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1 IntroductionThe stochastic volatility model has been proposed as a description of data from �nancialmarkets by Clark (1973), Tauchen and Pitts (1983), Taylor (1986, 1994), and others. Theappeal of the model is that it provides a simple speci�cation for speculative price movementsthat accounts, in qualitative terms, for broad general features of data from �nancial marketssuch as leptokurtosis and persistent volatility. Also, it is related to di�usion processes usedin derivatives pricing theory in �nance; see Mathieu and Schotman (1994) and referencestherein. The standard form as set forth, for instance, in Harvey, Ruiz, and Shephard (1994),Jacquier, Polson, and Rossi (1994), and Danielsson (1994), takes the form of an autoregres-sion whose innovations are scaled by an unobservable volatility process, usually distributedas a lognormal autoregression.Estimation of the stochastic volatility model presents intriguing challenges, and a varietyof procedures have been proposed for �tting the model. Extant methods include methodof moments (Du�e and Singleton, 1993; Andersen and Sorensen, 1996); Bayesian methods(Jacquier, Polson, and Rossi, 1994; Geweke, 1994), simulated likelihood (Danielsson, 1994),and Kalman �ltering methods (Harvey, Ruiz, and Shephard, 1994; Kim and Shephard, 1994).Two excellent recent surveys are Ghysels, Harvey, and Renault (1995) and Shephard (1995).Here, we employ the E�cient Method of Moments (EMM) proposed by Bansal, Gallant,Hussey, and Tauchen (1993, 1995) and developed in Gallant and Tauchen (1996) to esti-mate and test the stochastic volatility model. EMM is a simulation-based moment matchingprocedure with certain advantages. The moments that get matched are the scores of anauxiliary model called the \score generator." If the score generator approximates the distri-bution of the data well, then estimates of the parameters of the stochastic volatility modelare as e�cient as if maximum likelihood had been employed (Tauchen, 1996; Gallant andLong, 1995). Failure to match these moments can be used as a statistical speci�cation testand, more importantly, can be used to indicate features of data that the stochastic volatilitymodel cannot accommodate (Tauchen, 1995).The objective is to report and interpret the EMM objective function surface across a com-prehensive set of speci�cations of the stochastic volatility model. We start with the standard,1



and widely used setup, with Gaussian errors and short lag lengths, and we proceed to morecomplicated speci�cations with long lag lengths. The e�ort is aimed at generating a com-prehensive accounting of how well the model and its extensions accommodate features of thedata. An advantage of the EMM procedure is that it is computationally tractable enoughto permit this exhaustive speci�cation analysis. Our approach di�ers from typical practicein the stochastic volatility literature, which is to �t the standard setup and perhaps a sin-gle extension in one direction. Since various studies use di�erent speci�cations, estimationmethods, and data sets, it is di�cult to reach �rm conclusions on the plausibility of thestochastic volatility model. By using EMM, we can confront all of the various extensions,individually and jointly, to a judiciously chosen set of moments determined by a nonparamet-ric speci�cation search for the score generator. Other estimation methods are incapable ofinvestigating the empirical plausibility of such an extended set of speci�cations for stochasticvolatility on the large data sets used here.We �t the univariate stochastic volatility model to a long time series comprised of 16,127daily observations on adjusted movements of the Standard and Poor's Composite Price Index,1928{87. We use such a long series because, among other things, we are interested in thelong-term persistence properties of stock volatility.For this estimation, we use two score generators based on the speci�cation analysis ofGallant, Rossi, and Tauchen (1992). The �rst is an ARCH model with a homogeneousinnovation distribution that is given a nonparametric representation. The speci�c speci�-cation is determined by a standard model selection procedure based on the BIC criterionand speci�cation tests. This model is similar to the most widely used models in the ARCHfamily. Its score is termed the \Semiparametric ARCH Score". The second score generatoris a fully nonparametric estimator of the distribution of a nonlinear process. It both neststhe �rst and relaxes its homogeneity assumption. The speci�c speci�cation is determinedusing the same model selection procedure as above. The corresponding score is termed the\Nonlinear Nonparametric Score". These two score generators, determined independently ofthe stochastic volatility model, are similar to models that are commonly �t to high-frequency�nancial data.We undertake a similar exercise for a trivariate stochastic volatility model applied to2



4,044 daily observations on adjusted movements of the Standard and Poor's CompositePrice Index, adjusted movements of the $/DM spot exchange rate, and the adjusted 90-dayEuro-Dollar interest rate, 1977{92.2 The Stochastic Volatility Model2.1 Setup and NotationLet yt denote the �rst di�erence (either simple or logarithmic) over a short time interval, aday for instance, of the price of a �nancial asset traded on active speculative markets. Thebasic stochastic volatility for yt isyt � �y = LyXj=1 cj(yt�j � �y) + exp(wt)ryztwt � �w = LwXj=1 aj(wt�j � �w) + rw~ztwhere �y; fcjgLyj=1; ry; �w; fajgLwj=1; and rw are the parameters of the two equations, calledthe mean and volatility equations respectively. The processes fztg and f~ztg are mutuallyindependent iid random variables with mean zero and unit variance. Whenever they exist,unconditional expectations are taken with respect to the joint distribution of the processesfztg and f~ztg. The �rst two moments of the zt and ~zt are not separately identi�ed from theother parameters | hence the restriction to E(zt) = E(~zt) = 0 and Var(zt) = Var(~zt) = 1:Likewise, �w is not separately identi�ed; we �nd numerically the best normalization is simply�w = 0. A common assumption in the literature is that both zt and ~zt are independentN(0; 1) random variables and that the lag lengths are short. Typically, Lw = 1 and Ly = 1;or Ly = 0. Below, we entertain other distributional assumptions and search over a broadset of lag lengths. The model implies restrictions on the serial covariance properties of jytjc;c > 0; which are worked out in exhaustive detail in Ghysels, Harvey, and Renault (1995).One interpretation of the process wt; which has its origins in Clark (1973) and is re�nedin Tauchen and Pitts (1983), is that stochastic volatility reects the random and uneven owof new information to the �nancial market. Over the time period t�1 to t; a random numberof individual pieces of information impinge the market. Each piece triggers an independent3



price movement drawn from a time-homogeneous parent distribution. If It = [exp(wt)]2individual pieces impinge on the market then, conditional on It; the studentized innovation[yt � �t�1;t]=pIt;where �t�1;t = �y + LyXj=1 cj(yt�j � �y);would follow a parent distribution, typically Gaussian. The process It is called the mixingprocess. It is unobservable and presumable serially correlated, which motivates the stochasticvolatility speci�cation given above.2.2 Data GeneratorThe stochastic volatility model de�nes a strictly stationary and Markov process fstg; wherest = (yt; wt)0. The process is Markovian of order Ls = max(Ly; Lw) with conditional densityps(stjst�Ls; : : : ; st�1; �) given by the stochastic volatility model, where� = (�y; c1; : : : ; cLy ; ry; a1; : : : ; aLw; rw)0is a vector that contains the free parameters of the stochastic volatility model.The process fytg is observed whereas fwtg is regarded as latent. Write py;J (yt�J ; : : : ; ytj�)for the implied joint density under the model of a stretch yt�J ; : : : ; yt: Most integrals ap-pearing in formulas in subsequent sections fail to admit closed form solutions. In practice,they must be approximated by quadrature or Monte Carlo integration, although likelihoodscan sometimes be computed e�ciently using the Kalman �lter (Kim and Shephard, 1994).As will be seen, we need to compute expectations under the model of a variety of nonlinearfunctions. Monte Carlo integration is most convenient, and is e�ected by averaging overa long realization from the stochastic volatility model. For a general nonlinear functiong(yt�J ; yt�J+1; : : : ; yt); integrals of the formZ � � � Z g(yt�J ; yt�J+1; : : : ; yt)py;J (yt�J ; yt�J+1; : : : ; ytj�) JYk=0 dyt�kare approximated by 1N NX�=J+1 g(ŷ��J ; ŷ��J+1; : : : ; ŷ�)4



where fŷ�gN�=1 is a long simulated realization from the stochastic volatility model given avalue �: This is accomplished by simulating fŝ�gN�=1; which is straightforward, and retainingthe element ŷ� from ŝ� = (ŷ� ; ŵ� ):Here, computations are based on realizations of length 50,000 to 100,000, with the choicehaving no substantive e�ect on inferences. To let transients die o�, �rst the volatility equa-tion (which displays substantial persistence) runs for 10,000 periods; next, both the meanequation (which displays minor persistence) and the variance equations run together foranother 100 periods, which are discarded; then both equations continue to run together togenerate a realization of the desired length.3 The EMM EstimatorIn Sections 4 and 5 below we employ the E�cient Method of Moments (EMM) methodologyas described in Gallant and Tauchen (1996) to estimate and test the stochastic volatilitymodel. The title of the paper is suggestive | \Which Moments to Match?" | and theanswer is simple and intuitive: Use the score vector of an auxiliary model that �ts thedata well to de�ne a GMM criterion function. The EMM method has some computationaladvantages relative to indirect inference (Gourieroux, Monfort, and Renault, 1993) as itcircumvents the need to re�t the score generator to each simulated realization (compute thebinding function) and it bypasses a Hessian computation. The ideas behind EMM are asfollows.We observe the data f~ytgnt=1; which is presumed to have been generated by the stochasticvolatility model for some value �o 2 R � <`�; where `� is the length of �o: The task is toestimate �o and test the speci�cation of the model.Suppose that a probability model for the stochastic process fytg1t=�1 de�ned by theconditional density f(ytjyt�L; yt�L+1; : : : ; yt�1; �) � 2 � � <`� ;�ts the data f~ytgnt=1 reasonably well. Fits well means that when its parameters are estimated5



by quasi-maximum likelihood~�n = argmax�2� nXt=L+1 log[f(~ytj~yt�L; : : : ; ~yt�1; �)]the model does reasonably well on statistical speci�cation tests and the �t appears sen-sible from an economic perspective. The functional form of f(ytjxt�1; �) need not haveany direct connection to that of the true conditional distribution of yt given xt�1 =(yt�L; yt�L+1; : : : ; yt�1); which ispy;L(yt�L; yt�L+1; : : : ; ytj�o)py;L�1(yt�L; yt�L+1; : : : ; yt�1j�o) :It should provide a good approximation, though, for the EMM estimator to be nearly fullye�cient (Tauchen, 1996; Gallant and Long, 1995).The EMM estimator brings the information in f(yjx; ~�n) to bear on the task of estimatingand testing the stochastic volatility model as follows. De�ne the criterionm(�; �) = Z � � �Z @@� log[f(ytjyt�L; : : : ; yt�1; �)]py;L(yt�L; : : : ; ytj�) LYk=0 dyt�k;which is the expected score of the f(yjx; �) model under the stochastic volatility model.Hence, f(yjx; �) is called the \score generator". The induced parameter that ~�n estimatesis that value �o for which m(�o; �) = 0 (Gallant, 1987, Chapter 7, Theorem 8). This factprovides the motivation for the EMM estimator. One expects m(�; ~�n) to be near zero forvalues of � close to �o:The EMM estimator is �̂n = argmin�2R m0(�; ~�n)(~In)�1m(�; ~�n)where ~In = 1n nXt=L+1h @@� log f(~ytj~xt�1; ~�n)ih @@� log f(~ytj~xt�t; ~�n)i0:and ~xt�1 = (~yt�L; ~yt�L+1; : : : ; ~yt�1)0:In computing �̂n; we do not need to impose restrictions that the parameter space R con-tains only those � for which the model generates stationary data, as such restrictions are6



automatically enforced on the computation (Tauchen, 1995). Also, as noted in Gallant andTauchen (1996), one should, strictly speaking, use a weighted covariance estimator ofIo = Var 24 1pn nXt=L+1 @@� log f(ytjyt�L; yt�L+1; : : : ; yt�1; �o)35rather than ~In; and formulas are given therein. However, it is unlikely that this generalitywill be necessary in practice because the use of a weighted covariance estimator meansthat one thinks that the score generator is a poor statistical approximation to the datagenerating process. A poor statistical approximation is unlikely because the score generatoris, conceptually, a reduced form model, not a structural model, and is usually easy to modifyby adding a few parameters so that it �ts the data well.Under regularity conditions stated in Gallant and Tauchen (1996), which are standardregularity conditions such that the maximum likelihood estimator of � in p(yjx; �) is consis-tent and asymptotic normal and such that the quasi maximum likelihood estimator of � inf(yjx; �) is asymptotic normal, we have that �̂n is consistent andpn(�̂n � �o) L! Nn0; [(Mo)0(Io)�1(Mo)]�1owhere Mo = M(�o; �o) and M(�; �) = (@=@�0)m(�; �). Mo can be estimated consistently byM̂n = Mn(�̂n; ~�n). The order condition (necessary condition) for identi�cation is `� � `�;su�cient conditions are discussed in Gallant and Tauchen (1996). The better the score gener-ator approximates the conditional distribution of the data, then the closer is the asymptoticcovariance matrix to that of maximum likelihood (Tauchen, 1996; Gallant and Long, 1995).If the score generator actually nests the true conditional distribution, then full e�ciencyobtains (Gallant and Tauchen, 1996).Mn(�; �) must be computed numerically in order to use the asymptotic distribution toget standard errors for setting con�dence intervals on the elements of �o. Alternatively, onecan avoid computation of M̂n by using the criterion di�erence statistic to set con�denceintervals (Gallant, 1987, Chapter 7, Theorem 15). The latter approach is to be preferredin most time series applications because it will exclude values of � that imply an explosiveprocess from the con�dence interval (Tauchen, 1995).7



For speci�cation testing, which is the focus of this paper, we have thatnm0(�̂n; ~�n)(~In)�1m(�̂n; ~�n) L! �2(df)with df = `� � `� under the null hypothesis that the maintained model py;L(yt�L; : : : ; yt; �)is correct.When a model fails a diagnostic test, one would like some suggestions as to what iswrong. Inspection of the quasi-t-ratiosT̂n = S�1n pnm(�̂n; ~�n)where Sn = [diag(~In)]1=2 can suggest reasons for model failure. As seen in Section 4, di�erentelements of the score vector correspond to di�erent features of the �t. Large quasi-t-ratiosreveal the features of the data that the maintained model cannot approximate.The elements of T̂n are biased downward in absolute value because the standard errorsSn are too large due to the fact thatpnm(�̂n; ~�n) L! Nn0;Io � (Mo)[(Mo)0(Io)�1(Mo)]�1(Mo)0o:The downward bias can be corrected by computing M̂n numerically and putting Sn =�diagf~In � (M̂n)[(M̂n)0(~In)�1(M̂n)]�1(M̂n)0g�1=2 in the formula for T̂n.We have not corrected the bias in this paper because we believe the correction to be un-necessary for two reasons. First, Io� (Mo)[(Mo)0(Io)�1(Mo)]�1(Mo)0 is the familiar formulafor the variance of GLS residuals and experience with GLS regressions suggests that thedi�erence between Io� (Mo)[(Mo)0(Io)�1(Mo)]�1(Mo)0 and Io is negligible in most applica-tions. Secondly, we do not rely on the quasi-t-ratios for inference, we only rely on them forsuggestions as to how the stochastic volatility model might be enhanced. When we act upona suggestion, we check it with the �2 statistic. This methodological approach is similar tothe well established F -protected t-test methodology as employed in the statistical Analysisof Variance. 8



4 Univariate Empirical Results4.1 DataThe data to which we �t the univariate stochastic volatility model is a long time seriescomprised of 16,127 daily observations, f~ytg16;127t=1 ; on adjusted movements of the Standardand Poor's Composite Price Index, 1928{87. This series is the univariate stock series usedin Gallant, Rossi, and Tauchen (1992, 1993). The raw series is the Standard and Poor'sComposite Price Index (SP), daily, 1928{87. We use a long time series, because, amongother things, we want to investigate the long-term properties of stock market volatility.As described in Gallant, Rossi, and Tauchen (1992), the raw series is converted to a pricemovements series, 100[log(SPt) � log(SPt�1)]; and then adjusted for systematic calendare�ects in location and scale. Financial data are known to exhibit calendar e�ects, that is,systematic shifts in location and scale due to di�erent trading patterns across days of theweek, holidays, and year-end tax trading. Calendar e�ects comprise a very small portionof the total variation in the series, although they should still be accounted for in order notto adversely a�ect subsequent analysis. The raw and adjusted data are plotted in Figure 1.Though long time series sometimes exhibit structural regime switches, there is no such shiftapparent in the �gure.4.2 Score GeneratorsTo implement the EMM estimator we require a score generator f(yjx; �) that �ts these datawell. As documented in in Gallant, Rossi, and Tauchen (1992, 1993) the seminonparametric(SNP) density proposed by Gallant and Tauchen (1989) does so. Moreover, when re�tted tosubperiods, estimates are stable.The SNP density is a member of a class of parameterized conditional densitiesHK = nfK(yjx; �) : � = (�1; �2; � � � ; �`K )owhich expands H1 � H2 � � � � as K increases. It has two desirable properties from theperspective of EMM estimation: (1) The union H = S1K=1HK is quite rich and it is rea-sonable to assume that the true density p(yjx) of stationary data from a �nancial market is9



contained in H: (2) If � is estimated by quasi-maximum likelihood, viz.~�n = arg max�2<`K 1n nXt=L+1 log[fK(~ytj~yt�L; : : : ; ~yt�1; �)];and if K grows with sample size n [either adaptively as a random variable ~Kn or determin-istically as a function K(n)]; then ~pn(yjx) = fK(yjx; ~�n)is a consistent (Gallant and Nychka, 1987) and e�cient (Fenton and Gallant, 1996a; Gal-lant and Long, 1995) nonparametric estimator of p(yjx) with desirable qualitative features(Fenton and Gallant, 1996b).A standard method of describing a conditional density f(yjx; �) is to set forth a locationfunction �x and a scale function Rx that reduces the process fytg1t=�1 to an innovationprocess fztg1t=�1 via the transformationzt = r�1xt�1(yt � �xt�1):The description is completed by setting forth a conditional density h(zjx) for the innovationprocess. We follow this recipe in describing fK(yjx; �) 2 HK:The location function �x is a�ne in x�xt�1 = b0 + b0xt�1:It is presumed to depend on L� � L lags which is accomplished by putting leading elementsof b to zero as required. Note that were one to put rx to a constant and eliminate thedependence of the innovation density on x by writing h(z) instead of h(zjx) then fytg1t=�1would be a vector autoregression (VAR).The scale function rx is a�ne in the absolute values of xrxt�1 = �0 + �0jxt�1jIt is presumed to depend on LR � L lags which is accomplished by putting leading elementsof � to zero as required. Note that were one to eliminate the dependence of the innovationdensity on x by writing h(z) instead of h(zjx) then fytg1t=�1 would be an ARCH-type processakin to that proposed by Nelson (1991). 10



For a vector � = (�1; : : : ; �`) with real elements and a vector � = (�1; : : : ; �`) with integerelements, let �� denote the monomial Qì=1 ��ii of degree j�j =Pì=1 j�ij and considerhK(zjx) = [PK(z; x)]2�(z)R [PK(u; x)]2�(u) duformed from the polynomial PK(z; x) = KzX�=0� KxXj�j=0 a��x��z�where �(z) = (2�)�1=2e�z0z=2. PK(z; x) is a polynomial of degree Kz in z whose coe�-cients are, in turn, polynomials of degree Kx in x: The product [PK(z; x)]2�(z) is a Hermitepolynomial in z with positivity enforced whose coe�cients depend on x: The shape of theinnovation density hK(ztjxt�1) varies with xt�1 which permits hK(ztjxt�1) to exhibit general,conditional shape heterogeneity. By putting selected elements of the matrix A = [a��] tozero, PK(z; x) can be made to depend on only Lp � L lags from x: One may note that if Kzis put to zero, then the innovation density hK(zjx) is Gaussian. If Kz > 0 and Kx = 0; thenthe density can assume arbitrary shape but innovations are homogeneous.The change of variables yt = rxt�1zt + �xt�1 to obtain the densityfK(ytjxt�1; �) = fPK [r�1xt�1(yt � �xt�1); xt�1]g2�[r�1xt�1(yt � �xt�1)]jrxt�1j1=2 R [PK(u; xt�1)]2�(u) du :completes the description of the SNP density. The vector � contains the coe�cientsA = [a��]of the Hermite polynomial, the coe�cients [b0; b] of the location function, and the coe�cients[�0; �] of the scale function. To achieve identi�cation, the coe�cient a0;0 is set to 1. Thetuning parameters are Lu; Lr; Lp; Kz ; and Kx; which determine the dimension `K (= `�) of�: When data is heavy tailed, as is typical for data from �nancial markets, numerical sta-bility can be enhanced without a�ecting theoretical results by forming the vector of lagsxt�1 from a series fy�t g consisting of fytg that have been centered by subtracting the sam-ple mean, scaled by dividing by the sample standard error, and transformed by the logisticmap that takes the interval (�1; 1) into the interval (-4, 4). That has been done bothhere and in the results reported for this series by Gallant, Rossi, and Tauchen (1992, 1993).Note that it is only the lagged dependent variables xt�1 that are logistic transformed; thecontemporaneous yt is not. 11



We selected the tuning parameters Lu; Lr; Lp; Kz ; and Kx following the protocol thatis described in detail in Bansal, Gallant, Hussey, and Tauchen (1995). Briey, the modelis expanded sequentially according to the BIC (Schwarz, 1978) model selection criterion.It is then expanded further if a battery of statistical speci�cation tests indicate that theBIC speci�cation is inadequate. Following this protocol, we selected the model Lu = 2;Lr = 18; and Kz = 4 with 26 free parameters, when innovations are constrained to behomogenous (that is, Kx = 0; and Lp = 1 imposed). This is a semiparametric density with aparametric part comprised of an AR(2)-ARCH(18) model with unconstrained lag coe�cientsand a nonparametric error density, which is analogous to the model proposed by Engle andGonzales-Rivera (1991). We term the score from this �t the \Semiparametric ARCH Score"in legends for �gures and tables. When the homogeneity constraint is dropped, and wefollow the same protocol, we select the model Lu = 2; Lr = 18; Lp = 2; Kz = 4; andKx = 1 with 36 free parameters; this speci�cation does better under BIC than the modelwith homogeneous errors. This �tted model di�ers in only minor respects from the preferredSNP speci�cation reported in Gallant, Rossi, and Tauchen (1992). (The di�erences are dueto minor enhancements to the computer program.) We term the score from this �t the\Nonlinear Nonparametric Score".We emerge from this exercise with two sets of scores with which to confront the stochasticvolatility model. The �rst, the Semiparametric ARCH Score, is de�ned by a score generatorthat is very similar to models widely employed in the ARCH literature, though a bit moreexibly parameterized. The second, the Nonlinear Nonparametric Score, is de�ned by ascore generator determined via a complete speci�cation search that accounts for the fullcomplexity of the data.4.3 Fit to the Semiparametric ARCH ScoreTable 1 shows the optimized values of the EMM objective function scaled to follow a chisquare, as described in Section 3. Table 2 shows the parameter estimates for the variousspeci�cations reported in Table 1. From the top panel of Table 1, labeled Gaussian, it isseen that the standard stochastic volatility model fails to approximate the distribution of thedata adequately; it is overwhelmingly rejected. However, as seen from the objective function12



surface laid out across the various panels of the table, certain extensions of the standardstochastic volatility model �t the data better.We describe these extensions and seek to determine which features of the data they seemto approximate well and which features poorly. Guided by the objective function, we inspectthe EMM quasi-t-ratios T̂n: The elements of T̂n provide suggestive diagnostics, as pointedout in Section 3.Figure 2 shows these EMM quasi-t-ratios as a bar chart for the case Ly = 2; Lw = 2; andGaussian z's. This is the standard stochastic volatility speci�cationyt � �y = c1(yt�1 � �y) + c2(yt�2 � �y) + exp(wt)ryztwt � �w = a1(wt�1 � �w) + a2(wt�2 � �w) + rw~zt:The source of the rejection of this model is failure to match the features de�ned by thepolynomial part of the SNP score. Either exp(wt) is not the correct transformation of thelatent variance process or zt is not Gaussian.Modi�ed ExponentialTo explore the �rst possibility, consider the modelyt � �y = c1(yt�1 � �y) + c2(yt�2 � �y) + Te(wt)ryztTe(wt) = exp(be0 + be1wt) + be2w2t + be3I+(wt)w2twt � �w = a1(wt�1 � �w) + a2(wt�2 � �w) + rw~ztwhere I+(w) is 1 if w is positive and is 0 otherwise. The idea is to modify the Taylorexpansion of exp(�) by replacing the quadratic term with a di�erentiable quadratic splinethat has one knot at zero. Inspection of the bar chart (not shown) indicates failure. The�t is improved by better matching the VAR and ARCH scores at the expense of furthermismatch to the polynomial part of the SNP score. The exponential transformation appearsnot to be a problem, so we consider non-Gaussian densities for zt.13



t-ErrorsA natural way to relax the Gaussian assumption is to use t-errors. Consider the modelyt � �y = c1(yt�1 � �y) + c2(yt�2 � �y) + exp(wt)ry��twt � �w = a1(wt�1 � �w) + a2(wt�2 � �w) + rw~ztwhere f��tg is iid Student-t with � degrees of freedom. The objective function is so at forvalues of the degrees of freedom parameter � 2 (10; 20) that the optimizer gets stuck andmakes no progress when it sees � as free parameter along with the rest. Thus, in the secondpanel of Table 1 we report the value of the objective function for � = 10; 15; 20; 25. Thespeci�cation with t errors helps, but still the model does not �t the data. Figure 3 showsthe bar chart for the case � = 15; the stochastic volatility model fails to �t the score of theSNP polynomial for the cubic term, suggesting a failure to generate skewness.Spline Error TransformationMore exibility than with the t is available from a spline transformation to the Gaussianinnovation. Consideryt � �y = c1(yt�1 � �y) + c2(yt�2 � �y) + exp(wt)ryTz(zt)Tz(zt) = bz0 + bz1zt + bz2z2t + bz3I+(zt)z2twt � �w = a1(wt�1 � �w) + a2(wt�2 � �w) + rw~ztThe idea is to allow a deviation from the Gaussian speci�cation by transforming zt througha di�erentiable quadratic spline that has one knot at zero. To achieve identi�cation, theconstraints (2�)�1=2 R Tz(v) exp(�v2=2)dv = 0 and (2�)�1=2 R T 2z (v) exp(�v2=2)dv = 1 areimposed on the bzj . From Table 1 it is seen that the added exibility of the spline trans-form sharply reduces the objective function value. The EMM quasi-t-ratios for this \spline-transform" �t are shown in Figure 4. The transform works; the moments of the polynomialpart of the Semiparametric ARCH score are adequately matched.The e�ects of the spline are to fatten the tails and introduce an asymmetry as seen inFigure 5. The solid line in the upper left panel is a plot of the spline Tz. This plot can also14



be interpreted as a plot of the quantiles of the distribution of the random variable Tz(zt) onthe vertical axis against the quantiles of the standard normal distribution on the horizontalaxis. If a distribution is Gaussian, then its quantile-quantile plot is a 45-degree line. Acomparison with the 45-degree line in the upper left panel of Figure 5 indicates heavy tails,because the solid line plots below the 45-degree line on the left and above on the right, and anasymmetry, because the solid line deviates more from the 45-degree line on the left than onthe right. The asymmetry is also apparent from a comparison with the solid line in the upperright panel of Figure 5 which shows a quantile-quantile plot of the six degrees of freedomStudent t-distribution. The asymmetry and heavy tails are features of the data that havebeen captured by the Semiparametric ARCH Score as can be seen in the lower left panelof Figure 5. The EMM moment matching procedure has transferred these characteristicsto the spline-transform stochastic volatility model. The asymmetry and heavy tails are realfeatures of the data, not artifacts of the SNP �t, as can be seen from the solid line in thelower right panel of Figure 5 which is a quantile-quantile plot of a kernel density estimatefrom ARCH residuals.Chaotic VolatilityInterestingly, one can do as well with a deterministic variance process. EMM quasi-t-ratios(not shown) that result when the variance equation of the modelyt � �y = c1(yt�1 � �y) + c2(yt�2 � �y) + Tw(wt)ryTz(zt)Tw(wt) = bw0 + bw1wt + bw2w2t + bw3I+(wt)w2tTz(zt) = bz0 + bz1zt + bz2z2t + bz3I+(zt)z2tis a moving average in 40 lags wt = 40Xj=0 40 � j40 vt�jfrom a chaotic Mackey-Glass sequencevt = vt�1 + 10:5 0:2vt�51 + v10t�5 � 0:1vt�1!are similar to those shown in Figure 4. This Mackey-Glass variant on the spline-transformstochastic volatility model does slightly better on the SNP scores and slightly worse on the15



ARCH scores.Long MemoryFigure 4 suggests the standard stochastic volatility model has some trouble matching thescores of the exibly parameterized ARCH model, and somewhat more so at the longerARCH lags. Bollerslev and Mikkelsen (1996), Ding, Granger, and Engle (1993), and Breidt,Crato, and Lima (1994) present evidence that long-memory models like those of Grangerand Joyeux (1980) might be needed to account for the high degree of persistence in �nancialvolatility. Harvey (1993) contains an extensive discussion of the properties of long memoryin stochastic volatility models. We thus explore if inclusion of both short- and long-memoryhelps in �tting the stochastic volatility model.The long-memory stochastic volatility model isyt � �y = c1(yt�1 � �y) + c2(yt�2 � �y) + exp(w�t )ryztw�t � �w = (1 �L)�dzwtzwt = LwXj=1 ajzw;t�j + rw~ztwhere fztg and f~ztg are iid Gaussian, (1�L)�d = P1k=0  k(d)Lk; and the coe�cients  k(d)are obtained from the series expansion of f(x) = (1� x)�d; valid for jdj < 1; as described inSowell (1990). Motivating this speci�cation is the fact that for jdj < 1=2; (1 � L)dvt = �t;f�tg iid with �nite variance, de�nes a strictly stationary process whose moving averagerepresentation is vt = (1�L)�d�t = P1k=1  k(d)�t�k; the autocovariance function of vt decaysarithmetically to zero, instead of exponentially to zero as in the case of an autoregression of�nite lag length. For 1=2 � d < 1; (1 � L)dvt = �t; de�nes a nonstationary process. fw�t g isthus obtained by passing the autoregressive process fzwtg through the long-memory movingaverage �lter. For d = 0; this generates exactly the same autoregressive volatility process asearlier, while for 0 < jdj < 1=2; it de�nes a strictly stationary volatility process with bothshort- and long-memory components.Since we need very long realizations for Monte Carlo integration, it is impractical tosimulate exactly from this model by, say, computing the Cholesky factorization of the co-variance matrix of wt and proceeding in the usual manner. Instead, we follow Bollerslev16



and Mikkelsen (1996) and use a method that truncates the moving average �lter and letsthe process run for a long while to attenuate the e�ects of transients. Their calculationssuggest that truncation at 1,000 su�ces, so we use the moving average �lter P1000k=0  k(d)Lk.(Because of the truncation, this method technically generates a stationary process for alljdj < 1:) They trim o� the �rst 7,000 realizations; we trim o� the �rst 10,000. Some wouldargue that this method does not actually generate realizations from a long-memory volatilityprocess. The point is well taken but, nonetheless, the Bollerslev-Mikkelsen approach stillde�nes a volatility process fw�tg with extremely high persistence.The bottom part of Table 1 shows the optimized objective function when the long-memory parameter, d; is estimated jointly with the other parameters of the model subjectto a normalization on �w for identi�cation. We only estimate the long-memory version forLw = 1 and Lw = 2; since the job of the long-memory speci�cation is to take care of longerlags. For the block labeled \Gaussian & Long Memory" the mean equation isyt � �y = c1(yt�1 � �y) + c2(yt�2 � �y) + exp(w�t )ryztwhile for the block labeled \Spline & Long Memory," the mean equation isyt � �y = c1(yt�1 � �y) + c2(yt�2 � �y) + exp(w�t )ryTz(zt)where the two-parameter quadratic spline Tz(�) is as de�ned above.As seen from Table 1, long memory helps, but the Gaussian stochastic volatility modelcannot accommodate all of the structure implicit in the semiparametric ARCH model. Withthe spline transform, it can. Figure 6 shows the bar chart for the case Lw = 2: The impacton the objective function value of long memory is similar to that of introducing two or threeextra freely parameterized lags into the volatility equation. Overall, long-memory helpsabout as much as introducing six free lags into the volatility speci�cation.4.4 Fit to the Nonlinear Semiparametric ScoreTable 3 displays the objective function surface for versions of the stochastic volatility modelagainst the Nonlinear Nonparametric Score; Table 4 shows the estimated parameter values.FromTable 3, the standard model is overwhelmingly rejected. The various extensions provide17



much improvement over the standard Gaussian model, but nothing comes as close as thespline variants against the Semiparametric ARCH Score. We now examine the performanceof the extensions in more detail.The bar chart for the Ly = 2; Lw = 2; Gaussian stochastic volatility speci�cation isshown as Figure 7. The ARCH part of the score is �t poorly, as is the SNP part. Thequasi-t-ratios are not orthogonal, so that failure to �t the SNP scores could manifest itselfas large ARCH quasi-t-ratios and conversely. The spline-transform variant (not shown) doesjust about as poorly.The full Nonlinear Nonparametric Score embodies various conditional nonlinearities, suchas the asymmetric \leverage e�ect" of Nelson (1991) that are discussed in Gallant, Rossi, andTauchen (1992, 1993). We explore the e�ects of introducing asymmetry into the stochasticvolatility model. A common approach in the stochastic volatility literature (Harvey andShephard, 1996) is to generate asymmetry by introducing correlations across innovations inthe mean and variance equations:yt � �y = c1(yt�1 � �y) + c2(yt�2 � �y) + exp(wt)ryztwt � �w = a1(wt�1 � �w) + a2(wt�2 � �w) + rw(~zt + gzt�1)where g is a free parameter to be estimated. This variant does better but still does poorlyon the chi-square statistics shown in Table 3. The bar chart (not shown) shows large SNPquasi-t-ratios, which suggests that the spline-transform be applied to the asymmetric variant.The model that results isyt � �y = c1(yt�1 � �y) + c2(yt�2 � �y) + exp(wt)ryTz(zt)Tz(zt) = bz0 + bz1zt + bz2(zt)2 + bz3I+(zt)(zt)2wt � �w = a1(wt�1 � �w) + a2(wt�2 � �w) + rw(~zt + gzt�1)The �t improves but is still inadequate, as indicated by the chi-square statistics shown inTable 3.Finally, we consider long-memory in the variance equation. We estimate with the splinetransformation: yt � �y = c1(yt�1 � �y) + c2(yt�2 � �y) + exp(w�t )ryTz(zt)18



Tz(zt) = bz0 + bz1zt + bz2(zt)2 + bz3I+(zt)(zt)2w�t � �w = (1� L)�dzwtzwt = LwXj=1 ajzw;t�j + rw~zt:We also estimate a model with the spline transformation and cross-correlation in innovations:yt � �y = c1(yt�1 � �y) + c2(yt�2 � �y) + exp(w�t )ryTz(zt)Tz(zt) = bz0 + bz1zt + bz2(zt)2 + bz3I+(zt)(zt)2w�t � �w = (1� L)�dzwtzwt = LwXj=1 ajzw;t�j + rw(zt + g~zt�1)As seen from the lower two panels of Table 3 long memory helps, but, as in �tting to theSemiparametric ARCH Score, long memory has about the same impact on the objectivefunction as does introducing a few more free lags into the volatility speci�cation. Figure 8shows the bar chart with long memory for the case Lw = 2 and correlated errors. Comparingthis �gure to Figure 7 shows that the combined e�ects of the spline transformation, theasymmetry, and the long memory improves the �t substantially, but despite all of theseadded complications the model fails to �t both the ARCH and SNP scores.This, we think, is about as far as one can go and stay within the spirit of the stochasticvolatility model. A speci�cation that probably would capture the full complexity of the datais to let the coe�cients of the transformationTz(zt) = bz0 + bz1zt + bz2z2t + bz3I+(zt)z2t ;depend upon lagged z0s and perhaps add a few more unconstrained lag coe�cients. However,this degree of complexity is so close to a nonparametric speci�cation that we see little pointto it. Why not just �t the series nonparametrically and have done with it?5 Trivariate EstimationModern asset pricing theory holds that there is a pricing kernel (or marginal rate of sub-stitution) that discounts gross returns to unity. Using methods similar to ours, Andersen19



(1996) obtains a good �t of a continuous time stochastic volatility model to high frequencyTreasury returns. As Treasury returns reect pure nominal pricing kernel movements, An-dersen's �ndings taken together with asset pricing theory suggest that a stochastic volatilitymodel should be able to account for the co-movements of several assets. As one of the dis-tinguishing features of the EMM method is its ability to accommodate multivariate data,we investigate this possibility using several assets over a shorter, and therefore potentiallymore homogeneous, time horizon than in the previous section.Let yt denote anM�1 vector containing the �rst di�erences (either simple or logarithmic)over a short time interval, a day for instance, of the prices of a �nancial asset traded on activespeculative markets. A multivariate stochastic volatility model for yt isyt � �y = LyXj=1Cj(yt�j � �y) + diag[exp(wt)]Ryztwt � �w = LwXj=1Aj(wt�j � �w) +Rw~ztwhere �y is an M � 1 vector, the Cj are M �M matrices for j = 1; 2; : : : ; Ly; and Ry isan M �M upper triangular matrix. Similarly, �w is an M � 1 vector, the Aj are M �Mmatrices for j = 1; 2; : : : ; Lw; and Rw is an M �M upper triangular matrix. The processesfztg and f~ztg are mutually independent iid random variables with mean zero and varianceIM : Throughout, exp(�) denotes the elementwise exponential of a vector argument, diag(v)with a vector argument denotes the diagonal matrix with the elements v1; : : : ; vM down thediagonal, and diag(B) with a matrix argument denotes the vector (b11; : : : ; bMM)0 with thediagonal elements of B as its elements. Thus,diag[exp(wt)] = 2666666664 ew1t 0 � � � 00 ew2t . . . ...... . . . . . . 00 � � � 0 ewMt 3777777775The data to which we �t this stochastic volatility model (M = 3) consists of 4,044 dailyobservation on three variables: adjusted movements of the Standard and Poor's CompositePrice Index, adjusted movements of the $/DM spot exchange rate, and the adjusted 90-dayEuro-Dollar interest rate, 1977{92. In this case M = 3; yt = (y1t; y2t; y3t)0; and the data set20



is f~ytg4044t=1 . The raw series consists of the Standard and Poor's Composite Index (SP), the$/DM exchange rate (DM), and the three-month Euro-dollar interest rate (ED). The threeseries were collected daily, January 4, 1977{December 31, 1992. The stock index and theexchange rate are converted to raw price movements series, 100[log(SPt)� log(SPt�1)]; and100[log(DMt)� log(DMt�1)]. The two raw price movement series and the raw ED series arethen each adjusted for systematic calendar e�ects. The adjustment procedure is the same asGallant, Rossi, and Tauchen (1992) except for the use of a robust regression method insteadof ordinary least squares.The estimation treats the three series as strictly stationary. This seems reasonable forstock returns and exchange rate movements, but requires discussion for the interest rate.As is well known, short-term interest rates collected at high frequencies display extremepersistence characteristic of (near) unit-root processes. However, recent empirical results ofA��t-Sahalia (1996), and con�rmed in Tauchen (1996), indicate that, although interest ratesdisplay little mean revision in the central part of the data, they display substantial meanreversion at very low and very high values. Hence, interest rates appear nonstationary, ornearly so, when considered with linear methodology, when in fact they are stationary whenconsidered with nonlinear methods.As in Section 4, to implement the EMM estimator we require a score generator thatapproximates these data well. We use the multivariate SNP model as described in Gallant,Rossi, and Tauchen (1992). It is derived along the same lines as set forth in Section 4.2 andhas the following functional formf(yjx; �) = nP [R�1x (y � �x); x�]o2�[R�1x (y � �x)]jdet(Rx)j R [P (z; x�)]2�(z) dzwhere �x = bo +Bx�vech(Rx) = �o + P jx�j:vech(R) denotes the elements of the upper triangle of R stored as a column vector, jxj denoteselement-wise absolute value, x� is a vector of lagged values of yt; and �(z) = (2�)�M=2e�z0z=2:The asterisk indicates that prior to forming lags, the yt have been centered by subtracting21



the sample mean, scaled by dividing elementwise by sample standard errors, and then trans-formed elementwise by the logistic map that takes the interval (�1; 1) into the interval(-4, 4). P (z; x�) is a polynomial of degreeKz in z whose coe�cients are, in turn, polynomialsof degree Kx in x�: �x is a function of the �rst Lu lags in x� which is accommodated byinserting zeros in B at the appropriate locations; similarly Rx is a function of the �rst Lrlags in x� and P (z; x�) a function of the �rst Lp lags in x�: The multivariate model hastwo additional tuning parameters Iz and Ix that indicate that high order interaction in thepolynomial P (z; x�) have been put to zero: Iz = 0 means that no interactions are suppressed,Iz = 1 means that the highest order interactions are suppressed, namely those of degree Kzand so on; similarly for Kx. We only allow P jx�j to contribute to the diagonal of Rx byinserting zeroes in the appropriate elements of P:As in Section 4, if Kz = 0; Kx = 0; Lu > 0; and Lr > 0 then the SNP density is a formof ARCH model with Gaussian innovations. If Kz > 0; Kx = 0; Lu > 0; and Lr > 0 thenthe SNP density is a form of ARCH model with conditionally homogeneous, non-Gaussianinnovations. The SNP model with Kz > 0 and Kx = 0 can accurately approximate any con-ditionally homogeneous innovation process by taking Kz large enough. If Kz > 0; Kx > 0;Lu > 0; Lr > 0; and Lp > 0 then the SNP model can accurately approximate any Markovian,stationary process by taking Kz and Kx large enough, including those that exhibit nonlin-earities such as conditional skewness and kurtosis (Gallant, Hsieh, and Tauchen, 1991).We �t the SNP model by quasi maximum likelihood following the protocol that is de-scribed in Bansal, Gallant, Hussey, and Tauchen (1995) and is summarized in Section 4.Following this protocol, we select the model Lu = 4; Lr = 16; Kz = 8; and Iz = 7 wheninnovations are constrained to be homogenous (Kx = 0; Lp = 1). The score from this �twe term the \Semiparametric ARCH Score". We also report results for the model Lu = 4;Lr = 16; Lp = 1; Kz = 8; Iz = 7; Kx = 2; and Ix = 1; where the homogeneity constraint isdropped, and term the score from this �t the \Nonlinear Nonparametric Score". We encoun-tered di�culty �tting the stochastic volatility model to the even larger speci�cation, Lu = 4;Lr = 16; Lp = 1; Kz = 8; Iz = 7; Kx = 3; and Ix = 2; dictated by following the protocoland do not report EMM results for that score. In all cases, the linear VAR model at thecore of the SNP hierarchy is constrained to be zero after lag 2, except for lags of the interest22



rate which go out to lag 4, which reects our prior knowledge that interest rates displaymuch more complicated patterns of linear persistence than do stock returns or exchange ratemovements.Following the EMM procedure described in Section 3 we obtain the chi-square statisticsshown in Table 5. As seen from the table, the stochastic volatility model fails to approximatethe distribution of these data adequately; it is overwhelmingly rejected.6 ConclusionThe standard stochastic volatility model, which has received substantial attention in theliterature, is an empirically implausiblemodel for stock returns. Our exhaustive search acrossmany speci�cations indicates that the model must be extended to include (i) an asymmetricthick-tailed distribution for innovations in the mean equation, (ii) long-term dependencein the volatility equation, and (iii) cross correlation between innovations in the mean andvolatility equations. When introduced individually, each of these extensions improves the�t somewhat. When introduced together, they produce a stochastic volatility model that isquite elaborate and can accommodate features of the data best described as \SemiparametricARCH". However, the model still cannot accommodate features that could be described as\Nonlinear Nonparametric." Although not as exhaustive, our investigation for the trivariatedata series on stock returns, interest rates, and exchange rates leads to a similar result.These �ndings thus cast doubt on the statistical reliability of estimated stochastic volatil-ity models that do not include all three of the extensions. At a minimum, estimates ofstochastic volatility models should be accompanied by diagnostic tests in the directionsfound empirically important here. An even stronger conclusion, which emerges from thefailure to �t the Nonlinear Nonparametric features, is that the stochastic volatility modelcannot be made to �t �nancial market data without losing scienti�c content. The reason isthat the conditional heterogeneity in higher moments exhibited by the stochastic volatilitymodel is imparted solely by the volatility equation and therefore cannot be decoupled fromthe volatility equation. Without the decoupling, the model is not rich enough to approximatedata from �nancial markets. With a decoupling, the stochastic volatility model becomes akinto a nonparametric speci�cation and there are far more computationally convenient nonpara-23



metric estimators. Our �ndings stand in contrast to results of Kim and Shephard (1994),Geweke (1994), and others who �nd evidence in favor of fairly standard stochastic volatilitymodels. The reason is that we step outside the narrow con�nes of stochastic volatility andentertain the possibility of very general and exible auxiliary models. These models providethe diagnostics discrediting stochastic volatility.AcknowledgementThis material is based upon work supported by the National Science Foundation. We thankRob Engle and Jorgen Wolters for helpful remarks at various stages of this research, and wethank the two referees and the editor, Helmut Lutkepohl, for thoughtful remarks.
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Table 1. Univariate Price Change Series: Optimized Value of the Crite-rion for the Semiparametric ARCH Score Generator.Score Generator (SNP) SV Model Objective FunctionLu Lr Lp Kz Kx `� Ly Lw `� �2 df p-valGaussian2 18 1 4 0 26 2 1 6 86.432 20 < 0.00012 18 1 4 0 26 2 2 7 79.001 19 < 0.00012 18 1 4 0 26 2 3 8 72.672 18 < 0.00012 18 1 4 0 26 2 4 9 69.188 17 < 0.00012 18 1 4 0 26 2 5 10 67.823 16 < 0.00012 18 1 4 0 26 2 6 11 61.093 15 < 0.0001t(�); � = 10; 15; 20; 252 18 1 4 0 26 2 2 8 78.186 18 < 0.00012 18 1 4 0 26 2 2 8 68.931 18 < 0.00012 18 1 4 0 26 2 2 8 69.111 18 < 0.00012 18 1 4 0 26 2 2 8 69.898 18 < 0.0001Spline2 18 1 4 0 26 2 1 8 41.920 18 0.00112 18 1 4 0 26 2 2 9 41.351 17 0.00082 18 1 4 0 26 2 3 10 37.700 16 0.00162 18 1 4 0 26 2 4 11 36.107 15 0.00172 18 1 4 0 26 2 4 12 33.768 14 0.00222 18 1 4 0 26 2 6 13 18.638 13 0.1348Gaussian & Long-Memory2 18 1 4 0 26 2 0 6 67.691 20 < 0.00012 18 1 4 0 26 2 1 7 67.061 19 < 0.00012 18 1 4 0 26 2 2 8 65.463 18 < 0.0001Spline & Long-Memory2 18 1 4 0 26 2 0 8 34.923 18 0.00972 18 1 4 0 26 2 1 9 26.718 17 0.06232 18 1 4 0 26 2 2 10 21.781 16 0.1504Lu is the number of lags in the linear part of the SNP model; Lr is the numberof lags in the ARCH part; Lp the number of lags in the polynomial part, P (z; x):The polynomial P (z; x) is of degree Kz in z and Kx in x; by convention, Lp = 1 ifKx = 0: `� is the number of free parameters associated with the SNP model. Lyis the number of lags in the linear conditional mean speci�cation of the stochasticvolatility model, and Lw is the number of lags in the volatility speci�cation. `� isthe number of free parameters of the stochastic volatility model. �2 is the EMMobjective function scaled to be distributed �2(df) under the maintained assumptionof correct speci�cation of the stochastic volatility model. Some relevant quantilesare �20:99(20) = 37:566; �20:99(15) = 30:578:29



Table 2. Univariate Price Change Series: Fitted Parameter Values for the Semipara-metric ARCH Score Generator.�y ry c1 c2 bz0 bz1 bz2 bz3 rw a1 a2 a3 a4 a5 a6 dGaussian0.038 0.927 0.105 0.066 1.000 0.095 0.9760.037 0.918 0.105 0.066 1.000 0.155 0.961 -0.6620.036 0.909 0.103 0.068 1.000 0.149 0.964 0.010 -0.6410.036 0.906 0.103 0.068 1.000 0.172 0.959 -0.209 -0.267 -0.5470.037 0.916 0.104 0.068 1.000 0.116 0.972 0.156 -0.185 -0.616 0.3040.036 0.909 0.102 0.069 1.000 0.144 0.965 -0.067 -0.592 -0.002 -0.485 0.397t 0.034 0.935 0.103 0.066 � = 10 0.031 0.993 0.5610.036 0.937 0.104 0.066 � = 15 0.049 0.989 0.3780.035 0.928 0.104 0.066 � = 20 0.124 0.971 -0.5210.036 0.926 0.104 0.066 � = 25 0.132 0.969 -0.580Spline0.023 0.942 0.110 0.063 0.030 0.921 -0.079 0.097 0.083 0.9800.022 0.939 0.109 0.063 0.030 0.933 -0.072 0.083 0.129 0.969 -0.5370.022 0.931 0.109 0.064 0.032 0.960 -0.056 0.049 0.138 0.966 0.036 -0.6230.021 0.923 0.108 0.064 0.032 0.988 -0.039 0.014 0.212 0.947 -0.558 -0.479 -0.3560.022 0.935 0.109 0.063 0.029 0.928 -0.073 0.089 0.029 0.993 1.634 -1.853 1.078 -0.2470.023 0.947 0.109 0.064 0.029 0.942 -0.064 0.071 0.012 0.998 2.005 -1.970 0.939 0.220 -0.378Gaussian & Long Memory0.036 0.908 0.104 0.067 1.000 0.224 0.5400.035 0.904 0.103 0.067 1.000 0.242 -0.159 0.5500.034 0.908 0.104 0.066 1.000 0.221 0.039 -0.192 0.539Spline & Long Memory0.022 0.922 0.111 0.062 0.033 1.046 -0.003 -0.059 0.259 0.5150.021 0.887 0.110 0.060 0.038 1.208 0.095 -0.267 0.369 -0.268 0.4930.020 0.863 0.109 0.061 0.044 1.355 0.187 -0.463 0.429 -0.419 0.128 0.486The rows of Table 2 correspond to the rows of Table 1. Due to identi�cation restrictions acrossparameters, the number of parameters in a row do not necessarily correspond to the number of freeparameters shown in Table 1.
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Table 3. Univariate Price Change Series: Optimized Value of the Crite-rion for the Nonlinear Nonparametric Score Generator.Score Generator (SNP) SV Model Objective FunctionLu Lr Lp Kz Kx `� Ly Lw `� �2 df p-valGaussian2 18 2 4 1 36 2 1 6 173.361 30 < 0.00012 18 2 4 1 36 2 2 7 164.337 29 < 0.00012 18 2 4 1 36 2 3 8 155.449 28 < 0.00012 18 2 4 1 36 2 4 9 151.243 27 < 0.00012 18 2 4 1 36 2 5 10 149.350 26 < 0.00012 18 2 4 1 36 2 6 11 147.984 25 < 0.0001Spline2 18 2 4 1 36 2 1 8 151.290 28 < 0.00012 18 2 4 1 36 2 2 9 150.765 27 < 0.00012 18 2 4 1 36 2 3 10 144.411 26 < 0.00012 18 2 4 1 36 2 4 11 143.310 25 < 0.00012 18 2 4 1 36 2 5 12 143.310 24 < 0.00012 18 2 4 1 36 2 6 13 142.461 23 < 0.0001Gaussian-Asymmetric2 18 2 4 1 36 2 1 7 111.497 29 < 0.00012 18 2 4 1 36 2 2 8 111.487 28 < 0.00012 18 2 4 1 36 2 3 9 97.536 27 < 0.00012 18 2 4 1 36 2 4 10 93.969 26 < 0.00012 18 2 4 1 36 2 5 11 91.075 25 < 0.00012 18 2 4 1 36 2 6 12 85.711 24 < 0.0001Spline-Asymmetric2 18 2 4 1 36 2 1 9 78.972 27 < 0.00012 18 2 4 1 36 2 2 10 78.197 26 < 0.00012 18 2 4 1 36 2 3 11 75.483 25 < 0.00012 18 2 4 1 36 2 4 12 70.109 24 < 0.00012 18 2 4 1 36 2 5 13 69.881 23 < 0.00012 18 2 4 1 36 2 6 14 69.645 22 < 0.0001Spline & Long Memory2 18 2 4 1 36 2 0 8 152.654 28 < 0.00012 18 2 4 1 36 2 1 9 146.479 27 < 0.00012 18 2 4 1 36 2 2 10 143.477 26 < 0.0001Spline-Asymmetric & Long Memory2 18 2 4 1 36 2 0 9 94.678 27 < 0.00012 18 2 4 1 36 2 1 10 72.049 26 < 0.00012 18 2 4 1 36 2 2 11 71.609 25 < 0.0001Lu is the number of lags in the linear part of the SNP model; Lr is the numberof lags in the ARCH part; Lp the number of lags in the polynomial part, P (z; x):The polynomial P (z; x) is of degree Kz in z and Kx in x; by convention, Lp = 1 ifKx = 0: `� is the number of free parameters associated with the SNP model. Lyis the number of lags in the linear conditional mean speci�cation of the stochasticvolatility model, and Lw is the number of lags in the volatility speci�cation. `� isthe number of free parameters of the stochastic volatility model. �2 is the EMMobjective function scaled to be distributed �2(df) under the maintained assumptionof correct speci�cation of the stochastic volatility model. Some relevant quantilesare �20:99(30) = 50:892; �20:99(25) = 44:314; �20:99(20) = 37:566:31



Table 4. Univariate Price Change Series: Fitted Parameter Values for the Nonlinear Non-parametric Score Generator.�y ry c1 c2 g bz0 bz1 bz2 bz3 rw a1 a2 a3 a4 a5 a6 dGaussian0.052 0.767 0.114 0.052 1.000 0.092 0.9660.051 0.762 0.114 0.051 1.000 0.152 0.944 -0.7120.050 0.756 0.111 0.052 1.000 0.195 0.930 -0.826 -0.5100.050 0.748 0.109 0.054 1.000 0.223 0.920 -0.746 -0.625 -0.4040.050 0.746 0.108 0.054 1.000 0.229 0.919 -0.642 -0.733 -0.318 -0.2840.050 0.745 0.109 0.054 1.000 0.229 0.919 -0.642 -0.732 -0.318 -0.284 -0.009Spline0.046 0.769 0.114 0.052 0.010 0.905 -0.068 0.117 0.072 0.9740.047 0.770 0.114 0.052 0.010 0.901 -0.071 0.123 0.038 0.986 0.4750.047 0.770 0.115 0.052 0.009 0.914 -0.062 0.106 0.010 0.997 1.651 -0.8020.047 0.771 0.115 0.051 0.009 0.915 -0.061 0.105 0.019 0.994 0.670 0.834 -0.7990.047 0.771 0.115 0.051 0.009 0.915 -0.061 0.105 0.019 0.994 0.670 0.834 -0.7990.047 0.772 0.115 0.051 0.009 0.914 -0.063 0.107 0.046 0.986 -0.146 0.549 0.575 0.000 -0.695Gaussian-Asymmetric0.047 0.839 0.115 0.055 -0.791 1.000 0.070 0.9760.047 0.839 0.115 0.055 -0.801 1.000 0.068 0.976 0.0180.045 0.834 0.114 0.057 -0.494 1.000 0.122 0.964 0.076 -0.6710.045 0.836 0.114 0.058 -0.510 1.000 0.106 0.970 0.286 -0.552 -0.2670.045 0.839 0.114 0.057 -0.630 1.000 0.085 0.974 0.220 -0.128 -0.690 0.3610.045 0.837 0.112 0.058 -0.547 1.000 0.101 0.970 0.212 -0.806 0.307 -0.610 0.479Spline-Asymmetric0.033 0.849 0.119 0.054 -1.454 0.024 0.919 -0.074 0.100 0.045 0.9790.033 0.848 0.119 0.054 -1.720 0.024 0.917 -0.075 0.102 0.035 0.982 0.1340.032 0.863 0.117 0.053 -1.038 0.026 0.924 -0.073 0.094 0.054 0.980 0.427 -0.4890.031 0.856 0.117 0.056 -0.938 0.026 0.939 -0.063 0.075 0.065 0.977 0.361 -0.808 0.3290.031 0.857 0.117 0.056 -0.859 0.026 0.942 -0.061 0.071 0.069 0.977 0.430 -0.882 0.390 -0.0830.032 0.856 0.117 0.055 -1.063 0.025 0.939 -0.062 0.075 0.055 0.979 0.279 -0.224 -0.191 0.622 -0.491Spline & Long Memory0.046 0.760 0.114 0.052 0.010 0.965 -0.032 0.044 0.200 0.5070.046 0.736 0.112 0.051 0.011 1.075 0.037 -0.094 0.304 -0.315 0.4840.046 0.724 0.110 0.052 0.012 1.149 0.083 -0.190 0.351 -0.510 0.164 0.485Spline-Asymmetric & Long Memory0.035 0.829 0.119 0.054 -0.431 0.021 0.975 -0.037 0.031 0.179 0.5410.031 0.849 0.121 0.052 -1.030 0.024 0.931 -0.067 0.085 0.060 0.664 0.4960.031 0.850 0.121 0.052 -1.034 0.025 0.932 -0.066 0.084 0.056 0.677 0.111 0.501The rows of Table 4 correspond to the rows of Table 3. Due to identi�cation restrictions across parameters,the number of parameters in a row do not necessarily correspond to the number of free parameters shownin Table 3.
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Table 5. Trivariate Series: Optimized Value of the CriterionScore Generator (SNP) SV Model Objective FunctionLu Lr Lp Kz Iz Kx Ix `� Ly Lw `� �2 df p-val4 16 1 8 7 0 0 101 2 1 44 490.306 57 < 0.00014 16 1 8 7 0 0 101 2 2 47 329.603 54 < 0.00014 16 1 8 7 2 1 251 2 3 47 4168.470 204 < 0.0001Lu is the number of lags in the linear part of the SNP model; Lr is the number of lags in theARCH part; Lp the number of lags in the polynomial part, P (z; x): The polynomial P (z; x) is ofdegree Kz in z; with interactions of degree exceeding Kz � Iz suppressed; likewise, P (z; x) is ofdegree Kx in x; with interactions of degree exceeding Kx�Ix suppressed. By convention, Lp = 1ifKx = 0: `� is the number of free parameters associated with the SNP model. Ly is the numberof lags in the linear conditional mean speci�cation of the stochastic volatility model, and Lwis the number of lags in the volatility speci�cation. `� is the number of free parameters of thestochastic volatility model. �2 is the EMM objective function scaled to be distributed �2(df)under the maintained assumption of correct speci�cation of the stochastic volatility model.
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Figure 1. Time series of unadjusted and adjusted stock price movements. The top panel shows atime series plot of the daily unadjusted price movement series, 100(logPt � logPt�1). The data aredaily from 1928 to 1987, 16,127 observations. The bottom panel shows the adjusted price movementseries. The adjustments remove calendar e�ects and long-term trend on the basis of least squaresregressions. The adjusted series can reasonably be taken as stationary, which is required for use ofthe SNP estimator. See Section 1 of Gallant, Rossi, and Tauchen (1992) for a description of theadjustment procedure.
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Figure 2. EMM Quasi-t-Ratios for the Stochastic Volatility Model Matched to the SemiparametricARCH Score. The Semiparametric ARCH score is an SNP speci�cation with Lu = 2; Lr = 18;Lp = 1; Kz = 4; Iz = 0; Kx = 0; and Ix = 0. The VAR t-ratios and ARCH t-ratios shown inthe plot correspond to the equations �x = bo + b0x and rx = �o + �0x of the SNP speci�cation,respectively. The SNP t-ratios correspond to the coe�cients of the polynomial P (z; x) of the SNPspeci�cation where the subscript indicates degree. The stochastic volatility speci�cation is yt��y =c1(yt�1 � �y) + c2(yt�2 � �y) + exp(wt)ryzt; wt � �w = a1(wt�1 � �w) + a2(wt�2 � �w) + rw~zt:35
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Figure 3. EMM Quasi-t-Ratios for the t-Innovations Stochastic Volatility Model Matched to theSemiparametric ARCH Score. The SemiparametricARCH score is an SNP speci�cation with Lu = 2;Lr = 18; Lp = 1; Kz = 4; Iz = 0; Kx = 0; and Ix = 0. The VAR t-ratios and ARCH t-ratios shownin the plot correspond to the equations �x = bo + b0x and rx = �o + �0x of the SNP speci�cation,respectively. The SNP t-ratios correspond to the coe�cients of the polynomial P (z; x) of the SNPspeci�cation where the subscript indicates degree. The stochastic volatility speci�cation is yt��y =c1(yt�1 � �y) + c2(yt�2 � �y) + exp(wt)ry�15;t; wt � �w = a1(wt�1 � �w) + a2(wt�2 � �w) + rw~zt;where �15;t follows the t-distribution on 15 degrees freedom.36



    a4

    a3

    a2

SNP a1

      r18

      r17

      r16

     r15

      r14

      r13

      r12

      r11

     r10

       r9

       r8

       r7

       r6

      r5

       r4

       r3

       r2

ARCH   r1

r0

       b2

VAR    b1

Intercept

-10 -8 -6 -4 -2 0 2 4 6 8 10

T-Ratios of Mean Score, Lw=2, Spline
Semiparametric ARCH Score Generator

Figure 4. EMM Quasi-t-Ratios for the Spline-Transform Stochastic Volatility Model Matched tothe Semiparametric ARCH Score. The Semiparametric ARCH score is an SNP speci�cation withLu = 2; Lr = 18; Lp = 1; Kz = 4; Iz = 0; Kx = 0; and Ix = 0. The VAR t-ratios and ARCHt-ratios shown in the plot correspond to the equations �x = bo + b0x and rx = �o + �0x of the SNPspeci�cation, respectively. The SNP t-ratios correspond to the coe�cients of the polynomial P (z; x)of the SNP speci�cation where the subscript indicates degree. The stochastic volatility speci�cationis yt��y = c1(yt�1��y)+c2(yt�2��y)+exp(wt)ryTz(zt); Tz(zt) = bz0+bz1zt+bz2z2t +bz3I+(zt)z2t ;wt � �w = a1(wt�1 � �w) + a2(wt�2 � �w) + rw~zt:37
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Figure 5. Quantile-Quantile Plots. The solid line in the upper left panel shows the spline transformof Figure 4 which can also be interpreted as a plot of the quantiles of the distribution of the randomvariable Tz(zt) on the vertical axis against the quantiles of the standard normal distribution on thehorizontal axis. The dashed is a plot of the quantiles of the standard normal against the quantilesof the standard normal. The solid line in the upper right panel is a quantile-quantile plot of the �vedegree freedom Student t-distribution. The solid line in the lower left panel is a quantile-quantileplot of the innovation distribution of the Semiparametric ARCH Score Generator. The solid line inthe lower right panel is a quantile-quantile plot of a kernel density estimate from ARCH residuals.38
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Figure 6. EMM Quasi-t-Ratios for the Spline-Transform Stochastic Volatility Model with a Long-Memory Variance Equation Matched to the Semiparametric ARCH Score. The SemiparametricARCH score is an SNP speci�cation with Lu = 2; Lr = 18; Lp = 1; Kz = 4; Iz = 0; Kx = 0; andIx = 0. The VAR t-ratios and ARCH t-ratios shown in the plot correspond to the equations �x =bo+b0x and rx = �o+�0x of the SNP speci�cation, respectively. The SNP t-ratios correspond to thecoe�cients of the polynomial P (z; x) of the SNP speci�cation where the subscript indicates degree.The stochastic volatility speci�cation is yt � �y = c1(yt�1 � �y) + c2(yt�2 � �y) + exp(w�t )ryTz(zt);Tz(zt) = bz0+bz1zt+bz2z2t +bz3I+(zt)z2t ; w�t ��w = (1�L)�dzwt; zwt = a1zw;t�1+a2zw;t�2+rw~zt:39
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Figure 7. EMM Quasi-t-Ratios for the Stochastic Volatility Model Matched to the NonlinearNonparametric Score. The Nonlinear Nonparametric score is an SNP speci�cation with Lu = 2;Lr = 18; Lp = 2; Kz = 4; Iz = 0; Kx = 0; and Ix = 0. The VAR t-ratios and ARCH t-ratios shown in the plot correspond to the equations �x = bo + b0x and rx = �o + �0x of theSNP speci�cation, respectively. The SNP t-ratios correspond to the coe�cients of the polynomialP (z; x) of the SNP speci�cation. A coe�cient such as a(00; 2) corresponds to the monomial z2;one such as a(10,2) to z2x1; a(01,2) to z2x2; and so on. The stochastic volatility speci�cation isyt��y = c1(yt�1��y)+c2(yt�2��y)+exp(wt)ryzt; wt��w = a1(wt�1��w)+a2(wt�2��w)+rw~zt:40
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Figure 8. EMM Quasi-t-Ratios for the Asymmetric, Spline-Transform Stochastic Volatility Modelwith a Long-Memory Variance Equation Matched to the Nonlinear Nonparametric Score. TheNonlinear Nonparametric score is an SNP speci�cation with Lu = 2; Lr = 18; Lp = 2; Kz = 4;Iz = 0; Kx = 0; and Ix = 0. The VAR t-ratios and ARCH t-ratios shown in the plot correspond tothe equations �x = bo+b0x and rx = �o+�0x of the SNP speci�cation, respectively. The SNP t-ratioscorrespond to the coe�cients of the polynomialP (z; x) of the SNP speci�cation. A coe�cient such asa(00; 2) corresponds to the monomial z2; one such as a(10,2) to z2x1; a(01,2) to z2x2; and so on. Thestochastic volatility speci�cation is yt��y = c1(yt�1��y)+c2(yt�2��y)+exp(w�t )ryTz(zt); Tz(zt) =bz0+bz1zt+bz2(zt)2+bz3I+(zt)(zt)2; w�t ��w = (1�L)�dzwt; zwt =PLwj=1 ajzw;t�j+rw(~zt+gzt�1):41


