features from the last fea-
ture [98], [100]. The pooling layer turns all the values in
the pooling window to a single value. Moreover, the pooling
reduces the computational cost of the learning process as
well as overfitting problems [101]. The fully-connected layer,
which combines all local features into global features, is used
to calculate the final result [98]. The detailed information can
be found in [52], [100]. In this study, a convolutional layer
with the following settings was used, namely 32 filters, kernel
size equal to 16, stride equal to 1, padding was set to ‘‘same’’
and a rectified linear unit (ReLU) was used as the activation
function. AMax-pooling layer with pool size of 3 and dropout
of 0.3was used. In the first fully connected layer, a ReLU acti-
vation function was used, and a linear activation function was
used in the last fully connected layer. The training algorithm
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FIGURE 3. Architecture of the LSTM model and cell structure (a) and the formation of the CNN model (b).

was set with learning rate, batch size and number of training
epochs of 0.001, 512 and 700, respectively (Fig. 3b).

F. PERFORMANCE STATISTICS FOR THE EVALUATION

OF THE MODELS

Performance statistics of the Nash–Sutcliffe model efficiency
coefficient (NSE), the mean square error (MSE), the mean
absolute error (MAE), mean bias error (MBE) and corre-
lation coefficient (R) were used to assess the applied ML
models. A NSE value of 1 indicates a perfect fit, greater than

0.75 is a very good fit, between 0.64 and 0.74 is a good fit,
between 0.5 and 0.64 is a satisfactory fit and less than 0.5 is
an unsatisfactory fit [102]. The performance statistics are
defined as:

NSE = 1 −

∑

(Pi − Oi)
∑

(O − Oi)2

2

(13)

MAE =
1

n

n
∑

i=1

|Oi − Pi| (14)
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FIGURE 4. Temporal evolution of spatial extent of drought (SEoD), i.e., the percentage of stations affected by different
drought categories. The amount of changes ()perdecade and trend given in dashed lines is statistically significant at
the 95% level (p< 0.05).

MSE =
1

n

∑

(Pi − Oi)
2 (15)

MBE =
1

n

n
∑

i=1

(Oi − Pi) (16)

R =

n
∑

i=1
(Oi − O)(Pi − P)

√

(

n
∑

i=1
(Oi − Oi)

2
) (

n
∑

i=1
(Pi − P)2

)

(17)

where Oi and Pi are the actual and the predicted SPEIs,
respectively, O represents the average values of the actual
SPEI index, and n is the number of observations.

IV. RESULTS AND DISCUSSIONS

A. ANALYSIS OF THE DROUGHT EVENTS AND

CHARACTERISTICS DURING 1980-2019

The eastern edge of the Qinghai-Tibet Plateau has been sub-
jected to critical drought events that have extremely influ-
enced the ecosystem productivity [74], [103]. In this regard,
the current study aimed to identify drought events by inves-
tigating the spatial extent of drought (SEoD) of 30 mete-
orological stations at two aggregated timescales of 3
(SPEI-3) and 6 (SPEI-6) months. The exposure of the eastern
edge of the Qinghai-Tibet Plateau to the different drought
intensity is illustrated in Figure 4. As depicted in Figure 4,

the trends of SEoD percentages of stations affected by all
drought categories (i.e., moderate, severe, extreme and very
extreme droughts) exhibited a significant increase (p < 0.05)
during the studied period. By contrast, the SEoD for the mild
drought exhibited a statistically non-significant increase for
both SPEI3 and SPEI6. Interestingly, the percentage of sta-
tions/area exposed to severe and extreme droughts (i.e., from
−0.84 to −1.28 and −1.28 to −1.65) presented increasingly
strong changes from 1980 to 2019, in the order of 4 to 5.9%
and 3 to 3.3% per decade (p < 0.05), respectively. A compar-
ison between the SEoD for all drought categories suggests
that the increases in the percentage of stations affected by
severe and extreme droughts were higher than those of mild
and moderate droughts, showing an equal increase in the
percentage of stations affected by the drought for the mild
and very extreme intensities.

As shown in the results presented by Figure 5, the number
of stations impacted by severe drought (SPEI from −0.84 to
−1.28) were almost 50% of all stations during 2009, from
January to March for SPEI-3 and from March to May for
SPEI-6. Notably, the number of stations impacted by very
extreme drought (SPEI < −1.65) were almost 40-50% of
all stations during the extraordinary drought event in 2013,
from March to May for SPEI-3 and from March to July for
SPEI-6. In 2015, more than 30-50% of the stations were
subjected to extreme drought from March to August based
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FIGURE 5. Monthly variability of total SEoD. Note: SD is severe drought, ED is extreme drought, vED and is very extreme drought.

on SPEI-6. Accordingly, the results indicated that the drought
pattern tends to occur during the winter and spring seasons
more than during summer and autumn. In order to accurately
evaluate the spatial dimension of drought in the study area
during the monitoring period of 1980-2019, four drought
durations were identified randomly to detect the drought
frequency and temporal evolution (D1: 2002-2004, D2: 2006-
2009, D3: 2010-2014, andD4: 2015-2019) in the eastern edge
of the Qinghai-Tibet Plateau and the corresponding drought
characteristics (TDD, DS and DP) were analyzed based on
SPEI-3 and SPEI-6. Figure 6 illustrates the spatial distribu-
tion of the drought characteristics and indicates that the D3
(2010-2014) and D4 (2015-2019) events were the most influ-
ential during the entire monitoring period of this study. In the
case of D3 (2010-2014), a TDD0 of more than 80% during
that period concentrated in the southern, central and northern
parts at 4 and 13 stations, respectively, for SPEI-3 and SPEI-
6, 10 and 14 stations experienced severe or higher intensity
drought (TDD < −0.84) for a long time between 40-60%
of the total duration, 2 station recorded a severe or higher
intensity drought by TDD−0.84 to the tune of 60-80% for
SPEI-6.

During the event D4 (2015-2019), the spatial distribution
of the TDD< 0 events was concentrated in 80 to 100% of
this period and at 12 and 18 stations for SPEI-3 and SPEI-6,
respectively. With respect to TDD< −0.84, 6 and 12 stations
experienced a severe or higher intensity drought for a long

time between 60-80% of the total duration for SPEI-3 and
SPEI-6, respectively. One station in the central part recorded
a severe or higher intensity drought by the TDD−0.84 measure
to the value of 90-100% of the total duration for SPEI-6.
Historically, drought event D4 is considered as the worst
extraordinary drought event in term of intensity and duration
in the Qinghai-Tibet Plateau. Also, the spatial distribution of
the DS indicates concentration in the northern and central
parts, ranging from 5 to 30 for both SPEIs during D1. During
D3 (2010-2014) for SPEI-6, most of the study area recorded
15 to 50. By contrast, during D4 (2015-2019), the DS cov-
ered most of the study area with values more than 30% for
SPEI-3 and SPEI-6. In the context of DP, the entire study
area recorded TDDs < −1.65 for SPEI-3 and SPEI-6 during
D3. This result was consistent with [74] who documented that
severe droughts occurred in 2006 and 2011 in the Yangtze
River basin. In autumn 2013, moderate and severe droughts
in China occurred in most areas including Qinghai-Tibet
Plateau [1], [104], [105]. In 2006 and 2011, droughts were the
most severe in the Yangtze River basin, and the area affected
by the droughts was the largest including the Qinghai-Tibet
Plateau [74]. For example, drought areas in 2011 accounted
for 54.3% of the total area of the Yangtze River basin, which
was the largest drought area during the study periodwith 2006
experiencing the next largest drought area.
The abnormal circulation of the atmosphere caused lim-

ited water vapor transportation, which was the main cause
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FIGURE 6. Spatial distribution of total drought duration (TDD, %), drought severity (DS), and the minimum SPEI values representing the
drought peaks (DP) for the specific drought events for SPEI-3 (a) and SPEI-6 (b).

of drought and less rainfall [74]. Due to the existence of
the Siberian high, the vertical movement and water vapor
conditions in these areas were not conducive to precipita-
tion [106], [107]. Thus, southwest China is one of the zones
most vulnerable to climate change due to the downward
airflows which are impacting on water vapor flux associ-
ated with anomalies of the atmospheric circulation [108].
Drought events during the past few decades are posing major
threats to developments in many sectors over China, and
have caused severe damages to many terrestrial ecosys-
tems [109]. Nonetheless, successive drought events, namely
1997-2003 episodes [110], the 2006 episode [108], and
2009-2010 episodes [111], that hit different parts of China
have caused tremendous damages especially in the agri-
cultural sector [109]. A serious drought event in 2009 is
a key example of the negative impacts of drought on the
agriculture and economics. It converted part of southwest
China into a desert and lakes became dried. Thus, it neg-
atively affected aquatic animals and caused water scarcity
for more than 8 million people and 3 million hectares of
croplands [112], [113].
In order to more accurately detect the spatial-temporal

dimension of the SPEI over the studied area, the PCA was

calculated with regard to the SPEI timeseries to define the
spatial patterns of drought variability in the study area.
The PCs were retained for Varimax rotation in order to iden-
tify the 5 sub-regions/zones of the SPEIs (Figure 1b and c).
It was observed that the first component of the PCA of the
SPEIs explained the highest significant amount of variance
(23-31%) but the variance seemed to be equally distributed
among the 5 PCs. The first 5 components together explained
about 77.2% of the total variance of SPEI-3 and 79.7% of
SPEI-6, while the remaining components accounted for the
rest of the total variance. But the first three PCs together
explained 60.5% of the total variance for SPEI-3 and 70%
for SPEI-6. Not only were the loadings corresponding to
each PC mapped to show the spatial patterns of wet/dry
SPEIs variability for the studied area (Figure 7), but also
the temporal mode of the loadings corresponding to the
extracted components was illustrated. These results suggest
high heterogeneity of the evolution of the wet and dry events
due to the large extent of the area that is several hundreds
of kilometers across and follows several climate patterns.
The strong spatial variability of drought in central China
calls for drought management and strategies to be applied
at the local and regional scales. Moreover, the differences in
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FIGURE 7. Temporal evolution and trends of the SPEI-3 and SPEI-6 from the PCs corresponding scores that represent drought patterns.

drought characteristics among the principal components are
based on the changes in topography, climate, vegetation types
and human factors. The combined effects of temperature and
precipitation in particular is the major contributor in changes
between the five zones.

B. EVALUATION OF THE MACHINE LEARNING MODELS

The performance statistics of the models using the climate
data combination scenarios in predicting the SPEIs are shown
in Table 3 for the two SPEIs. The MSE and MAE values for
all the developed XGB-SPEI-3 models ranged from 0.26 to
0.61 and 0.39 to 0.57, respectively. The best developed XGB
model for predicting drought characteristics was in combi-
nation with scenario 7, which considered all input variables
(Figure 8). Considering RF for SPEI-3, scenario 6 emerged as
the best (Table 3). However, under data scarcity conditions,
scenario 4, which depends only on temperature and wind
speed beside the precipitation data, is a good alternative for
the prediction process. This scenario yielded a slight increase
in MSE and the other performance metrics compared to
scenario 7, but it is acceptable and satisfactory. For SPEI-6,

the superiority of XGB was evident at scenario 7 that pro-
duced the lowest MSE of 0.16, MAE of 0.37, R of 0.76 and
MBE of -0.09. By analyzing the XGB scenarios, it showed
scenarios 4, 5, and 6 also performedwell and close to scenario
7 for the XGB model. Also, RF with scenario 4 achieved
good results with MSE of 0.31, MAE of 0.46 and R of 0.82.
Based on the NSE index, the performance of the XGB and
RF models are classified as good fits for scenarios 4 to 7 in
both 3- and 6-months timescales.

The results demonstrated that scenario 4 with the RFmodel
is good enough for assessing SPEI-6 if only temperature,
wind speed and precipitation data are available. In general,
XGB5 and RF6, and XGB7 and RF7 are more efficient for
predicting the SPEI-3 and SPEI-6 outcomes in the Tibetan
Plateau. Our results are similar to those presented by [114]
who applied RF for drought forecasting for 118 stations
over the period from 1963 to 2016 in southwest China.
They showed MAE values of 0.36 for SPEI-3 and 0.22 for
SPEI-6. Our findings also corroborate the results by [115]
who assessed and monitored drought in the USA using dif-
ferent machine learning models. They found that the RF
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TABLE 3. Performance statistics of the applied models for the seven input scenarios.

model was the best with highest correlation and the lowest
RMSE of 0.30, among the approaches used. This outcome
is consistent with the findings presented by [115], that the
accuracy of the prediction process is greater for long-term
drought episodes compared to the short-term periods. Further,
our finding is in agreement with the study of SPEI prediction
in New South Wales (Australia) which concluded that RF
achieved RMSE and R2 results of 0.53 and 0.76, respectively,
for SPEI-3 [116]. In contrast, the SVM algorithm applied
to Combined Terrestrial Evapotranspiration Index (CTEI)
resulted in an R2 value of 0.82 and the lowest errors in terms
of the root mean squared error (RMSE) (0.33) and Mean
Absolute Error (MAE) (0.20) in the Ganga River basin [39]
which agree with our results, and were much better in com-
parison to the other ML models they applied.

It is hard to determine a particular factor for the above
results; it may be linked to the mutual causal relation between
drought criteria and the SPEI. Drought criteria tend to rep-
resent the impact of rainfall shortages accumulated over the
long-term rather than through short term episodes [117].
Also, RF was applied for short-term drought forecasting in
the East Asia region using satellite-based climatic data [115].
This study showed that RF can capture the sudden change in

drought conditions when a Madden–Julian oscillation is used
as a feature for drought prediction. The researchers found
that the overall average prediction accuracy is higher than
the weather system’s prediction accuracy, suggesting accept-
able prediction results. Comparing models driven by remote
sensing data only, and the combination of meteorological and
remote sensing data, [114] stated that the SVM model driven
by combined meteorological and remote sensing data per-
forms better in the Guan Zhong area, China. For our second-
best XGB scenario, our results were similar to the findings
of [36] in Shaanxi, China, who concluded that the XGB
model more precisely forecasted SPEI than the distributed lag
nonlinear model (DLNM) and the artificial neural network
(ANN), with R value ranges of 0.68–0.82 and 0.72–0.89 for
SPEL-3 and SPEI-6, respectively.

CNN and LSTM models were also implemented to esti-
mate the SPEIs using the seven climate input combina-
tion scenarios (Table 2), and the results are presented in
Figure 8 and Table 4. For CNN-SPEI-3 models, the MSE,
MAE, and R varied between 0.29 and 0.57, 0.49 and 0.71,
and 0.57 and 0.82, respectively. Based on the NSE index,
the performance of the CNN model is classified as a good
fit for scenarios 6 and 7 and for scenarios 4 to 7 is classified
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FIGURE 8. Performance statistics of the applied ML models for the 7 different climate variable combination scenarios.

as a satisfactory fit for both timescales. The CNN7 was the
best scenario in comparison with the other CNN models as
judged by MSE (0.29) and R (0.82). CNN6 exhibited the
second-best performance in SPEI-3. The MSE, MAE, and
R for LSTM6 ranged from 0.37 to 0.57, 0.49 to 0.72, and
0.57 to 0.78, respectively. The LSTM model with scenario
6 exhibited the best performance for estimating SPEI-3 as
it had the lowest MSE (0.37), the lowest MAE (0.56) and
the highest R (0.78). LSTM2 gave the worst result with the
highest MSE of 0.56, which means that the combination of
precipitation, average temperature, and maximum tempera-
ture was not sufficient for the estimation of SPEI-3 based on
the LSTM model.
For SPEI-6 scenarios, the CNN and LSTM models exhib-

ited the highest R values for scenario 7. CNN7 had a MSE
of 0.36, MAE of 0.49, R of 0.77 and MBE of 0.08 com-
pared to the other CNN models (Table 3). The results also
indicated that CNN with scenarios 4, 5 and 6 could be good
for estimating SPEI-6, and it is recommended when data are
scarce. Moreover, CNN1 and CNN2 had the highest values of
MSE which reached 0.77, and the lowest correlation ranging
from 0.40 to 0.55. Also, LSTM 4 and 5 were good models
for estimating SPEI-6, having the lowest MSE of 0.46, and R
of 0.77 and 0.66, respectively. Our findings agree with [55]

who applied the LSTM model to forecast SPEI-1 and SPEI-
3 in New South Wales (Australia). Moreover, these results
are close to the investigation of [57] who applied LSTM to
forecast SPEI during the period of 1958-2014. Generally,
the results of the SPEI-3 and SPEI-6 are close to each other
for the four applied models due to less fluctuation in both
timescales. This finding was similar to the investigation that
applied WAANN and WANFIS models to predict the SPEI
at the Langat River Basin for 1-, 3- and 6-months timescales.
In terms of the 7 scenarios applied in this study, overall results
of the first three scenarios were weak in comparison with the
other four scenarios. The main reason is limited data (only
precipitation and temperature) that are not able to achieve
better accuracy of SPEI prediction. Moreover, the significant
correlation of wind speed and relative humidity with SPEI is
responsible for better prediction of SPEI in our study area.

C. COMPARISON OF THE CALCULATED

AND SIMULATED SPEIs

Taylor diagrams were used to determine howmuch the SPEIs
estimated by the ML models matched the calculated SPEIs
(Fig. 9a, b). It showed the best combination of each model
for each timescale. For the applied models, the best scenarios
for the XGB were scenarios 5 and 7 for SPEI-3 and SPEI-6,
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TABLE 4. Performance statistics of the XGB and RF model scenarios for the five zones.
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FIGURE 9. Taylor diagrams displaying a statistical comparison of applied models in the estimation of SPEI-3 (a) and
SPEI-6 (b).

FIGURE 10. Boxplots showing the distribution of the estimation errors of the SPEIs in the test section for the
two-best model-scenarios. Q1 is lower quartile of errors, Q3 is upper quartile of errors, and IQR is interquartile range
for each model.

respectively, while the RF model was best with scenarios
6 and 7 for SPEI-3 and SPEI-6, respectively. For the DLmod-
els, CNN was superior for scenario 7 for both SPEIs, while
for the LSTM scenario 6 was the best for SPEI-3 and scenario
4 for SPEI-6. Based on the Taylor diagram, the overall best
models for SPEI-3 were XGB5 and RF6, while XGB7 and
RF7 were the best models for SPEI-6. These model-scenario

combinations generated the highest correlation, highest per-
formance, and lowest deviations between the calculated and
the forecasted SPEI values.

To determine the best model for the two SPEIs, box-
plots were developed for the errors (residuals) estimated as
the difference between the calculated and estimated values
(Figure 10). The presented positive and negative estimation
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errors indicate underestimation and overestimation, respec-
tively. Therefore, XGB5 is the best model for SPEI-3 as it
has the lowest error in comparison with RF6, and it is based
on the main climatic variables (precipitation, temperature,
wind speed and relative humidity). It performed better than
RF6 for SPEI-3 (all input parameters except solar radiation)
because it has the lower values of Q1, Q3 and IQR. Q3
(upper quartile) is more important than Q1 in error analysis
because it contains 75% of the error. XGB5 for SPEI-3 has
a smaller IQR compared with the best model-scenario for
SPEI-6 (RF7), the difference being 0.438. Moreover, the IQR
of XGB5 being the lowest among all models clearly indicated
the superiority of the model. It needs to be underlined that
the error distribution is around zero, and also the median line
at the center of the rectangle shows normality of the error
distribution for all four models (Figure 10).
Based on the above results which presented the best mod-

els as XGB and RF models for the whole area, but better
performance was expected from the models. For this reason,
the performance of the best models (i.e., RF and XGB) was
evaluated separately in the five PCA regions/zones (at the
local scale). Table 4 shows the performance statistics of each
zone for the best models (XGB and RF). Input scenarios 4, 5,
and 6 were used here because they achieved the best results
in the previous stage evaluation. Moreover, these scenarios
are the intermediate between using all input variables and the
lowest inputs. For SPEI-3, NSE for all scenarios in the five
zones was more than 0.75 which underlines the very good
performance of the XGB and RF models according to [102].
Generally, the performance of the models is classified as very
good for both XGB (NSE = 0.84) and RF (NSE = 0.82).
Furthermore, the correlation coefficients exceed 0.89 for all
of themodels in all zones, especially in zones 1, 2 and 3where
NSE reached 0.94 for the XGBmodel. For the five zones, the
average R was 0.92 for both XGB and RF models. The MSE
ranged from 0.09 to 0.18 for the five zones with an average
value of 0.14. For SPEI-6, and based on NSE, all scenarios
in the five zones are classified as very good fits for XGB
and RF models except for some zones that are classified as
good fits. The highest R was in zone 1 which reached 0.95
followed by zones 2 and 3. MBE values for both scales show
low values that confirm the ability of the models to estimate
SPEI in the study areas. Table 4 shows that the RF and XGB
models have promising results in estimating SPEI. However,
the performance of the models will increase significantly if
used separately in each zone. As the PCA approach showed,
this region has 5 parts with different climatic characteristics,
and this can affect the performance of comprehensive models
covering the whole region.

V. CONCLUSION

Drought events identification using SPEI is carried out in
this study. More than 30% of the studied area has experi-
enced extreme and very extreme droughts during the period
of 2010-2019. Moreover, during the period of 2015-2019,
the spatial distribution of the drought covered 80-90% of
the area under investigation, except for some northern and

southwestern parts for SPEI-3 and SPEI-6. Our results clearly
indicate a significant negative trend for SPEI-3 and SPEI-6
over the study period. In this regard, an adaptation strategy
on a national scale should be implemented to minimize the
direct impact of the drought cycles.

Further, four machine learning models (XGB, RF, LSTM
and CNN) were developed to estimate the SPEI on 3- and
6-month timescales by using various combinations of climate
variables as predictors. The XGB5 (relying on temperature,
wind, RH) was found to be a superior model for SPEI-3
and XGB7 (relying on temperature, wind, RH, Sunshine,
SR) was superior for SPEI-6 prediction. For the DL models,
LSTM with scenarios 6 and 4 were the best for SPEI-3 and
SPEI-6, respectively. For SPEI-3, NSE for all scenarios in
the five zones was more than 0.75 which underlines the very
good performance of the XGB and RF models. The RF and
XGB models have showed promising results in estimating
SPEI and produce a more practical model at the regional
scale, and not only for a specific area or station. However,
the performance of the models increases significantly when
used separately in each zone. Thus, this investigation can
present a pioneering modeling strategy that could lead to
improvement of efforts to address the deficiencies in drought
prediction, sustainable water-use, and the management of
water supply systems. The results show that the different
climatic characteristics in each station are the major reasons
for the weak results in low-input scenarios. However, the low-
input combinations achieved good results in the prediction
of SPEI on the local scale. In future studies, more predictors
need to be considered to better understand the mechanism of
drought such as atmospheric circulation, natural variability,
and anthropogenic activities. Improving drought prediction
methods is one important approach to facilitate a transition
to more sustainable water resource management in the con-
text of drought by focusing more on Multi-step Time Series
Forecasting of drought using a hybrid deep learning.
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