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Estimation of Subsample Time Delay 
Differences in Narrowband Ultrasonic Echoes 

Using the Hilbert Transform Correlation 
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Abstruct- In  many areas  the  time delay of arrival  (TDOA) 
is desired.  In  the case of  narrowband signals we propose  a fast 
and simple method  to estimate small time delays. This method is 
shown to have the  same or better accuracy as the cross correlation 
methods for small delays in  the order of fractions of the sample 
interval. It is based on using  the  Hilbert  transform  in correlation 
between two signals and consists of only one scalar product,  which 
makes it fast. It may also be  used  in applications with  narrowband 
signals where  the measurements are repeatable, such as ultrasonic 
imaging and nondestructive testing. In ultrasonic applications, 
due  to fluctuations in  the  insonified media, a  small  random  time 
shift may be present causing the signals to be misaligned in  time. 
Averaging signals under these conditions will  result  in  a distortion 
of  the signal shape. We propose  an averaging method to avoid 
this  and  to accomplish a higher SNR without  the distortion. 
Simulations and experiments from ultrasonic applications are 
presented. 

T 
I. INTRODUCTION 

HE TIME  delay of arrival  (TDOA) is required in many 
areas,  e.g.,  ultrasonic  imaging [18].  Estimators of the 

TDOA are  designed in different  ways  as can be seen in [3], 
[ 5 ] ,  [l91 and  various  articles in [6], [7 ] ,  but they have  a 
few  things in common. Usually they have an SNR threshold 
under which they perform substantially  less well [20]. For 
correlator based estimators this is due to peak  ambiguity,  i.e., 
the possibility of selecting the wrong  peak of the correlation. 
These  estimators  also need some kind  of interpolation  to  obtain 
subsample  resolution,  e.g., a  parabolic fit [4], [ l  l], [14]. In 
1121, a  comparison of several  methods is made.  A  special  case 
of time  delay  estimation is when the signals are narrowband 
[g]. Under  this  assumption we propose  a novel method to 
estimate the TDOA for  small time delays.  This  method will 
be shown to be fast  and  simple. Apart from the increased 
resolution in TDOA, it can be  used for  other  purposes.  One 
such application is the problem of averaging. In areas  where 
the measurements are repeatable,  such as ultrasonic  imaging 
and nondestructive  evaluation  (NDE), the process of averaging 
can be  used to improve  the SNR. If the useful part of the 
signal is the same  for  all  measurements, it will remain the 
same  after the averaging while the disturbances  (e.g.,  noise 
and artifacts) will be attenuated  since they occur  randomly 
in each  separate  measurement.  However, if the useful part 
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of the signal has a small random time shift  due  to  physical 
reasons or inaccuracies in the measurement  equipment,  the 
averaging will distort  this  signal.  This  phenomenon  can  appear, 
e.g., in ultrasonic  imaging.  Airborne  ultrasound  suffers  from 
inhomogeneities in the medium such as  temperature  gradients 
and air turbulence [lo]. Using  the  above  mentioned  method 
we can estimate  these  small  random time shifts  and  design 
an averaging  algorithm that time  aligns (i.e., causes  the useful 
part of the signals to have the same  position in time) so that 
very little  signal  shape  distortion  occurs  when  the  averaging 
is  carried  out. 

11. DERIVATION OF THE ESTIMATOR 

We model all received echoes  as  having the same  signal 
shape  and  only  differing in the arrival  time. Thus, using r ( t )  
as a  reference  echo we find that the received  echo  is 

s ( t )  = T(t - 8) (1) 

where the time delay 0 is considered to be an unknown 
deterministic  parameter. In many  time  delay  estimators  [3], 
[6], [7] the cross  correlation 

m 

& ( T )  = s ( t ) ~ ( t  + 7)d t  

between the reference  echo ~ ( t )  and the received  echo s ( t )  is 
considered.  The  time lag maximizing this cross  correlation  is 
the estimated  time  delay.  However,  Cabot  [5]  suggested  that 
the cross  correlation  between s ( t )  and f ( t ) ,  the  Hilbert  trans- 
form of ~ ( t ) ,  should be  used instead.  This  cross  correlation 
is shown to be 

L (2) 

R s , ( . r )  = R & )  (3) 

In this  case  the  cross  correlation will not  have  a  maximum 
at the time lag B but  a  zero  crossing. It can be argued  that 
it is  easier to find a  zero  crossing than a peak in a noisy 
signal. It introduces  however an ambuigity  since there can  be 
several  zero  crossings,  particularly if the  cross  correlation is 
narrowband.  The  Hilbert  transform  is defined as [2] 

03 

F(t) = ‘H{r ( t ) }  = 1 / a d z  = h(t)  * ~ ( t )  (4)  

where the integral  is a Cauchy  Principal Value (CPV)  and 
* denotes  convolution.  The  Hilbert kernel is  denoted by 
h(t)  = -5 .  We observe that if r ( t )  E L2(-oo,oo) then 

7r - , x - t  
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it  follows that f ( t )  E L2(-oo,  m), see [9]. Consider  the  cross Since r ( t )  is a  reference  echo,  we  may  calculate -f/rTr = b 
correlation  between s ( t )  and +(t)  at  time  lag  zero  and use one time for  all and arrive  at the fast  and  simple time delay 
Parseval's  theorem estimator 

m 

R,?(o) = T ( t  - e ) q t ) d t  
- 1  B = - arcsin(sTb) (1 1) 

WO 

( 5 )  If the  angular  centre  frequency WO is not known, it may be 
estimated by "inducing our  own  time delay". Introducing  a 
constructed  signal z(t) = r(t - T,) we have 0 = T,. In vector 
notation this is  equal  to xT = [0 rT]. For this known 0 we 

L 
- L 
- S_, 
- - S_, e j 2 " f s H ( f ) l R ( f ) 1 2 d f  (6) 

- T ( t  - B)[h(t) * T ( t ) ] d t  
m 

m 
- e - j 2 x f o  R(f)H(f)R(f)df 

m can  rewrite (10) to estimate WO 

Go = - arcsin ( [o r ~ ]  [:l) 1 
TS (12) 

Here we let H ( f )  = j sgn(f) denote  the  Fourier  transform 
of h(t)  [2]. Assuming  that r ( t )  is narrowband, i.e., its energy 
is  concentrated in frequency  intervals of size B around kfo, 
and  that BB << 1, &(O) can be approximated  as 

111. PERFORMANCE OF THE ESTIMATOR 

A. The  Influence of Bandwidth 

In the derivation of the  estimator we assumed an infinites- 
imally small  bandwidth.  This  is of course not the  case  for 
an arbitrary  narrowband  signal. To analyze the influence of 
bandwidth  we  assume  that  the  signal r ( t )  has the following 
Fourier  transform: 

R(f)  = { I f f  f o l  < B/2  (13) 
otherwise 

This  signal  has  energy E, and single  sided  bandwidth B. In 
Appendix  A  we  show that the  bandwidth  introduces  a  bias in 
the  form of an multiplicative  term: 

~ - s( t )+(t)dt  
sinwoo = 

r2( t )d t  
= sinc(B8)  sin W O O  (14) 

We have  assumed  the  exponentional  function to be  constant 
over  the  integration  interval.  This  gives us We see that in order to keep  this bias low,  the  product of 

bandwidth  and  time-delay  must be small. We assume that the 
- R , p ( O )  - - S-", s(t)+(t)dt 

sinwoe z - (8) 

This  estimator  can  be  expected to work well only for 
narrowband  signals  and  small  time  delays B. The  assumption 
that e j2*fe  is  constant  over  the  integration  interval  will  not be 
valid otherwise.  As  we  work with sampled  signals, we give  the 
discrete version of (8). The  observation  interval T ,  assumed 
to be larger than the  duration of the  echoes,  is  sampled at 
N points with interval T, = T / N .  Denoting  these  samples 
S, = s(nT,), we may approximate  the  integrals in (8) with 
sums  and  yield 

E, r2(t )dt  

- 1  B = - arcsin (- WO r 2 ( t ) d t  ) SF S ( t ) f ( t ) d t  

1 
WO 

N-l  
M - arcsin 

delay is small, 101 < &, resulting in lw08l < 7r/2. Hence  we 
have lB8l 5 & = where ,B = fo/B. For narrowband 
signals ,d is in the  order of 10-50, causing  the  bias  factor 
sinc(B8) to be close  to 1.  

B. Noise Error 

Assume that r ( t )  and s ( t )  are  corrupted by independent 
additive  white  Gaussian  noise.  Since both ~ ( t )  and s ( t )  are 
bandlimited we can  also  assume that the noise has a  limited 
bandwidth. If this  is not the  case,  the  received  signals  can 
always be lowpass filtered without any loss of information. 
Note  that  the  Hilbert  transform of a  white  Gaussian  process 
n( t )  is  also  white  and  Gaussian: 

s,(f) = sn(f)IH(f)12 = S n ( f )  (15) 

Here we let S,(f) denote the power  spectral  density of the 
stochastic  process n(t) ,  i.e.,  the  Fourier  transform of the 

Using  vectors  and  denoting  them S = [SO s 1  . . . s,v-~] , 
= il . . . f ,V- l ]T and r = [rg TI . . . TN-11 , we have 

T autocorrelation  function Rn(7). If we include  the  noise in (8) 
T we get 

- 1  
WO 

- 1  
WO 

- ( s ( t )  + n(t))(?( t )  + i lO(t ) )dt  
B = - arcsin (- 2) (10) B = -arcsin 
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where  the  reference  echo is ~ ( t )  +no(t) and  the  received  echo 
s ( t )  + n(t) .  The  superscript  denotes  Hilbert  transformation 
and  can  numerically be calculated in the  Fourier  domain using 
FFT [15]. From  the  discrete version of the  estimator (lo), we 
have 

1 
WO 

- 
_. -arcsin ( z )  

The  sampled  processes n k  and n o k  are  white  and  Gaussian 
[l61 with variance u2. Since  our  estimator is nonlinear, it is 
difficult to analyze.  However,  the mean is  much  larger than the 
standard  deviation  for  the  denominator  and we may linearize 
the estimator in (17),  see  Appendix B, to  obtain: 

2 

+ ( i a r c s i n (  z) - 8) (18) 

where 

p~ = E, + Tu2 
p~ = E, sin woe 

= 4ETTsa2 + 2TTsa4 
0; = 2ETTsa2 + TTsa4 (19) 

The mean of the estimate is 
1 

WO 

- arcsin ( SNR ) (20) sin WOO 

E { B )  = -arcsin 

- - 
WO Sh-R + 1 

where we define 

SNR = - ET 
Tu2 

This  definition of the SNR is the ratio  between the energies 
of the signal  and  the  noise in the observed  time  interval. 
It is  equivalent  to  the  definition in [l l], which  is SNR = 
RTT(0)/a2.  where R,,(T) = E { ~ ( t ) r ( t  + T ) } .  For an er- 
godic  stochastic  process, RrT(7) can be approximated with 
$ J: r ( t ) ~ ( t + ~ ) d t ,  if the observation  interval  is  long  enough. 
Hence,  for  large T the  definitions of SNR's are  equivalent. 
As  we see  from  (20), the estimator can be expected to be 
asymptotically  unbiased  for  large SNR but  contain  a  bias  for 
small SNR. As  for the error  variance, it can be shown  from 
(18) that 

lim ~ ( ( 4 - 8 ) ~ )  = & + e 2  
SNR--mdB 

0 lim E((8  - = (22) 
SNR-m dB 

From  this we see  that the standard  deviation of the  error  for 
very low SNR will  be approximately  equal to the delay 0. 
Generally,  for an arbitrary SNR, we will have an increase in 
error  variance  for  larger 8.  

Amplitude [v 

as - 

Time [p] 

Fig. 1. Synthetic echo used in simulations. 

C. Numerical Simulations 
In order to verify the  performance  given by the  previous 

section we simulated  (10)  numerically by using  a  synthetic 
echo in the  form of 

T ( t )  = e-+-to)* cos wot 0 t < T (23) 

with the parameters a = 10" s - ~ ,  W O  = 27r106 rads,  t o  = 
20 . S and the  sample  frequency F, = 20 MHz  which 
corresponds  to  our  equipment.  The  number of samples  were 
N = 1024 corresponding to a measuring time of T = 51.2 ps. 
The  synthetic  echo  is  shown in Fig.  1.  Since we used fs = 20 
MHz  and the centre  frequency fo = 1 MHz,  we  have  20 
samples  per period in the  echo.  For  each  value of the SNR, 
we simulated  1000  echoes  and  calculated  the  mean of the 
estimator (10). We added noise to both ~ ( t )  and s ( t ) .  The 
simplified  expression of the  mean (18) was compared to the 
mean of the  simulation. In Fig.  2 , we show  these  curves  as 
a  function of SNR with 8 = 0.1 T,. For  comparison, we give 
the error  variance  for  Cabot's  estimator [ 1 l], i.e., the estimate 
8 is  the  interpolated  zero  crossing of R,+(T). 

where 

and y = 5 is  the SNR for ~ ( t )  and B, = Fs/2  is  the 
single  sided  bandwidth of n(t). Note that for a  narrowband 
system we have b, M WO. The  error  variance in (24) can be 
rewritten as 

Due to approximations in [ 1 l], this error  variance  is  however 
only valid for SNR >> -17  dB in our  simulation. In Fig. 3 
the  simulated  and  theoretical  error  variance of our  estimator 
are  plotted  together with Cabot's.  The  curves  are hard to tell 
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from  each  other  for SNR > 10 dB. The reason why the error formula [ l  J of the order 2N + 1 
variance for  the  estimator (IO) below this SNR is  less than A I  

Cabot's  is  that it becomes biased for  small SNR and  hence 
not quite  comparable. 

Iv. APPLICATION EXAMPLE: AVERAGING ALGORITHM 

Using the estimator  for  small time delays (lo), we can 
proceed to  formulate an averaging  algorithm.  This method 
becomes useful when the echoes  have small random time 
shifts. These could originate from fluctuations in the insonified 
medium. In our line  of research, which  contains  surface 
profiling by using airbourne ultrasound [ 1 S], these fluctuations 
take the form of temperature variations and  air turbulence. 
A change in the  air temperature of 0.1"C results in a 0.06 
m/s  change of sound  speed [ 131. Using our  transducer with 
a radius of curvature of 45 mm,  i.e., a total path length of 
90  mm  for a surface in the focal plane, this means a time 
delay of 45 ns = 0.95Ts in our  case,  where T, is the sample 
interval. These  small random time shifts  have  to be taken into 
account when  an averaging  process  is  applied.  Otherwise  we 
will introduce a distortion of the signal due  to the misalignment 
of the echoes.  Assume that we want to average  over M echoes, 

S j ( t )  = T(C - S;) + n;( t )  i = O . . . M  - 1 (28) 

where we define s o ( t ) = ~ ( t )  + n o ( t ) .  In (28), 8, are  small 
independent  random time shifts and ni(t)  white Gaussian 
additive noise  which  are  independent of 8,. The first thing is  to 
estimate the individual time  delays between the echoes.  This 
can be done as described in Section 11. We use the first echo 
s o ( t )  as the reference  echo. To be able  to  average  over the M 
echoes,  we need to align the  echoes in time. This has been done 
by using an interpolation formula, which is  approximately  an 
all-pass filter with linear phase (corresponding  to the time 
delay).  Since we have  samples of the echoes the problem 
is  expressed as having si(nT,) and wanting s;(nT, + Oi). 
We use the same notation as before, i.e., the  samples  are 
sin = si(nT,). A simple interpolation method is Lagrange's 

a 

_. 
f ( X  tA) = C hk(t)  f (X - k A )  (29) 

k = - N  

which uses the  fact that f (x) is known in the equally spaced 
poihts x k  = z - ?CA. The weights h k  depend on t which is the 
fraction of the  distance A for which we want to find f .  The 
interpolation (29) can be seen as a filter  with  taps h,+. We can 
now align S;, with son by forming sin = S;, * h,(8i) where * 
denotes  convolution. By doing this for all echoes .si,, we  can 
average over the M echoes: 

i = O  

The averaged echo S, will have the same position in time as 
son since this is used as a reference echo. In order  to find  an 
absolute position in time we average  over all estimated time 
delays 

. A I - 1  

This  gives us an estimation of the correct relative position in 
time of S,. To obtain the final averaged signal we interpolate 
with the  Lagrange interpolation filter with taps h k  which are 
determined by 8. 

V. EXPERIMENTS 

Apart from  the difficulties of defining signal shape  distor- 
tion, there are  also practical problems. A noise-less reference 
echo  is usually not available  and  thus it  is difficult to  measure 
the effect  of the signal shape distortion. Instead we chose 
to  get another quantitative measure of the performance of 
the algorithm.  One  area  where it can be used  is airborne 
ultrasound. We used a focused  transducer with a radius of 
curvature of 45 mm, a diameter of 20 mm and a centre 
frequency of approximately 1.07 MHz . It was  designed by H. 
W. Persson, Lund Institute of Technology, for the investigation 
presented in [IS],  and  is acoustically adapted for air. We 
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Fig. 4. Measured  ultrasonic  echo  from  the  phantom 

applied it to a  phantom in the form of a  massive  brass  block 
with smooth  surfaces.  The  block  was placed perpendicular to 
the  transducer, the position of  which  was  fixed throughout the 
whole  experiment. We registered 500  echoes  which took about 
30 seconds with our  equipment.  These  echoes, which should 
be identical  since they were  measured at the same  spot,  were 
then investigated. A measured  echo  is  shown in Fig. 4 and the 
SNR was  estimated to be approximately 30 dB. 

VI. RESULTS 

If we plot a  cross  section of the  registered  echoes, i.e., for a 
fixed value of the time t we plot how the  amplitude varies for 
the different  measurements, we can  see  how the misalignment 
effect can cause  problems  when we average  the  echoes.  This 
cross-section plot is  shown in Fig. 5. If the  echoes  did not have 
a random  time  shift,  these  curves  would be straight  horizontal 
lines  apart  from the measurement  noise.  The  uppermost  curve 
corresponds  to  a point in time where  the  reference  echo has 
a  peak,  i.e., small derivative,  and  the  lowermost to a  point 
in time when the reference  echo has a  zero  crossing,  i.e., 
large  derivative.  Looking at the  estimations of the time shifts 
relative to the reference  (i.e.,  first)  echo,  Fig. 6, we  can see 
that it has  the same  drift  as the cross  section.  The  magnitude 
of the derivative of the echo in Fig. 4 at the zero  crossings 
is estimated to  be almost  20 V/ps. From  Fig. 6 and Fig. 5 
we see that the  delay of one  sample,  i.e., 50 ns, at a  zero 
crossing  results in an amplitude  difference of approximately 
1 V. If we linearize the echo at the  zero  crossing we get an 
amplitude of 20 V / p s  x50 ns = 1 V. From  Fig. 6 we can 
see that it has a  low-frequency  shape  which  corresponds to 
the fluctuations in the medium [lo] that  appear  during the 
total measurement time of 30  seconds. To see the effects of 
using our  averaging  algorithm, we look at the  cross-section 
variance of s ( t )  for  each point of time,  i.e., v ( t )  = Var{s(t)}. 
We compare  the  variance  for the original  echoes with the one 
where  we  estimated  the  individual time shifts  and  interpolated 
the echoes in order  for  them to be time  aligned with the first 
echo. As we can  see in Fig. 7, the alignment is very good.  The 
peaks in variance  for  the  original  echoes  correspond to points 
in time  where the echoes'  derivative  is  large,  thus  yielding 
large variations in the cross  section.  The  variance  after  the 

Amplitude [V] 
2 5  

2 -  

I S -  

I t  

0 50 IW I50 2W 250 3W 350  400  450 5W 

Measurement nr 

Fig. 5 .  Cross section of the  measured  echoes for two  values of f .  The 
uppermost  curve  corresponds  to t = t l  which is a  zero  crossing.  Total  time 
for the 500 measurements  was 30 seconds. 

!!)___/_ 0 2  
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0 50 1W 150 2W 250 3W 350  400  450 SW 
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Fig. 6. Estimated  time  shifts  relative to the first echo  for  the  measurements 
in  Fig. 5 

I .  
10 I2 I4 16 18 20 27. U 

Time [p] 

Fig. 7. Variance of the  cross  section  before  (solid)  and  after  (dashed)  time 
alignment. 

time alignment has a  constant  amplitude  and  does not vary 
with time.  The small variations that are  still  present  are mainly 
due to additive  noise. 

VII. DISCUSSION 

We have proposed  a new method  for  estimating  small  time 
delays in narrowband  signals.  Cabot [ 5 ]  proposed to use the 
correlation with the  Hilbert  transform of the reference  echo 
instead of the  original  echo.  Our  proposed  estimator uses 
however  only the Hilbert  transform  correlation  for  time lag 
zero.  For  narrowband  signals we have shown that this cross 
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correlation has the shape of a sine  wave in the neighbourhood 
of the true time delay 8. For  the “standard” cross correlation 
this will be a cosine, but knowing  only one  point  on that 
curve results in  an ambuigity of the sign since  cosine  is an 
even function. Thus, the Hilbert transforming  is necessary. 
For large SNR it can be shown  from (18) that 

E((6  - B ) 2 }  N 2Ts 1 .- 
T w ~  C O S ~  W O O  SNR 

while Cabot’s  estimator  has the asymptotic  shape 

Hence, for large SNR and small time  delays B ,  these two 
methods have  the same  accuracy.  For  small  time  delays 8 
a bias is introduced in our method.  Notice  the lack of the 
usual “bumps” in the error variance curve.  This  is  due  to 
the effect that  no  peak  ambuigity  occurs  since f? is  assumed 
to be smaller than a quarter of a wavelength, i.e., &. By 
using only one  cross correlation value, the  estimator  consists 
of a scalar  product with the  normalized  Hilbert transform 
of the  reference  echo,  making it suitable for  applications 
where  multiple  echoes  are  to  be  compared  to a reference 
echo.  Such  applications  include, e.g., sensor arrays  and  the 
proposed  averaging  algorithm. The latter can be used when 
the individual signals  have a small  random  time shift between 
themselves. In this case we  can  have  the  advantage of using 
the  above estimation method  to align all  signals in time before 
averaging them. The mean of the  estimated  time  shifts  can 
also be used to find a better  absolute position in time for  the 
averaged  signal. A typical area of application  for this method 
is ultrasonic measurements. 

APPENDIX A 
THE EFFECT OF BANDWIDTH 

Assuming  that the narrowbanded signal r ( t )  has the Fourier 
transform 

R ( f )  = {e Iff f O l  B P  (34) 
otherwise 

where E, denotes  the  energy  and B the bandwidth, we  have, 
using Parseval’s theorem and the model s ( t )  = r(t  - B )  

= j--Bsinc(B8)2jsin(2nfo0) 

= -E,sinc(BO) sin(2.rrfoH) ( 3 5 )  

E ,  
2 B  

Thus we  have 

= sinc(B0) sin qfl (36) 

APPENDIX B 
LINEARIZING THE ESTIMATOR 

In order to linearize the estimator (17) we use the Taylor 
series of the function 

(37) 

The partial derivatives  are 

Introducing E B ,  which is a zero-mean stochastic variable 
with variance a; = Var{B}, and p~ = E { B }  we can 
approximate  the  estimator (17) by putting B = p ~ g  + E B  and 
correspondingly A = p~ + ~ . q  and use the above linearization 
at  the point ( p ~ ,  p ~ )  

The mean of 8 is now found  to be 

The  error variance is 
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(41) 

if  we assume  that E A  and EB are  uncorrelated.  The  mean of 
B is found to be 

N 

E { B }  = E -T, C s[k]F[k] + s [ k ] i i ~ [ k ]  { k=O 

+ n[k]?=[k]  + n[k]f io[k]  

x 

z - S_, s(t)?=(t)dt = E, sin W o e  (42) 

since n [ k ]  and i i ~ [ k ]  are  independent  and  have  zero  mean. 
The mean of A follows  from 

R;-l 

{ k=O 

E { A }  = E T, c r 2 [ k ]  + 2r[k]no[k]  +nil”]} 

zz r2(t)dt + T,Na2 = E,  + Tu2 
30 

J - m  

(43) 

For the variances of 4 and B we have 

c; = Var{B} = E { ( B  - p ~ ) ~ }  

N-l N-l 

= T;E{ c C s[k]iio[k]s[l]iio[I] + n[k]F[k]n[l]F[l]  

1 
k=O 1=O 

+ ~rl[k]iiO[k]n[l]iio[I] + 2s[k]iio[k]n[l]i.[l] 

+ 2s[k]iio[k]n[l]iLo[l] + 2n[k]i:[k]n[l]iio[E] 

and 

02 = Var{A} = E { ( A  - p ; 1 ) 2 }  

= TfE{ (y (2r [k]n[k]  + n2[k]  - u2)  
k=O 

I .\‘-l Ai-l 

+ (P + 2 ~ ) ~ 4  + ~ 2 ~ 4  - z v 2 u ~ a 2 )  

= 4E,T,a2 + 2NT;0“ = 4E,T,u2 + 2T,Ta4 (45) 

Here we have used  the fourth  moment of a  zero-mean  Gaussian 
stochastic variable E { x 4 }  = 302, [17],  giving us 

C n 2 [ k ] n 2 [ 1 ]  + cn4[[lc] 
!€=o 1=O k#l  k=l 

= (,V2 - N)a4 + N3O4 
= ( N 2  + 2 N )  u4 (46) 

and  with  the third moment, E { z 3 }  = 0, [17], 

A--l N - l  

k=O I=O k = l  

= o  
(47) 
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