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Abstract: We present a simplified drift-flux model (DFM) describing a multiphase (gas-liquid)
flow during drilling. The DFM uses a specific slip law, without flow-regime predictions, which
allows for transition between single and two phase flows. With this model, we design an
Unscented Kalman Filter (UKF) for estimation of unmeasured states, production parameters
and slip parameters using real time measurements of the bottom-hole pressure and liquid and
gas rate at the outlet. The performance is tested against the Extended Kalman Filter (EKF)
by using OLGA simulations of typical drilling scenarios. The results show that both UKF and
EKF are capable of identifying the production constants of gas from the reservoir into the well,
while the UKF has better convergence rate compared with EKF.
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1. INTRODUCTION

There have been an increasing research focus on automa-
tion of drilling for exploration and production of hydro-
carbons in the recent years. Modeling for estimation, and
model-based control techniques have been studied in a
wide range of drilling and production scenarios. In Man-
aged Pressure Drilling (MPD), a back-pressure pump in
conjunction with a back pressure choke is used to control
the pressure in the well, posing new control and estimation
challenges. In a typical scenario, the control goal is to keep
the pressure of the well (pwell(t, x) ) greater than pressure
of the reservoir (pres(t, x)) to prevent influx from entering
the well, but lower than the fracture pressure (pfrac(t, x))
to avoid the loss of drilling fluids to the reservoir

pres(t, x) < pwell(t, x) < pfrac(t, x) (1)

at all times t and along the well profile x ∈ [0, L].

In an alternative approach, known as Under-Balanced
Drilling (UBD), the pressure in the well is kept greater
than the collapse pressure of the well but lower than the
pressure of the reservoir

pcoll(t, x) < pwell(t, x) < pres(t, x) (2)

Due to the pressure drawdown (meaning the positive
difference of the reservoir pressure and well pressure)
inflow fluid, in many cases gas, is produced continuously
from the reservoir. The rate of reservoir inflow is typically
approximated mathematically by a so-called Production
Index (PI) parameter

qinflux = PI.max(pres − pbh, 0). (3)

Especially for under-balanced wells producing gas, the
magnitude of the PI has a significant impact on the dy-
namics of the UBD and thus also on the control problem.
Hence, accurate estimates of the PI and reservoir pressure
are important for an UBD operation.
Modeling of UBD operations and MPD scenarios handling
influx requires a multiphase model. A popular model in the
literature is the Drift-Flux Model (DFM) Evje and Fjelde
(2002); Lorentzen et al. (2003); Lage et al. (1999). The
drift flux model is a set of first order nonlinear hyperbolic
partial differential equations (PDE). In case of two-phase
flow, it consists of three governing equations. The Low-
Order Lumped (LOL) models are simpler methods that
can be used. However, these models are only able to
capture the major effects in the well and for the general
purpose it produces less accurate results. Nygaard and
Nævdal (2006); Nikoofard et al. (2014a); Storkaas et al.
(2003).
Due to the complexity of the multi-phase flow dynamics
of a UBD well coupled with a reservoir, the modeling,
estimation and model based control of UBD operations is
still considered an emerging and challenging topic within
drilling automation. Nygaard et al. (2006) compared and
evaluated the performance of the extended Kalman filter,
the ensemble Kalman filter and the unscented Kalman
filter based on a low order model to estimate the states
and the PI in UBD operation. In Nygaard et al. (2007), a
finite horizon nonlinear model predictive control in com-



bination with an unscented Kalman filter was designed
for controlling the bottom-hole pressure based on a low
order model developed in Nygaard and Nævdal (2006).The
unscented Kalman filter was used to estimate the states,
and the friction and choke coefficients. Nikoofard et al.
(2014a) designed a Lyapunov-based adaptive observer, a
recursive least squares estimation and a joint unscented
Kalman filter based on a low-order lumped model to es-
timate states and parameters during UBD operations. A
Nonlinear Moving Horizon Observer based on a low-order
lumped model was designed for estimating the total mass
of gas and liquid in the annulus and geological properties
of the reservoir during UBD operation in Nikoofard et al.
(2014b).
Lorentzen et al. (2003) designed an ensemble Kalman
filter based on the drift-flux model to tune the uncer-
tain parameters of a two-phase flow model in the UBD
operation. Vefring et al. (2003, 2006) compared and eval-
uated the performance of the ensemble Kalman filter and
an off-line nonlinear least squares technique utilizing the
Levenberg-Marquardt optimization algorithm to estimate
reservoir pore pressure and reservoir permeability during
UBD while performing an excitation of the bottom-hole
pressure. Both methods are capable of identifying the
reservoir pore pressure and reservoir permeability. Aarsnes
et al. (2014a) used a simplified drift-flux model and an
Extended Kalman Filter to estimate the states and PI
online, and suggested a scheme combining this with off-
line calibration using the algorithm in Vefring et al. (2003).
The provided analysis also suggests how such an scheme
fits into the UBD operating envelope as proposed by Gra-
ham and Culen (2004), and explored in Aarsnes et al.
(2014b). Di Meglio et al. (2014) designed an adaptive
observer on the DFM.
The problem of parameter estimation in multiphase flows
is often referred to as ’soft-sensing’ in the context of
production, see Luo et al. (2014); Lorentzen et al. (2014);
Bloemen et al. (2006); Teixeira et al. (2014); Gryzlov
(2011).
The unscented Kalman filter (UKF) has been shown to
typically have a better performance than other Kalman
filter techniques for nonlinear system (Simon (2006); Wan
and van der Merwe (2002)). This paper is the first case
of UKF being used with the drift-flux model. This paper
presents the design of a UKF based on a simplified drift-
flux model to estimate the states, geological properties of
the reservoir and slip parameters during UBD operation.
The performance of UKF is evaluated against EKF by
using measurements from OLGA simulator and the conse-
quences of not estimating slip parameters are discussed.
This paper is organized as follows: Section 2 presents the
simplified drift-flux model based on mass and momentum
balances for UBD operation. Section 3 and 4 explain UKF
and EKF for simultaneously estimating the states and
parameters of a simplified drift-flux model from OLGA
simulator measurements. In the section 5, the simulation
results are provided for state and parameter estimation.
At the end the conclusion of the paper are presented.

2. THE DRIFT FLUX MODEL

The model employed is the same as the one used in Aarsnes
et al. (2014b). It expresses the mass conservation law
for the gas and the liquid separately, and a combined

momentum equation. The mud, oil and water are lumped
into one single liquid phase. In developing the model, the
following mass variables are used

m = αLρL, n = αGρG
where for k = L,G denoting liquid or gas, ρk is the phase
density, and αk is the volume fraction satisfying

αL + αG = 1. (4)

Further vk denotes the velocities, and P the pressure. All
of these variables are functions of time and space. We
denote t ≥ 0 the time variable, and x ∈ [0, L] the space
variable, corresponding to a curvilinear abscissa with x =
0 corresponding to the bottom hole and x = L to the outlet
choke position (see Fig. 1). The isothermal equations are
as follows,

∂m

∂t
+
∂mvL
∂x

= 0, (5)

∂n

∂t
+
∂nvG
∂x

= 0, (6)

∂(mvL + nvG)

∂t
+
∂(P +mv2L + nv2G)

∂x

= −(m+ n)g sin ∆θ − 2f(m+ n)vm|vm|
D

. (7)

In the momentum equation (7), the term (m+ n)g sin ∆θ
represents the gravitational source term, while

−−2f(m+n)vm|vm|
D accounts for frictional losses. The mix-

tures velocity is given as

vm = αGvG + αLvL. (8)

Along with these distributed equations, algebraic relations
are needed to describe the system.

2.1 Closure Relations

Both the liquid and gas phase are assumed compressible.
This is required for the model to handle the transition
from two-phase to single-phase flow. The densities are thus
given as functions of the pressure as follows

ρG =
P

c2G
, ρL = ρL,0 +

P

c2L
, (9)

where ck is the velocity of sound and ρL,0 is the reference
density of the liquid phase given at vacuum. Notice that
the velocity of sound in the gas phase cG depends on
the temperature as suggested by the ideal gas law. The
temperature profile is assumed to be known.
Combining (9) with (4) we obtain the following relations
for finding volume fractions from the mass variables:

αG =
1

2
−

c2G
c2
L

n+m+
√

∆

2ρL,0
, (10)

∆ =
(
ρL,0 −

c2G
c2L
n−m

)2
+ 4

c2G
c2L
nρL,0 (11)

Then the pressure can be found using a modified expres-
sion to ensure pressure is define when the gas vanishes

P =


( m

1− αG
− ρL,0

)
c2L, if αG ≤ α∗G

n

αG
c2G, otherwise.

(12)

α∗G is typically chosen as 0.5. Because the momentum
equation (7) was written for the gas-liquid mixture, a so-
called slip law is needed to empirically relate the velocities



of gas and liquid. To handle the transition between single
and two-phase flow, a relation with state-dependent pa-
rameters is needed (Evje (2011); Shi et al. (2005)).

vG = (K − (K − 1)αG)vm + αLS (13)

where K ≥ 1 and S ≥ 0 are constant parameters.

2.2 Boundary Conditions

Boundary conditions are given by the mass-rates of gas
and liquid injected from the drilling rig and flowing in
from the reservoir. Denoting the cross sectional flow area
by A, the boundary fluxes are given as:

mvL|x=0 =
1

A

(
WL,res(t) +WL,inj(t)

)
, (14)

nvG|x=0 =
1

A

(
WG,res(t) +WG,inj(t)

)
. (15)

The injection mass-rates of gas and liquid, WG,inj ,WL,inj ,
are specified by the driller and can, within some con-
straints, be considered as manipulated variables. The in-
flow from the reservoir is dependent on the pressure on the
left boundary, for which, within the operational range of
a typical UBD operation, an affine approximation should
suffice, i.e.

WL,res = kL max(Pres−P (0), 0) (16)

WG,res = kG max(Pres−P (0), 0) (17)

Here Pres is the reservoir pore pressure and kG, kL are the
production index (PI) of the gas and liquid respectively.

The topside boundary condition is given by a choke
equation relating topside pressure to mass flow rates

mvL√
ρL

+
nvG
Y
√
ρG

∣∣∣
x=L

=
Cv

(
Z
)

A

√
max (P (L, t)− Ps, 0),

(18)

where Cv is the choke opening given by the manipulated
variable Z. Y ∈ [0, 1] is a gas expansion factor for the
gas flow and Ps is the separator pressure, i.e. the pressure
downstream the choke.

2.3 Numerical Implementation

The drift flux model described above was implemented
using a fully implicit Backwards Time-Central Space
(BTCS) finite differences numerical scheme with an ex-
plicitly derived Jacobian as described in Aarsnes et al.
(2014b).

Define the state vector, to be made up of the conservative

variables m,n and I = mvL + nvL, X = [m n I]
T

. For
each of the states we use the following definition for finite
differences,

mk
i = m(k∆t, i∆x), etc.

where i = 0, 1, . . . , N and k = 0, 1, . . . . We arrange the
terms into a vector

Xk =
[
mk

1 ,m
k
2 , . . . ,m

k
N , n

k
1 , . . . , n

k
N , I

k
1 , . . . , I

k
N

]
.

Consequently, propagating the states in time from Xk to
Xk+1 equates to solving a set of nonlinear equations that
are implicit in Xk+1, which we denote as

F (Xk+1, Xk) = 0, F : R3N × R3N → R3N . (19)

These are solved using Newton steps which require the
inverse of the Jacobian of F w.r.t. Xk+1 denoted FXk+1

.

Fig. 1. Drilling process schematic for UBD.

We note that the existence of this inverse is guaranteed by
the 1/∆t terms making up the diagonal of FXk+1

.

3. UNSCENTED KALMAN FILTER

The implemented drift-flux model based on equations
(5)-(18), although solved implicitly, can conceptually be
represented as

Xk = f(Xk−1, θ) + qk (20)

yk = h(Xk) + rk (21)

where qk ∼ N(0, Qk−1) is the zero mean Gaussian process
noise and model error, and rk ∼ N(0, Rk) is the zero mean
Gaussian measurement noise.
The Kalman filter based on a linearized model was de-
veloped to estimate both state and parameter of the sys-
tem usually known as an augmented Kalman filter. The
UKF technique has been developed to work with non-
linear system without using an explicit linearization of the
model (Julier et al. (2000); Julier and Uhlmann (2004);
van der Merwe (2004)). The UKF estimates the mean and
covariance matrix of the estimation error with a minimal
set of sample points (called sigma points) around the mean
by using a deterministic sampling approach known as the
unscented transform. The nonlinear model is applied to
sigma points to predict uncertainty instead of using a
linearization of the model. More details can be found in
(Julier and Uhlmann (2004); van der Merwe (2004); Simon
(2006)).
Dual and joint UKF techniques are two common ap-
proaches for estimation of parameters and state variables
simultaneously. The dual UKF method uses another UKF
for parameter estimation so that two filters run sequen-
tially in every time step; the state estimator updates with



new measurements, and then the current estimate of the
state is used in the parameter estimator. The joint UKF
augments the original state variables with parameters and
a single UKF is used to estimate augmented state vector.
In this paper, the joint UKF is used. The augmented state
vector is defined by xa = [X, θ]. The state-space equations
for the the augmented state vector at time instant k are
written as:[

Xk

θk

]
=

[
f(Xk−1, θk−1) + qk

θk−1

]
= fa(Xk−1, θk−1) + qak

(22)

In the following simulations, it is assumed that only
bottom-hole pressure (P (0)) and liquid and gas rate at
the outlet are measured. The joint UKF estimates the
states, production constant gas and slip parameters (S,K)
simultaneously.

4. EXTENDED KALMAN FILTER

For the implementation of an Extended Kalman Filter,to
be used for comparison we need the Jacobian of the explicit
formulation of the system equation. A first order Taylor
series expansion around the trajectory X̄, noting that
F (X̄k+1, X̄k) = 0, yields

FXk+1
(X̄k+1, X̄k)X̃k+1 + FXk

(X̄k+1, X̄k)X̃k = 0. (23)

where FXk
(X̄k+1, X̄k) is F with respect to a Xk. Hence,

for the system Jacobian, we get

J = −F−1Xk+1
(X̄k+1, X̄k)FXk

(X̄k+1, X̄k)

where the partial derivatives are evaluated at the trajec-
tory. We recognize FXk+1

to be the Jacobian, previously
discussed, the inverse of which is known to exist.

5. SIMULATION RESULTS

5.1 Simulation with prefect model data

First, the presented DFM, (5)-(15) was used to create the
measurements and true states in this simulation study. In
this case the estimated states and parameters, in several
configurations of unknown parameters to be estimated,
converged to the true states (results not shown). Con-
vergence transients were typically 0.5 hours for the UKF
and 1.5 hours for the EKF. Of significantly more interest,
however, is how the estimators performs in a more realistic
setting where we would have model errors to deal with.
Such a scenario is considered next.

5.2 Simulation with OLGA data

The parameter values for the simulated well and reservoir
are summarized in Table 1. These parameters are used
from the OLGA simulator. The OLGA dynamic multi-
phase flow simulator is a high fidelity simulation tool which
has become the de facto industry standard in oil and gas
production, see Bendiksen et al. (1991). The measurements
have been synthetically generated by using the OLGA
dynamic multiphase flow simulator.
In the following, a measurement sampling interval of 10

seconds were used, and the model was run with time
steps of 10 seconds using different spatial discretization
steps (N = 6, 12, 20). The initial values for the estimated

Table 1. PARAMETER VALUES FOR WELL
AND RESERVOIR

Name DFM Unit

Reservoir pressure (pres) 279 bar
Collapse pressure (pcoll) 155 bar
Well total length (Ltot) 2530 m
Drill string outer diameter (Dd) 0.1206 m
Annulus inner diameter (Da) 0.1524 m
Liquid flow rate (wl,d) 13.33 kg/s
Gas flow rate (wg,d) 0 kg/s
Liquid density (ρL) 1000 kg/m3

Production constant of liquid (KL) 0 kg/Pa
Gas average temperature (T ) 285.15 K
Average angle (∆θ) π/2 rad
Choke constant (Kc) 0.0053 m2

Table 2. Choke opening used in this scenario

Time Choke Opening

0-1 h 10 %
1-2 h 8 %
2-6 h 7 %
6-8 h 6 %
8-10 h 5.5 %

production constant of gas is (K̂G = 0.08 kg/s/bar). UKF
parameters are determined empirically (κ = 0, β = 2,
α = 0.00001 ). The measurement noise covariance matrix
is R = diag[0.01, 0.0004, 0.04]. The parameter covariance
matrix uses in this simulation for both EKF and UKF is

Qp = diag[10−4, 2 ∗ 10−6, 2 ∗ 10−5]

p = [KG,K, S]

This paper uses the same simulation scenario as Aarsnes
et al. (2014a), considering UBD operation of a vertical well
drilled into a dry gas reservoir (i.e. WL,res = KL = 0). The
scenario in this simulation is as follows. First drilling in a
steady-state condition is initiated with the choke opening
of 10 % , then the choke is closed to 8 % at 1 hour. After
2 hours, the choke is closed to 7 %. After 3.5 hours, there
is a linear and sharp increase in the production constant
of gas from 0.072 kg/s/bar to 0.12 kg/s/bar (change of
reservoir height). Then the choke is closed to 6 % at 6
hours, and after 8 hours, the choke is closed to 5.5 %. The
choke opening of this simulation scenario is summarized
in Table 2.
The estimation of the production constant of gas from the
reservoir into the well for different spatial discretization
steps for both UKF and EKF is shown in Figure 2. The
estimation algorithms are quite fast to detect and track
changing at production constant of gas. However, there is a
small deviation between the estimated and actual value of
the production constant of gas. The number of steps in the
spatial discretization does not have a significant effect on
the accuracy of estimation, although the results show that
decreasing number of steps can improve the convergence
rate.
Figures 3 and 4 show the estimated slip parameters K and
S for different spatial discretization steps for both UKF
and EKF, respectively.
Figure 5 shows the estimation of the production constant

of gas with different fixed slip parameters by using UKF
with 6 spatial discretization steps. The results show that
estimation of the slip parameters can improve accuracy
of the estimation of the production constant of gas.
The measured bottom-hole pressure and choke pressure
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Fig. 2. Estimating production constant of gas with differ-
ent spatial discretization steps
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Fig. 3. Estimating slip parameter (K) for different spatial
discretization steps
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Fig. 4. Estimating slip parameter (S) for different spatial
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is illustrated in Figure 6.
The runtime of the simulations for different spatial dis-
cretization steps for both UKF and EKF are summarized
in Table 3 by using 3.00 GHz Processor with 4 GB RAM
running MATLAB, the runtime of the simulations for EKF
are less than runtime of the simulations for UKF, but we
emphasize that the implementation is not optimized for
computational efficiency.
In this paper, performance of these adaptive observers

is evaluated through the root mean square error (RMSE)
metric for the parameter KG. The RMSE metric for UKF
and EKF for different spatial discretization steps are sum-
marized in Table 4. According to the RMSE metric table,
UKF with fewer cells in the spatial discretization has a bet-
ter performance than UKF with larger spatial discretiza-
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Fig. 5. Estimating production constant of gas with fixed
slip parameters
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Table 3. Simulation runtime for different spa-
tial discretization steps

Number of Cells UKF (seconds) EKF(seconds)

6 630.38 63.88
12 1110.82 67.27
20 2326.35 78.16

Table 4. RMSE metric for estimate of KG

Number of Cells UKF EKF

6 4.8 × 10−3 8.2 × 10−3

12 4.8 × 10−3 8 × 10−3

20 5.16 × 10−3 8.3 × 10−3

tion steps and EKF with different spatial discretization
steps for PI estimation, although the number of steps in
the spatial discretization does not have a significant effect
on the accuracy of estimation.

6. CONCLUSION

In this paper, the joint UKF and EKF have been applied
to the simplified drift-flux model for different spatial dis-
cretization steps to estimate the distributed unmeasured
states, geological properties of the reservoir (PI) and slip
parameters (S,K) during UBD operations. Simulation re-
sults demonstrated reasonable performance of the joint
UKF and EKF to detect and track a changing gas pro-
duction coefficient using a simulated scenario with OLGA.
Even though the simulation scenario is somewhat ideal-
ized the results are encouraging. The number of spatial
discretization steps was found to not have a significant



effect on accuracy of estimation. The UKF was also found
to yield faster and more accurate estimates than the EKF.
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