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Abstract. Recently many scientific and engineering applications have involved the challenging task
of analyzing large amounts of unsorted high-dimensional data that have very compli-
cated structures. From both geometric and statistical points of view, such unsorted data
are considered mixed as different parts of the data have significantly different structures
which cannot be described by a single model. In this paper we propose to use subspace
arrangements—a union of multiple subspaces—for modeling mixed data: each subspace in
the arrangement is used to model just a homogeneous subset of the data. Thus, multiple
subspaces together can capture the heterogeneous structures within the data set. In this
paper, we give a comprehensive introduction to a new approach for the estimation of sub-
space arrangements. This is known as generalized principal component analysis (GPCA).
In particular, we provide a comprehensive summary of important algebraic properties and
statistical facts that are crucial for making the inference of subspace arrangements both
efficient and robust, even when the given data are corrupted by noise or contaminated
with outliers. This new method in many ways improves and generalizes extant methods
for modeling or clustering mixed data. There have been successful applications of this new
method to many real-world problems in computer vision, image processing, and system
identification. In this paper, we will examine several of those representative applications.
This paper is intended to be expository in nature. However, in order that this may serve
as a more complete reference for both theoreticians and practitioners, we take the liberty
of filling in several gaps between the theory and the practice in the existing literature.
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1. Introduction. In scientific and engineering studies, one of the most common
tasks is to find a parametric model for a given set of data. Depending on the nature
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of the data and the purpose of the analysis, the model can be either a probabilistic
distribution (e.g., a Gaussian distribution or a hidden Markov chain) or a geometric
structure (e.g., a line, a curve, or a manifold). Nevertheless, among all the models,
linear models such as a straight line or a subspace are possibly the most popular
choice, mainly because they are simple to understand and easy to represent and
compute. Very often in the practice of data modeling, however, a given data set
is not homogeneous and cannot be described well by a single linear model. This
is especially so in the case of imagery data. For instance, a natural image typically
contains multiple regions which are significantly different in the complexity of texture.
While it is generally true that each region can be modeled well by a simple linear
model, the same model is unlikely to apply to other regions. It is therefore reasonable
to use multiple models to describe different regions of the image.

The above example containing images reveals a challenging problem that perme-
ates many research areas such as image processing, computer vision, pattern recogni-
tion, and system identification: How do we segment a given set of data into multiple
subsets and find the best model for each subset? In different contexts, such a data
set, as well as the associated model, has been called “mixed,” “multimodal,” “mul-
timodel,” “piecewise,” “heterogeneous,” or “hybrid.” For simplicity, in this paper,
we refer to the data as “mixed” and the model as “hybrid.” Important examples of
mixed data that one often encounters nowadays include but are not limited to images,
acoustic data, and gene expression data.

Here we are particularly interested in the class of hybrid linear models: one linear
model for each homogeneous subset of the data. Figure 1.1 shows a simple exam-
ple. The importance of hybrid linear models is manifold. First, they are the natural
generalizations to single linear models; second, they are sufficiently expressive for
representing or approximating arbitrary complex data structures; and third, the un-
derstanding of hybrid linear models has been significantly advanced in recent years
and many efficient solutions have been developed (see [61, 13] and the references
therein). Thus, the goal of this paper is to give a comprehensive introduction to some
of these new developments in the study of modeling such mixed data with hybrid
linear models, and to place many sporadic results in the literature in a coherent and
complete mathematical and computational framework.

A fundamental challenge in estimating such a hybrid model for mixed data is
the “chicken-and-egg” problem. If the data were already segmented properly into
homogeneous subsets, estimating a model for each subset would be easy. Or, if the
hybrid model together with its parameters were known, segmenting the data into
multiple subsets would be straightforward. For instance, in Figure 1.1, if a correct
segmentation is given, finding an optimal linear subspace for each subset of sample
points has a well-established solution known as principal component analysis (PCA)
[30]; or, given the three linear subspaces, one can easily segment the samples to their
respective closest subspaces. The problem becomes much more involved if neither
the model nor the segmentation is known a priori and we have only the unsegmented
sample points, which are sometimes also corrupted by noise or outliers, as shown in
Figures 1.1(b) and 1.1(c), respectively. So at the heart of modeling such mixed data
is the question of how to resolve effectively the coupling between data segmentation
and model estimation.

In statistical learning, mixed data are typically modeled as a set of indepen-
dent samples {z1,z2, . . . ,zN} ⊂ R

D drawn from a mixture of probabilistic distribu-
tions {p(z, θj)}

n
j=1, which is typically a weighted sum p(z,Θ) =

∑

j πjp(z, θj) with
∑

j πj = 1. Then the problem of segmenting mixed data is often converted to a sta-
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Z = V1 ∪ V2 ∪ V3 ⊂ R
3

(b) noisy samples (c) noisy samples with outliers

o

V2 V3

V1

(a) sample points

Fig. 1.1 Inferring a hybrid linear model Z, consisting of one plane (V1) and two lines (V2, V3),
from a set of mixed data, which can be (a) noiseless samples from the plane and lines; (b)
noisy samples; (c) noisy samples with outliers.

tistical model-estimation problem. Depending on the purpose, the estimated model
parameters can take either the maximum-likelihood estimate, which maximizes the
log-likelihood, maxΘ,π

∑

i log
(
∑

j πjp(zi, θj)
)

, or the minimax estimate, which op-
timizes the objective, minΘ

∑

i[minj(− log p(zi, θj))]. However, even for simple dis-
tributions such as Gaussian distributions, there is no simple closed-form solution to
the estimate. One needs to resort to iterative schemes to find the optimal estimate.
For the maximum-likelihood estimate, one can view the event that a sample is drawn
from the jth distribution as a hidden random variable with an expectation of πj .
Then the classical expectation-maximization (EM) algorithm [12, 39] can be called
upon to maximize the likelihood in a “hill-climbing” fashion. The algorithm iterates
between estimating the membership of the samples with the model parameters fixed
(the expectation step) and estimating the model with the membership of the samples
fixed (the maximization step). The minimax estimate leads to an iterative algorithm,
known as the K-means algorithm [34, 21, 29, 37] (or its variation for subspaces, K-
subspaces [25]), which in many aspects resembles the EM algorithm.1 In a sense,
both the EM algorithm and the K-means algorithm have reinforced the belief that
the “chicken-and-egg” coupling between model estimation and data segmentation can
be dealt with, with practical computational complexity, only through such an iteration
between the two.

Iterative statistical methods have several drawbacks that limit their applicability
in estimating hybrid models. First, the log-likelihood method typically has multiple
extrema. If the algorithm is not properly initialized, the iterative process may con-
verge to a local extremum that gives an invalid estimate of the model. In practice,
to increase the chance of finding the global extremum, one often needs to run the
algorithm multiple times with random initialization, which obviously reduces the effi-
ciency of the algorithm. Second, the statistical formulation typically relies on explicit
assumptions about the mixture distribution: the number of component distributions,
the parametric models of the distributions, and the dimension or complexity of each

1The only difference is that in the expectation step, instead of estimating the probability that
each sample belongs to each model, the sample is assigned to the most probable model.
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model, etc. However, in many practical applications, such information is not readily
available and needs to be inferred from the given data. Finally, statistical meth-
ods such as maximum likelihood are known to be less effective when dealing with
situations in which the distributions are degenerate [58]. Unfortunately, these situ-
ations arise very often for mixed data that are drawn from a typical hybrid (linear)
model.

Thus, there is a need for alternative methods for mixed data modeling that may
remedy the limitations mentioned above. More particularly, we are interested in a
noniterative method not requiring initialization. Although it is unlikely a general so-
lution exists for arbitrary hybrid models, many effective methods have been developed
in the past few years for the special class of hybrid linear models. The goal of this
paper is to provide a comprehensive review of some of these methods. However, to
make this review more rigorous and complete, we also take the liberty of filling in
some gaps between the theory and the practice. Thus, although this paper is mainly
expository, many results presented here are actually new.

1.1. Problem Statement. More precisely, this paper addresses the following
problem.

Problem 1.1. Given a set of sufficiently dense sample points drawn from a
union of n linear subspaces V1, V2, . . . , Vn of dimensions d1, d2, . . . , dn, respectively,
in a D-dimensional space F

D, where the base field F is typically R or C, estimate a
basis for each subspace and segment all sample points into their respective subspaces.

We consider the problem under three assumptions of increasing practicality and
difficulty.

Assumption 1. The samples are noiseless samples from the subspaces; see Fig-
ure 1.1(a).

Assumption 2. The samples are corrupted by (typically Gaussian) noise; see
Figure 1.1(b).

Assumption 3. The samples are corrupted by noise and contaminated by outliers;
see Figure 1.1(c).

In what follows we develop the solution under the above assumptions. We will
also consider situations in which the number of subspaces or their dimension is either
known or unknown.

The technical conditions under which a set of sample points is considered to be
“sufficiently dense” will become clear in the context. Furthermore, there is no loss
of generality in assuming the subspaces to be linear, i.e., they all contain the origin.
When a hybrid model consists of affine subspaces that do not contain the origin, we
can always increase the dimension of the ambient space by one and identify each affine
subspace with the linear subspace that it spans.2

In mathematics, a union of multiple subspaces is called a subspace arrangement.
Subspace arrangements, and their topological complements, are very important classes
of objects that have been studied in mathematics for centuries. The importance as
well as the difficulty of studying subspace arrangements can hardly be exaggerated.
Different aspects of their properties have been and are still being investigated and
exploited in many mathematical fields, including algebraic geometry, algebraic topol-
ogy, combinatorics and complexity theory, and graph and lattice theory. See [7, 6, 41]
for a general review.

2As an example, if we are to estimate two affine line models in R
2, we can lift the sample points

from the two lines into R
3 by adding a nonzero constant as the third coordinate. Then the problem

is converted to estimating two linear planes in R
3.
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In the context of modeling mixed data, subspace arrangements are of immedi-
ate interest because they are the natural generalizations of single subspaces—the
linear models. As a class of models for describing mixed data, subspace arrange-
ments are sufficiently flexible and expressive: they may contain subspaces of differ-
ent dimensions, and they can approximate with arbitrary accuracy any nonlinear
geometric or topological structures. In fact, subspace arrangements are implicitly as-
sumed in another important area of statistical signal processing, sparse representation
[40, 14, 16, 15, 17], because the set of all signals that allow a sparse solution w.r.t. a
(possibly over-complete) basis precisely lies on multiple low-dimensional linear sub-
spaces. However, in our study, we do not assume that the bases of the subspaces are
given in advance and so they are part of the unknowns that need to be retrieved from
the data. Nevertheless, as we will see shortly, a subspace arrangement, as an algebraic
set, can be effectively estimated and segmented given a sufficient set of sample data.

1.2. Organization of This Paper. In this paper we review the solutions to Prob-
lem 1.1 under each of the three assumptions. As a result, the scope of subjects to be
covered is rather broad, ranging from theory to practice, from algebra to statistics,
and from simulations to real-world applications. Nevertheless, we hope to convince
the reader that these subjects are strongly related to one another and are crucial for
investigators who want to gain a deep and complete understanding about the problem.

If the sample points are noiseless, the problem is mostly algebraic. Section 2
reviews the basic algebraic properties of subspace arrangements. As an algebraic set,
the set of polynomials that vanish on a subspace arrangement forms an ideal and
the subspace arrangement is uniquely determined by this ideal. We give a complete
characterization of the dimension of each graded component of the ideal, also known
as the Hilbert function. We further show how the vanishing ideal can be determined
from a sufficiently dense (nevertheless finite) set of sample points on the arrangement,
and how the subspaces can be subsequently deduced from the vanishing polynomials.
These results lead to a simple algebraic algorithm for estimating and segmenting a
subspace arrangement from a set of sample points, known as generalized principal
component analysis (GPCA).

In section 3, we review some statistical techniques that allow us to estimate
the vanishing polynomials and the subspaces from sample points that are corrupted
by noise. When the number of subspaces and their dimensions are not known, we
introduce some relevant model-selection criteria for subspace arrangements that strike
a good balance between the complexity of the chosen model and the fidelity of the
data (w.r.t. the model).

In section 4, we study the problem under the assumption that the given sam-
ple points are contaminated with outliers. We introduce certain robust statistical
techniques that can detect or diminish the effect of outliers, especially for subspace
arrangements.

Finally, in section 5, we demonstrate how these methods can be applied to several
real-world applications. The source codes for all the algorithms in this paper, as well
as more applications, are available online at http://perception.csl.uiuc.edu/gpca.

2. Inference of Subspace Arrangements via Algebraic Techniques. Before we
can introduce subspace arrangements as a useful class of models for data modeling
and segmentation, we need to understand their properties as an important class of
algebraic sets. In this section we review the necessary mathematical facts that allow us
to infer a subspace arrangement from a finite number of samples and to subsequently
decompose the arrangement into separate subspaces, as shown in Figure 2.1. The
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z2

o

V1

V2

V3

individual subspacesZ = V1 ∪ V2 ∪ V3

I(Z) = I(V1) ∩ I(V2) ∩ I(V3)
sample points {zi}

z1

z3

Fig. 2.1 Inferring a subspace arrangement of three subspaces, Z = V1∪V2∪V3, from a set of sample
points {zi}.

algebraic facts presented in this section serve as the theoretical foundation for an
effective method to model and segment mixed data known as GPCA. In the sections
that follow, we will show how this algebraic method should be modified when the
samples are corrupted by noise (section 3) or contaminated with outliers (section 4).

2.1. Basic Definitions and Algorithm. In this section, we assume that the reader
has basic knowledge of the abstract algebra that is covered in any graduate-level
algebra course. Details may be found in most texts, for example, [33, 18]. In what
follows, the ambient space is a D-dimensional vector space over an infinite field F

(which is usually either R or C). We immediately identify our vector space with F
D.

If V is a d-dimensional subspace, then its codimension is denoted by c
.
= D − d.

Definition 2.1 (subspace arrangement). A subspace arrangement in F
D is a

union

(2.1) A
.
= V1 ∪ V2 ∪ · · · ∪ Vn

of n subspaces V1, V2, . . . , Vn of F
D.

For a nonempty subset S of the index set {1, 2, . . . , n}, we define the intersection

VS
.
= ∩s∈SVs

with dimension dS
.
= dimVS and codimension cS

.
= D − dS .

Definition 2.2 (transversal subspace arrangement). A subspace arrangement
A = V1 ∪ V2 ∪ · · · ∪ Vn is called transversal if

cS = min

(

D,
∑

i∈S

ci

)

for all nonempty S ⊆ {1, 2, . . . , n}.

That is, the dimensions of all intersections are as small as possible.
Notice that transversality is a weaker condition than the typical notion of gen-

eral position. For instance, three coplanar lines through the origin are transversal in
R
3, but usually they are not regarded to be in general position. Transversality is an
appropriate assumption for most real applications. Moderate data noise and machine
roundoff should guarantee that the subspace structures of the data are transversal.
Thus, in this paper, unless stated otherwise, we always assume that a subspace ar-
rangement is transversal.

The ring of polynomial functions on the ambient space F
D is denoted by

F
[D] .= F[X1, X2, . . . , XD].
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This is the ring of polynomials in the functions X
.
= {X1, X2, . . . , XD}, where Xj

is the function that assigns the jth coordinate to a point in F
D. Any polynomial

f ∈ F
[D] can be written as a unique sum

f = f0 + f1 + · · ·+ fT ,

where the fi are homogeneous polynomials of degree i. Let F
[D]
h denote the vector

space of all homogeneous polynomials of degree h. Then there is a decomposition

(2.2) F
[D] = F ⊕ F

[D]
1 ⊕ F

[D]
2 ⊕ · · ·

of F
[D] into the direct sum of its homogeneous components. Clearly, F

[D]
h F

[D]
k ⊆ F

[D]
h+k.

Each homogeneous component F
[D]
h is a finite-dimensional vector space over F of

dimension

(2.3) M
[D]
h

.
=

(

h+D − 1
D − 1

)

.

One can verify this by observing that the monomials

{Xu1
1 Xu2

2 · · ·XuD

D : u1 + u2 + · · ·+ uD = h}

form a basis of F
[D]
h . Given any point x = (x1, x2, . . . , xD)

T ∈ F
D, the values of these

monomials give the image of the point under the Veronese map.
Definition 2.3 (Veronese map). The Veronese map of degree h is the map

νh : F
D → F

M
[D]
h

given by

(2.4) νh











x1
x2
...
xD











=











xh1
xh−1
1 x2
...
xhD











.

An arbitrary homogeneous polynomial q(X) of degree h inX = {X1, X2, . . . , XD}
can be written as q(X) = c

T vh(X) for some vector c ∈ F
M

[D]
h that collects all the

coefficients associated with the monomials.
Definition 2.4 (Jacobian matrix). The Jacobian matrix of a collection of poly-

nomials Q(X) =
(

q1(X), q2(X), . . . , qm(X)
)T

is the m×D matrix

(2.5) J (Q)(X)
.
=







∂q1
∂X1

· · · ∂q1
∂XD

...
. . .

...
∂qm

∂X1
· · · ∂qm

∂XD






∈ R

m×D.

With the above definitions, we are now ready to present a basic algebraic algo-
rithm in Algorithm 1, called GPCA, which provides a simple solution to Problem 1.1
under Assumption 1.

From section 2.3 to 2.4, we provide a rigorous justification for and a detailed anal-
ysis of this algorithm. Steps 1–3 of the algorithm aim to find the set of polynomials
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Algorithm 1. GPCA.
Given a set of samples {z1,z2, . . . ,zN} from a (transversal) arrangement of n linear
subspaces with dimensions d1, d2, . . . , dn in R

D:

1: Construct the matrix Ln =
(

νn(z1), νn(z2), . . . , νn(zN )
)

.
2: Compute the singular value decomposition (SVD) of Ln and let C be the matrix
whose columns are the singular vectors associated with all the zero singular values.

3: Construct the polynomials Q(X) = C
T νn(X).

4: for all 1 ≤ i ≤ n do

5: Pick one point zi per subspace Vi and compute the Jacobian J (Q)(zi).
6: Compute a basis Bi =

(

b1, b2, . . . , bdi

)

of Vi from the right null space of
J (Q)(zi) via the singular value decomposition of J (Q)(zi).

7: Assign samples zj that satisfy B
T
i zj = 0 to the subspace Vi.

8: end for

Q(X) (of degree n) that vanish on the subspace arrangement of interest. This is possi-
ble for two reasons to be elaborated on in section 2.2. First, the subspace arrangement
as an algebraic set is uniquely determined by its vanishing polynomials (according to
Lemma 2.8); second, the vanishing polynomials can be determined from a finite set
of sample points on the subspaces (according to Theorem 2.9). Notice in step 2 of
the algorithm that the coefficient vectors of the polynomials Q(X) are computed as
the singular vectors in the null space of matrix Ln, which can be sensitive to noise.
Thus, it is of great practical importance to know the number of linearly independent
vanishing polynomials of degree n, since we can take columns of C to be the singular
vectors associated with the same number of smallest (not necessarily zero) singular
values. The number is given by the Hilbert function of the subspace arrangement, for
which we will give a closed formula in section 2.3 (see Corollary 2.16). As we will see
in section 2.4, through the relationships between the vanishing ideal and the product
ideal of a subspace arrangement revealed in the study of their Hilbert functions, one
can easily show that the derivatives of the vanishing polynomials span the orthogonal
complement to each subspace, on which steps 5–7 of the algorithm rely.

2.2. Vanishing Polynomials of Subspace Arrangements. We will discuss the
correspondence between ideals in the polynomial ring F

[D] and subsets in F
D.

Definition 2.5 (vanishing ideal). The vanishing ideal I(W ) of a subset W ⊆ F
D

is defined by

I(W )
.
= {f ∈ F

[D] : f(z) = 0 for all z ∈ W}.

One easily checks that I(W ) is indeed an ideal of the polynomial ring F
[D]. Before

dealing with a general subspace arrangement, consider first the situation of a single

subspace V . The homogeneous component F
[D]
1 is the vector space of linear functions

from F
D to F. Denote by V ⊥ those linear functions on F

D that vanish on V . Any
linear function that vanishes on V can be written as

f(X) = b1X1 + b2X2 + · · ·+ bDXD,

where b = (b1, b2, . . . , bD)
T ∈ F

D is a vector that satisfies

(2.6) b1x1 + b2x2 + · · ·+ bDxD = 0 for all (x1, x2, . . . , xD)
T ∈ V.
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One can show that if the dimension of V is d, then V ⊥ has dimension c = D − d.
That is, V ⊥ is spanned by c linearly independent linear functions

(2.7) V ⊥ = span{g1, g2, . . . , gc},

where each gi ∈ F
[D]
1 .

All the ideals that we work with turn out to be homogeneous.
Definition 2.6 (homogeneous ideal). An ideal I in F

[D] is homogeneous if the
homogeneous components of elements in I are also in I.

It is well known that an ideal is homogeneous if and only if it is generated by
homogeneous elements. The vanishing ideal I(V ) of a subspace V ⊆ F

D is obviously
generated by the linear functions in V ⊥, in fact by a basis of V ⊥, and hence is a
homogeneous ideal generated by finitely many homogeneous elements.

It is easy to see that the vanishing ideal I(A) of a subspace arrangement A is the
intersection of the vanishing ideals of the individual subspaces,

(2.8) I(A) = I(V1 ∪ V2 ∪ · · · ∪ Vn) = I(V1) ∩ I(V2) ∩ · · · ∩ I(Vn).

Since each of the constituents is homogeneous, the ideal I(A) itself is homogeneous
and hence

I(A) = I0 ⊕ I1 ⊕ I2 ⊕ · · · ,

where Ih = I(A) ∩ F
[D]
h is the homogeneous part of degree h (for small h this may

be the trivial vector space). Let m be the smallest nonnegative integer such that
Im �= {0}. Then m ≤ n and we can write

(2.9) I(A) = Im ⊕ Im+1 ⊕ · · · ⊕ In ⊕ In+1 ⊕ · · · .

Notice that polynomials that vanish on A may have degree strictly lower than
n, the number of subspaces in the arrangement. One example is a transversal ar-
rangement of two lines and one plane in R

3. Since any two lines lie on a plane, this
arrangement can be embedded in a hyperplane arrangement of two planes, and there
exist homogeneous polynomials of degree two that vanish on the arrangement.

Let us introduce an ideal related to the vanishing ideal I(A), called the product
ideal J(A) = I(V1)I(V2) · · · I(Vn). That is, J(A) is the ideal generated by the products
g1g2 · · · gn, where gj ∈ I(Vj) for each j. The ideal J(A) is also homogeneous. So

(2.10) J(A) = Jn ⊕ Jn+1 ⊕ · · · .

It is clear that the first nonzero graded component of J(A) is Jn and that

(2.11) Jn = V ⊥
1 V

⊥
2 · · ·V ⊥

n = I1(V1)I1(V2) · · · I1(Vn).

Definition 2.7 (zero set). Given a set of polynomials I ⊆ F
[D], the zero set of

I is defined to be

Z(I)
.
= {z ∈ F

D : g(z) = 0 for all g ∈ I} ⊆ F
D.

Lemma 2.8. The subspace arrangement A is the zero set of the homogeneous
component In and also the zero set of the homogeneous component Jn. That is,

Z(In) = Z(Jn) = Z(I(A)) = Z(J(A)) = A.
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Proof. Since Jn ⊆ In ⊂ I(A) and elements of I(A) vanish on the set A by
definition, we have

(2.12) A ⊆ Z(I(A)) ⊆ Z(In) ⊆ Z(Jn).

For the other direction, suppose z �∈ A. Then z �∈ Vi for all i = 1, 2, . . . , n. Hence, for
each i, there exists a linear function gi ∈ V ⊥

i such that gi(z) �= 0. Let g = g1g2 · · · gn.
Then g(z) �= 0 and obviously g ∈ Jn. It then follows that z �∈ Z(Jn). Therefore
Z(Jn) ⊆ A. Using (2.12), we obtain

A = Z(I(A)) = Z(In) = Z(Jn).

Also, Z(J(A)) = Z(Jn) = A because J(A) is generated by Jn.
A consequence of Lemma 2.8 is that in order to recover an arrangement A of n

subspaces, one needs only to know the set of polynomials of degree n that vanish on
A. A subset in F

D is called an algebraic set if it is the zero set of its vanishing ideal.
In other words, W is an algebraic set if and only if W = Z(I(W )). In this sense,
a subspace arrangement is an algebraic set. There is a one-to-one correspondence
between a subspace arrangement and its vanishing ideal.

Be aware that our task here is to recover the subspace arrangement A from only
a finite number of samples F = {z1,z2, . . . ,zN}. From an algebraic point of view,
an algebraic set Z, such as a subspace arrangement, is rather different from any finite
number of discrete sample points on Z. In fact, suppose mi is the set of polynomials
that vanish on just one point zi; then the set of polynomials that vanish on the finite
set F = {z1,z2, . . . ,zN} is the intersection

(2.13) I(F ) = m1 ∩ m2 ∩ · · · ∩ mN .

It should be noted that the quotient F
[D]/I(F ) is always a finite-dimensional vector

space over F, regardless of the number of points N .
Thus, we need to find the vanishing ideal I(Z) from a finite sample set F ⊂ Z.

In general, the ideal I(Z) is always a proper subideal of I(F ), regardless of how many
points one samples. However, the information about I(Z) can still be retrieved from
I(F ), as we show in the theorem below. A further bit of notation is required. For the
graded ring F

[D], let

(2.14) F
[D]
≤n = F ⊕ F

[D]
1 ⊕ · · · ⊕ F

[D]
n .

It is important to note that this is a finite-dimensional vector space.
Theorem 2.9 (sampling of an algebraic set). Consider a nonempty set Z ⊆ F

D

whose vanishing ideal I(Z) is generated by polynomials in F
[D]
≤n. Then there is a finite

sequence F = {z1,z2, . . . ,zN} such that I(F ) ∩ F
[D]
≤n generates I(Z).

Proof. Let In = I(Z) ∩ F
[D]
≤n. This vector space generates I(Z). Let a0 = F

[D] =

I(∅). Let b0 = a0 ∩ F
[D]
≤n and let A0 = (b0), the ideal generated by the polynomials

in a0 of degree less than or equal to n. Since 1 ∈ F
[D] ∩ F

[D]
≤n is the generator of this

ideal, we have A0 = F
[D]. Since Z �= ∅, then A0 �= I(Z). Set N = 1 and pick a point

z1 ∈ Z. Then 1(z1) �= 0 (1 is the function that assigns 1 to every point of Z). Let a1

be the ideal that vanishes on {z1} and define b1 = a1 ∩ F
[D]
≤n. Further, let A1 = (b1).

3

3Here we are using the convention that (S) is the ideal generated by the set S. Recall also that
the ring F

[D] is noetherian by the Hilbert basis theorem and so all ideals in the ring are finitely
generated [18].
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Since I(Z) ⊆ a1, it follows that In ⊆ b1. If A1 = I(Z), then we are done. Suppose
then that I(Z) ⊂ A1.

Let us do the induction at this point. Suppose we have found a finite sequence
FN = {z1,z2, . . . ,zN} ⊂ Z with

I(FN ) = aN ,(2.15)

bN = aN ∩ F
[D]
≤n,(2.16)

AN = (bN ),(2.17)

b0 ⊃ b1 ⊃ · · · ⊃ bN ⊇ In.(2.18)

It follows that In ⊆ bN and that I(Z) ⊆ AN . If equality holds here, then we are done.
If not, then there is a function g ∈ bN not in I(Z) and an element zN+1 ∈ Z for which
g(zN+1) �= 0. Set FN+1 = {z1, . . . ,zN ,zN+1}. Then one gets aN+1, bN+1, AN+1 as
above with

(2.19) b0 ⊃ b1 ⊃ · · · ⊃ bN ⊃ bN+1 ⊇ In.

We obtain a descending chain of subspaces of the vector space F
[D]
≤n. This chain must

stabilize, since the vector space is finite-dimensional. Hence there is an N for which
bN = In and we are done.

Example 2.10 (a hyperplane in R
3). Consider a plane P = {z ∈ R

3 : f(z) =
ax1 + bx2 + cx3 = 0}. The polynomial f(z) = ax1 + bx2 + cx3 will be the only
(homogeneous) polynomial of degree 1 that fits any two points in general position in

P . In terms of the language introduced above, the ideal I(P ) =
(

a2 ∩ R
[3]
≤1

)

.
We point out that no precise lower bound on the total number N of points needed

is given in the proof above. Nevertheless, from the proof of the theorem it is seen that
the set of finite sequences of samples that satisfy the theorem is an open set. Thus in
principle, with probability 1, the vanishing ideal can be determined from a randomly
chosen and sufficiently large set of samples. Moreover, if we know the dimension of
In and decide to estimate coefficients of the vanishing polynomials linearly, then the

smallest number of samples needed is the codimension of In in F
[D]
n . The number of

linearly independent polynomials in In is associated with the Hilbert function of the
ideal, for which we now derive a closed-form formula.

2.3. Hilbert Functions of Subspace Arrangements. As we alluded to earlier,
in the GPCA algorithm, to more stably estimate the vanishing polynomials (of degree
n) of a subspace arrangement A, it is useful to know how many of the polynomials
are linearly independent. This is related to the Hilbert function of the vanishing ideal
I(A).

Definition 2.11 (Hilbert function). The Hilbert function of a homogeneous
ideal K is the function hK : N → N defined by

(2.20) hK(j)
.
= dim(Kj),

where Ki is the ith homogeneous component of K and N denotes the nonnegative
integers.4

The remainder of this section is devoted to providing a closed-form formula for
the Hilbert function hI(i) of the vanishing ideal I(A) of a subspace arrangement A

4Be aware that, in the literature, the Hilbert function is sometimes defined as the codimension

of Ki in F
[D]
i : M

[D]
i − dim(Ki).
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that is valid for i ≥ n. The basic idea is to show that the product ideal J = J(A) of
A has a closed-form formula for its Hilbert function hJ(i)

.
= dim(Ji). Then one can

show that when the arrangement is transversal, one has hI(i) = hJ(i) for all i ≥ n.
A more complete development is given in [13].

Definition 2.12 (Hilbert series). The Hilbert series of a homogeneous ideal K
is defined to be

(2.21) H(K, t)
.
=

∑

i∈N

hK(i)t
i.

Example 2.13. The Hilbert series of the polynomial ring F
[D] is

H(F[D], t) =
∑

i∈Z

dim(F
[D]
i )ti =

∑

i∈Z

(

i+D−1
D−1

)

ti =
1

(1− t)D
.

Example 2.14. Suppose I(V ) is the vanishing ideal of a subspace V of dimension
d in F

D. Then I(V ) is generated by c = D − d linear polynomials g1, g2, . . . , gc. The
quotient ring F

[D]/I(V ) can be identified with the ring of polynomial functions on
V ∼= F

d, so F
[D]/I(V ) ∼= F

[d]. Hence,

H(I(V ), t) = H(F[D], t)− H(F[d], t) =
1

(1− t)D
−

1

(1− t)d
=
1− (1− t)c

(1− t)D
.

A recursive formula for the Hilbert series of J(A) was given in [13]. Surpris-
ingly, this formula depends only on the codimensions of the intersections (cS , S ⊆
{1, 2, . . . , n}) and D, the dimension of the ambient vector space. This means that the
Hilbert series H(J(A), t) is a combinatorial invariant of the arrangement A. Com-
binatorial invariants play an important role in the study of subspace arrangements
and hyperplane arrangements. In general, the Hilbert series of I(A) is not a combi-
natorial invariant. This means that the series H(I(A), t) depends more delicately on
the geometry of the arrangement. For example, suppose that A is the union of three
distinct lines (through the origin) in F

3. Regardless of whether the three lines are
coplanar or not, we have

H(J(A), t) =
7t3 − 9t4 + 3t5

(1− t)3
= 7t3 + 12t4 + 18t5 + · · ·

(for a derivation of this formula and the formulas below, see [13]). However, one has

H(I(A), t) =
t+ t3 − t4

(1− t)3
= t+ 3t2 + 7t3 + 12t4 + 18t5 + · · ·

if the lines are coplanar, and

H(I(A), t) =
3t2 − 2t3

(1− t)3
= 3t2 + 7t3 + 12t4 + 18t5 + · · ·

if the three lines are not coplanar. In these examples, the subspace arrangements are
all transversal. For transversal arrangements, the Hilbert series of the product ideal
J(A) has a particularly nice form, which we describe now.

Suppose

A = V1 ∪ V2 ∪ · · · ∪ Vn
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is a subspace arrangement and that (c1, c2, . . . , cn) is the vector of codimensions.
Define the power series FA(t) by

(2.22) FA(t)
.
=

∏n
i=1(1− (1− t)ci)

(1− t)D
.

We can decompose FA(t) in a unique way as

FA(t) = PA(t) +GA(t),

where PA(t) is a polynomial and

GA(t) =
QA(t)

(1− t)D
= g(0) + g(1)t+ g(2)t2 + · · ·

such that QA(t) is a polynomial of degree < D.
Theorem 2.15 (see [13]). Suppose A = V1 ∪ V2 ∪ · · · ∪ Vn is a transversal

arrangement. Then

hI(i) = hJ(i) = g(i)

for i ≥ n. In other words, H(I(A), t)−GA(t) and H(J(A), t)−GA(t) are polynomials
of degree < n.

From (2.22) we deduce that

GA(t) =
∑

S

(−1)|S| 1

(1− t)D−cS
,

where cS =
∑

j∈S cj and the sum is over all S ⊆ {1, 2, . . . , n} for which cS < D.
Corollary 2.16. If A = V1 ∪ V2 ∪ · · · ∪ Vn is transversal, then for all i ≥ n,

(2.23) hI(i) = hJ(i) = g(i) =
∑

S

(−1)|S|

(

i+D − 1− cS
D − 1− cS

)

,

where cS =
∑

j∈S cj and the sum is over all S ⊆ {1, 2, . . . , n} (including the empty
set) for which cS < D.

The reader needs to be aware that formula (2.23) for hI(i) is valid only for i ≥ n.
The formula in Corollary 2.16 is not particularly efficient to evaluate: the number
of terms may depend exponentially on n. Directly evaluating FA(t) and GA(t) as
quotients of expanded polynomials and then evaluating the power series of GA(t) is
a more efficient way to determine the values g(i), i = n, n+ 1, n+ 2, . . . .

For i < n there is no known closed-form formula for hI(i). One must resort
to symbolic or numerical computation to find those values. Fortunately, for most
practical applications that we have seen so far, it is typically good enough to know
the values of hI(i) for fewer than 10 subspaces in an ambient space of dimension less
than 15.5

Example 2.17. Suppose that A = V1 ∪V2 ∪V3 is a transversal arrangement in F
4.

Let d1, d2, d3 (respectively, c1, c2, c3) be the dimensions (respectively, codimensions)

5Source codes of both symbolic and numerical computation are available from the authors. We
have also computed the complete table of values of hI(i) for up to six subspaces in R

12.
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of V1, V2, V3. We can construct the following table of hI(n) for n = 3, 4, 5.

c1, c2, c3 d1, d2, d3 hI(3) hI(4) hI(5)
1, 1, 1 3, 3, 3 1 4 10
1, 1, 2 3, 3, 2 2 7 16
1, 1, 3 3, 3, 1 3 9 19
1, 2, 2 3, 3, 2 4 12 25
1, 2, 3 3, 2, 1 6 15 29
1, 3, 3 3, 1, 1 8 18 33
2, 2, 2 2, 2, 2 8 20 38
2, 2, 3 2, 2, 1 11 24 43
2, 3, 3 2, 1, 1 14 28 48
3, 3, 3 1, 1, 1 17 32 53

Note that from the above table, the codimensions c1, c2, c3 are almost determined by
hI(3). They are uniquely determined by hI(3) and hI(4). Corollary 2.18 below is a
general result that implies that c1, c2, c3 are determined by hI(3), hI(4), hI(5) in this
particular example.

Corollary 2.18. Consider a transversal arrangement of n subspaces. The
codimensions c1, . . . , cn (and hence the dimensions) of the subspaces are uniquely de-
termined by the values of the Hilbert function hI(i) for i = n, n+ 1, . . . , n+D − 1.

These results are very important for the development and improvement of the
GPCA algorithm for estimating and segmenting a subspace arrangement given a set
of sample data.

First, the values of the Hilbert function give a rich class of invariants for subspace
arrangements. Knowing those values may greatly facilitate the task of finding the
correct subspace arrangement model for a given set of (noisy) data. On one hand,
given a data set, if we know the number of subspaces and their dimensions (which can
be the case for many practical problems), the value of the Hilbert function from (2.23)
will tell us exactly how many linearly independent polynomials of a certain degree to
use to fit the data set. This information becomes particularly important when the
data are noisy and the number of fitting polynomials is difficult to determine from
the rank of the matrix Ln (in Algorithm 1). On the other hand, if the dimensions or
number of the subspaces are not given but we are able to obtain the set of vanishing
polynomials (up to certain degree), then according to Corollary 2.18, the dimensions
(or number) of the subspaces can be uniquely determined from the values of the
Hilbert function (even without segmenting the data first).

Second, the equality hI(i) = hJ(i) for i ≥ n implies that Ii = Ji for i ≥ n and, in
particular, In = Jn. That is, the homogeneous component In of the vanishing ideal of
a transversal subspace arrangement is always generated by products of linear forms.
(This is called pl-generated in [7].) This fact was used (but not established at the
time) in the early development of the GPCA algorithm [60] because the algorithm
would be much easier to explain (to engineers) by using products of linear forms. In
the next section, we will see that this property makes it extremely easy to show that
the derivatives of the vanishing polynomials span the entire orthogonal complement
of each subspace.

2.4. Computational Issues. In the previous subsections we considered the cor-
respondence between a transversal subspace arrangement A and its vanishing ideal.
We also showed how we are able, in principle, to recover the ideal from a large enough
number of samples on the arrangement (Theorem 2.9). In this subsection, based on
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the facts established so far, we discuss a few computational issues associated with
the algebraic GPCA algorithm given in section 2.1. In this section, we assume the
samples to be noise-free. We will discuss samples corrupted by noise in section 3 and
samples contaminated by outliers in section 4.

The first version of the algebraic GPCA algorithm was proposed in [60]. Several
different variations have been proposed since then. All variants consist of three main
steps. First, a set of polynomials that vanish on the given data samples is retrieved.
Second, the vectors normal to the subspaces are estimated from the derivatives of
these polynomials. Third, the samples are segmented into their respective subspaces
based on the normals. We give a brief description of each main step.

2.4.1. Retrieving the Vanishing Polynomials. We are given a set of samples
{z1,z2, . . . ,zN} that we know lies in a subspace arrangement. Typically, we are
dealing with real data sets. Thus, unless otherwise stated, for the rest of the paper
we will assume the field F to be the real field R. Suppose that we know the number
n and the dimensions of the subspaces in the subspace arrangement A ⊆ R

D. We
then know the number of linearly independent vanishing polynomials of degree n is
equal to the value of the Hilbert function of I(A) at n. Suppose m = hI(n). We then

embed the samples in R
M [D]

n via the Veronese map νn (see Definition 2.3), obtaining
the matrix

(2.24) Ln
.
=

(

νn(z1), νn(z2), . . . , νn(zN )
)

∈ R
M [D]

n ×N .

Obviously, if q(X) = c
T νn(X) is a polynomial that vanishes on A, then we have

q(zi) = c
T νn(zi) = 0 for all i = 1, 2, . . . , N . Therefore the column of coefficients c

must be in the (left) null space of Ln: c
TLn = 0. If the sample set is large enough,

according to Theorem 2.9, the dimension of the null space of Ln is exactly m = hI(n).
Thus, a basis C =

(

c1, c2, . . . , cm

)

of the null space of Ln gives a basis of In(A),

(2.25) Q(X)
.
=

(

q1(X), q2(X), . . . , qm(X)
)T
,

where qi(X) = c
T
i νn(X), i = 1, 2, . . . ,m.

The matrix C can be computed from the eigenvectors of the matrix

W
.
=
1

N
LnL

T
n ∈ R

M [D]
n ×M [D]

n

that correspond to its m eigenvalues with eigenvalue 0. In the case of small noise or
numerical roundoff errors, we can take the eigenvectors associated with them = hI(n)
smallest eigenvalues. Numerically, this can be done via singular value decomposition
(SVD) of Ln, which statistically corresponds to principal component analysis (PCA).
In section 3, we will see how the estimate of C can be further improved when the
samples are noisy.

Computationally, computing the eigenvectors of W is the most expensive step of
the entire GPCA algorithm. With the best numerical implementation of SVD, the
complexity of the GPCA algorithm is typically quadratic in the size of the data N or

the dimension of the Veronese map M
[D]
n . Since M

[D]
n grows exponentially in both D

and n, on a typical PC, due to memory limits, the GPCA algorithm can only handle
n ≤ 10 subspaces of dimension D ≤ 15.

2.4.2. Retrieving the Normal Vectors and Bases of the Subspaces. Having
found the vanishing polynomials Q(X), we can, in principle, obtain the subspace
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arrangement A as their zero set. In most practical problems where a subspace ar-
rangement is of interest, we are more interested in the individual subspaces of the
arrangement rather than the union. Particularly, we want to segment the data into
their respective subspaces. Thus, the problem that arises is how to retrieve the sub-
spaces from the vanishing polynomials. However, it is computationally prohibitive to
directly decompose the vanishing polynomials to obtain the subspaces as “factors”
of the polynomials via algebraic means.6 Fortunately, in addition to the polynomials
generating the vanishing ideal, we also have sample points from their zero set. This
turns out to simplify greatly the identification of the individual constituent subspaces
in the arrangement.

Let q(X) be any polynomial of degree n that vanishes on the arrangement A.
Then, according to Theorem 2.15, q(X) ∈ Jn(A). In other words, it can be written
as the sum of products of linear forms,

(2.26) (b1X) · (b2X) · · · (bnX),

where bi is a vector orthogonal to the subspace Vi. Pick one sample zi per subspace
Vi (not in any of the other subspaces).

7 As bizi = 0, the gradient of each product of
linear forms evaluated at zi is

bi · (b1zi) · · · (bi−1zi) · (bi+1zi) · · · (bnzi).

Thus, the gradient of the polynomial q(X) evaluated at zi is spanned by bi ∈ V ⊥
i .

On the other hand, any polynomial of the above product form is in Jn(A) = In(A).
That is, it can be written as a linear combination of the polynomials in Q(X).

Therefore, the rows of the Jacobian matrix J (Q)(zi) evaluated at zi span the
entire orthogonal complement V ⊥

i of Vi. Figure 2.1 illustrates this concept with a
simple example. Thus, a basis of Vi can be computed from the (right) null space of
J (Q)(zi), say, from the SVD of J (Q)(zi), in a manner similar to the computation
of C from Ln.

2.4.3. Variations of the Basic GPCA Algorithm. The basic GPCA algorithm
1 applies to the very idealistic situation in which the samples have no noise and the
number and dimensions of the subspaces are all known. If any of those conditions is
changed, the algorithm needs to be modified accordingly.

For instance, we know that the lowest degree of the polynomials that vanish on
the given data set can be strictly lower than the number of subspaces. If the number of
subspaces is not known, the derivatives of these polynomials of the lowest degree lead
to a super subspace arrangement A′ that contains the original arrangement, A ⊆ A′.
Thus, we can recursively apply GPCA to samples in each subspace of A′. In principle,
the process will stop when all the subspaces in the original arrangement are found.
In the literature, this is known as recursive GPCA. However, if the samples are noisy,
the stopping criterion becomes much more elusive.

There are many more variations to the GPCA algorithm when the samples are
corrupted by noise or contaminated with outliers. We will discuss some of the impor-
tant variations in the next two sections.

6This is a problem that does not yet have a polynomial-complexity algorithm.
7The literature is full of many proposals for picking such a point when the samples are noisy. In

the next section, we will provide a scheme that does not rely on the choice of the point.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ESTIMATION OF SUBSPACE ARRANGEMENTS 429

3. Estimation of Subspace Arrangements from Noisy Samples. When the
samples from a subspace arrangement are corrupted by noise, estimating the van-
ishing polynomials and subsequently retrieving the subspaces become a statistical
problem. In this case, the embedded data matrix will be of full rank and the vanish-
ing polynomials can no longer be retrieved directly from its null space. We discuss
how to estimate the vanishing polynomials from noisy samples in section 3.1, which
is inspired by the work of [52] with a special treatment given to homogeneous polyno-
mials. Likewise, the derivatives of the vanishing polynomials at a noisy sample point
no longer span the orthogonal complement to the underlying subspace. Thus, neither
the dimension nor the basis of the subspace can be obtained directly from the deriva-
tives. In section 3.2, we show how to modify the algebraic GPCA algorithm with
a multiple-hypothesis voting scheme to estimate the subspaces. This voting-based
GPCA algorithm has been shown to outperform other extant variations. When nei-
ther the number of subspaces nor their dimensions are known, we introduce relevant
model-selection criteria for choosing the optimal subspace arrangement for a given set
of noisy samples in section 3.3.

3.1. Estimation of Vanishing Polynomials. From the previous section, we know
that GPCA is based on the concept that we are able to identify correctly a set of (lin-
early independent) polynomials Q(X) =

(

q1(X), q2(X), . . . , qm(X)
)T
, say, of degree

n, whose zero set is exactly the subspace arrangement

(3.1) A = V1 ∪ V2 ∪ · · · ∪ Vn = {z ∈ R
D : Q(z) = 0}.

For noisy samples, the algebraic GPCA algorithm is modified by replacing the null
space of the embedded data matrix Ln by the eigenspace associated to the smallest
eigenvalues. In order for such a least-square fitting

(3.2) min
c

‖νn(z)
T
c‖2

to be statistically optimal, one needs to assume that the embedded data vector νn(z)
has a Gaussian distribution. In practice, it is often more natural and meaningful to
assume instead that the samples zi themselves are corrupted by (isotropic) Gaussian
noise. That is, we assume that, for each sample point zi,

(3.3) zi = ẑi(c) + ni, i = 1, 2, . . . , N,

where ẑi(c) is a point on the subspace arrangement determined by c and ni is an
independent isotropic Gaussian random noise added to ẑi(c). If the arrangement is
clearly indicated from the context, we also write ẑi(c) as ẑ. It is easy to verify that,
with respect to this noise model, the embedded data vector νn(zi) no longer has a
Gaussian distribution and subsequently the least-square fitting no longer gives the
optimal estimate of the vanishing polynomials. In fact, under the Gaussian noise
model, the maximum-likelihood estimate minimizes the mean square distance:

(3.4) min
c

1

N

N
∑

i=1

‖zi − ẑi(c)‖
2.

However, it is difficult to minimize (3.4) because the closest point ẑi(c) to zi is a
complicated function of the polynomial coefficients c. To resolve this difficulty, in
practice we often use the first order approximation of zi − ẑi as a replacement for the
mean square distance. This leads to the Sampson distance that we now introduce.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

430 Y. MA, A. Y. YANG, H. DERKSEN, AND R. FOSSUM

3.1.1. Sampson Distance. We assume that the polynomials in Q(X) are lin-
early independent. Given a point z close to the zero set of Q(X), i.e., the subspace
arrangement A, we let ẑ denote the point closest to z on A. Using the Taylor series
of Q(X) expanded at z, the value of Q(X) at ẑ is then given by

(3.5) Q(ẑ) = Q(z) + J (Q)(z)(ẑ − z) +O(‖ẑ − z‖2).

After ignoring the higher order terms and noting that Q(ẑ) = 0, we have

(3.6) z − ẑ ≈
(

J (Q)(z)T J (Q)(z)
)†

J (Q)(z)TQ(z) ∈ R
D,

where
(

J (Q)(z)T J (Q)(z)
)†
is the pseudo-inverse of the matrix J (Q)(z)T J (Q)(z).

Thus, the approximate square distance from z to A is given by

(3.7) ‖z − ẑ‖2 ≈ Q(z)T
(

J (Q)(z)J (Q)(z)T
)†
Q(z) ∈ R.

The expression on the right-hand side is known as the Sampson distance [47]. Thus,
the average Sampson distance

(3.8)
1

N

N
∑

i=1

Q(zi)
T
(

J (Q)(zi)J (Q)(zi)
T
)†
Q(zi)

is an approximation of the mean square distance (3.4). Minimizing the Sampson
distance typically leads to a good approximation to the maximum-likelihood estimate
that minimizes the mean square distance.

There is, however, a certain redundancy in the expression of Sampson distance. If
A is the zero set of Q(X), it is also the zero set of the polynomials Q̃(X) =MQ(X)
for any nonsingular matrixM ∈ R

m×m. It is easy to check that the Sampson distance
(3.7) is invariant under the nonsingular linear transformation M . Thus, the estimate
of polynomials in Q that minimize the average Sampson distance (or the mean square
error) is not unique, at least not in terms of the coefficients of the polynomials in
Q(X).

One way to reduce the redundancy is to impose some constraints on the coeffi-
cients of the polynomials in Q(X). Notice that

J (Q̃)(zi)J (Q̃)(zi)
T =MJ (Q)(zi)J (Q)(zi)

TMT

and, if there is no polynomial of lower degree (than those in Q(X)) that vanishes on
A, the matrix

1

N

N
∑

i=1

J (Q)(zi)J (Q)(zi)
T ∈ R

m×m

is a positive-definite symmetric matrix. Therefore, we can choose the matrix M such
that the following matrix is the identity:

(3.9)
1

N

N
∑

i=1

J (Q)(zi)J (Q)(zi)
T = Im×m.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ESTIMATION OF SUBSPACE ARRANGEMENTS 431

Thus, the problem of minimizing the average Sampson distance now becomes a
constrained nonlinear optimization problem:

(3.10)

Q∗ = argmin
P

1

N

N
∑

i=1

Q(zi)
T
(

J (Q)(zi)J (Q)(zi)
T
)†
Q(zi)

subject to
1

N

N
∑

i=1

J (Q)(zi)J (Q)(zi)
T = Im×m.

Many nonlinear optimization algorithms can be employed here to minimize the above
objective function via iterative gradient-descent techniques. However, in order for the
iterative process to converge quickly to the global minimum, a good initialization is
needed. Below we discuss one such method.

3.1.2. Generalized Eigenvector Fit. Notice that the linear transformations that
preserve the identity (3.9) are unitary transformations, the group of which is denoted
by O(m) = {R ∈ R

m×m : RTR = Im×m}. Obviously, the least-square fitting error
is invariant under unitary transformations: ‖RQ(z)‖2 = ‖Q(z)‖2. In addition, as
the identity matrix Im×m is the average of the matrices J (Q)(zi)J (Q)(zi)

T , we
can use the identity matrix to approximate each J (Q)(zi)J (Q)(zi)

T . With this
approximation, the Sampson distance (3.7) becomes the least-square fitting error:

(3.11) Q(z)T
(

J (Q)(z)J (Q)(z)T
)†
Q(z) ≈ Q(z)TQ(z) = ‖Q(z)‖2.

This leads to the following constrained optimization problem:

(3.12)

Q∗ = argmin
Q

1

N

N
∑

i=1

‖Q(zi)‖
2

subject to
1

N

N
∑

i=1

J (Q)(zi)J (Q)(zi)
T = Im×m.

This problem has a simple linear algebraic solution. Without loss of generality, we
assume that all the polynomials in Q(X) are of degree n and there is no polynomial
of degree strictly less than n that vanishes on the subspace arrangement A of interest.
Homogeneous polynomials of degree n have the form

(3.13) qi(X) = νn(X)T ci, i = 1, 2, . . . ,m.

Let C
.
=

(

c1, c2, . . . , cm

)

. Then we have Q(X) = C
T νn(X) and J (Q)(X) =

C
T ∇νn(X). Define two matrices

Σ
.
=
1

N

N
∑

i=1

νn(zi)νn(zi)
T , Γ

.
=
1

N

N
∑

i=1

∇νn(zi)∇νn(zi)
T .(3.14)

Using these notations, we rewrite the optimization problem (3.12) as

C
∗ = argmin

C

Trace(CTΣC) subject to C
TΓC = Im×m.(3.15)

In comparison, the naive least-square fitting (3.2) minimizes the same objective func-
tion but subject to a different constraint, C

T
C = Im×m.
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Using Lagrange multipliers and the necessary conditions for minima, one can
show that the optimal solution C

∗ is such that its ith column c
∗
i is the ith generalized

eigenvector of the matrix pair (Σ,Γ):

(3.16) Σc
∗
i = λiΓc

∗
i , i = 1, 2, . . . ,m,

where 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λm are the m smallest generalized eigenvalues of (Σ,Γ).
Furthermore, as Γ is nonsingular,8 c

∗
i is also the eigenvector associated with the ith

smallest eigenvalue of the matrix Γ−1Σ:

(3.17) Γ−1Σc
∗
i = λic

∗
i , i = 1, 2, . . . ,m.

As the optimal solution to the problem (3.12), the polynomials qi(X) = νn(X)T c
∗
i

usually give a good initialization to the problem (3.10). It usually takes only a few
more iterations for any reasonable gradient-descent method (such as the Levenberg–
Marquardt) to converge to the (global) minimum.

The generalized eigenvector fit has yet another statistical explanation from the
viewpoint of (Fisher) discriminant analysis. The matrix Σ can be viewed as a measure
of the intraclass distance—the closer a point is to one of the subspaces, the smaller the
(absolute) value of a fitting polynomial; and the matrix Γ can be viewed as a measure
of the interclass distance—the norm of the derivative at a point in a subspace is
roughly proportional to its distance to other subspaces.9 According to discriminant
analysis, the optimal polynomial q(X) = νn(X)T c

∗ for discriminating the subspaces
minimizes the Rayleigh quotient,

(3.18) c
∗ = argmin

c

c
TΣc

cTΓc
.

It is then easy to show that the optimal solution c
∗ is exactly the generalized eigen-

vector of the matrix pair (Σ,Γ). Therefore, the fitting polynomials found via the
generalized eigenvector fit are the ones that are in a sense optimal for segmenting the
multiple subspaces.

3.1.3. Simulation Results. In this subsection, we demonstrate by simulation how
the normalization by Γ may significantly improve the eigenvalue spectrum of Σ. That
is, the generalized eigenvectors of (Σ,Γ) are less sensitive to the corruption of noise
than the null space of Σ, which makes the estimation of the fitting polynomials a
more well conditioned problem. To see this, let us consider a set of points drawn from
two lines and one plane in R

3 (see Figure 1.1)—1000 points from the plane and 200
points from each line—with 5% Gaussian noise added.10 As Figure 3.1 illustrates,
the generalized eigenvalues of (Σ,Γ) provide a much sharper “knee point” than the
eigenvalues of Σ. With the new spectrum, one can more easily estimate the correct
number of polynomials that fit the data (in this case, four polynomials).

3.2. Estimation of Subspace Arrangements via a Voting Scheme. In the al-
gebraic GPCA algorithm, the basis of each subspace is computed as the orthogonal
complement to the derivatives of the fitting polynomials at a representative sam-
ple point. However, if the chosen point is noisy, it may cause a large error in the

8Otherwise there would be a polynomial of degree less than n that fits the data, which contradicts
our assumptions.

9This is easy to see from an arrangement of hyperplanes.
10The percentage is computed as the variance of the Gaussian relative to the diameter of the data

set.
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Fig. 3.1 Top: plot of the eigenvalues of the matrix Σ. Bottom: plot of the eigenvalues of the matrix
Γ−1Σ.

estimated basis and subsequently cause a large error in the segmentation. From a
statistical point of view, more accurate estimates of the basis can be obtained only
if we are able to compute an average of the derivatives at many points in the same
subspace. However, a fundamental difficulty here is that we do not know which points
belong to the same subspace. There is yet another issue. In the algebraic GPCA al-
gorithm, the rank of the derivatives at each point indicates the codimension of the
subspace to which it belongs. In the presence of noise, one can determine the rank
from the singular values of the derivatives, i.e., using PCA. However, the rank can be
erroneous if the chosen point is noisy. It is also difficult to find a uniform threshold
for PCA that works for points in different subspaces.

In the following, we review a variation of algebraic GPCA that improves the esti-
mation of the subspace bases in the presence of high data noise. This method was in-
spired by the classical Hough transform [2, 54], which collectively considers the deriva-
tives at all the sample points. In this scheme, these sample points cast votes on the
feature space of subspace basis parameters. More technical details can be found in [63].

3.2.1. GPCA with Voting. Suppose the subspace arrangement is a union of n
subspaces: A = V1∪V2∪· · ·∪Vn. Let the dimensions of the subspaces be d1, d2, . . . , dn
and their codimensions be c1, c2, . . . , cn. Without loss of generality, we assume that
c1, c2, . . . , cn have l distinct values c

′
1 < c′2 < · · · < c′l.

Pick a sample point z1. The Jacobian of the fitting polynomials Q(X) at z1

is J (Q)(z1). As we do not know the true codimension at the sample point z1, we
compute a set of candidate bases in column form,

(3.19) Bi(z1) ∈ R
D×c′

i , i = 1, 2, . . . , l,

as Bi(z1) collects the first c
′
i principal components of J (Q)(z1). Thus, each Bi(z1)

is a D × c′i orthogonal matrix.
To store the basis candidates B1(zj), B2(zj), . . . , Bl(zj) for all samples j =

1, 2, . . . , N , we create l arrays of bases U1, U2, . . . , Ul, where each Ui stores all can-
didate D × c′i matrices. Correspondingly, we create l arrays of voting counters
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u1, u2, . . . , ul. Suppose Ui(j) ∈ R
D×c′

i stores a candidate basis; then ui(j) is an
integer that counts the number of sample points zk with Bi(zk) = Ui(j).

Notice that numerically Bi(zk) cannot be exactly equal to Ui(j). In order to
compare Bi(zk) with bases in Ui when the data are noisy, we need to set an error
tolerance. This tolerance, denoted by τ , can be a small subspace angle chosen by the
user.11 Thus, if the subspace angle difference between Bi(zk) and Ui(j),

(3.20) 〈Bi(zk), Ui(j)〉,

is less than τ , Bi(zk) then belongs to the candidate basis Ui(j) in the record.
With the above definitions, we now outline an algorithm that will select a set of

bases for the n subspaces that achieves the highest consensus on all the sample points.
Suppose Ji is the size of the array Ui and hence ui for all i = 1, 2, . . . , l. Initially, all
Ji’s are equal to zero. For every sample point zk,

1. we compute a set of basis candidates Bi(zk), i = 1, 2, . . . , l, as in (3.19);
2. for each Bi(zk), we compare it with the bases already in the array Ui:

(a) if Bi(zk) = Ui(j) for some j, then increase the value of ui(j) by 1;
(b) if Bi(zk) is different from any of the bases in Ui, then add Ui(Ji + 1) =

Bi(zk) as a new basis to Ui, and also add a new counter ui(Ji + 1) to
ui with the initial value ui(Ji + 1) = 1. Set Ji ← Ji + 1.

In the end, the bases of the n subspaces are chosen to be the n bases in the arrays
{U1, U2, . . . , Ul} that have the highest votes according to the corresponding counters
in {u1, u2, . . . , ul}. For instance, suppose the codimensions of 4 subspaces are 1, 3, 3, 4
in R

5 and the distinct codimensions are c′1 = 1, c
′
2 = 3, and c

′
3 = 4. Then, after the

bases are evaluated at all the samples, we select one basis candidate from U1 and one
from U3 with the largest numbers in u1 and u3, respectively, and two basis candidates
from U2 with the largest two numbers in u2.

We summarize the overall process as Algorithm 2, which is called GPCA-voting.
There are important features of the above voting scheme that are quite different

from the well-known statistical learning methods K-subspaces [25] and EM [39] for
estimating subspace arrangements. The K-subspaces and EM algorithms iteratively
update one basis for each subspace, while the voting scheme essentially keeps multiple
candidate bases per subspace through the process. Thus, the voting algorithm does
not have the same difficulty with local minima as K-subspaces and EM do.

There are other voting or random sampling methods developed in statistics and
machine learning, such as the least median estimate (LME) and random sample con-
sensus (RANSAC). These methods are similar in nature as they compute multiple
candidate models from multiple down-sampled subsets of the data and then choose
the one that achieves the highest consensus (for RANSAC) or smallest median error
(for LME). The data that do not conform to the model are regarded as outliers. We
will discuss these methods in the context of dealing with outliers in section 4.

3.2.2. Simulation Results. We provide a comparison of various algorithms for
the estimation and segmentation of subspace arrangements that we have mentioned
so far. They include the EM algorithm, the K-subspaces algorithm, the algebraic
GPCA algorithm, GPCA-voting, as well as some combination of them.

We randomly generate subspace arrangements of some prechosen dimensions. For
instance, (2, 2, 1) indicates an arrangement of three subspaces of dimensions 2, 2, 1,

11Please refer to [5] for numerical implementations of computing subspace angles. In MATLAB,
the built-in command is subspace.
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Algorithm 2. GPCA-voting.

Given a set of samples {z1, z2, . . . , zN} in R
D and a parameter for angle tolerance τ , fit n

linear subspaces with codimensions c1, c2, . . . , cn:

1: Suppose there are l distinct codimensions, ordered as c′
1 < c′

2 < · · · < c′
l. Allocate

u1, u2, . . . , ul to be l stacks of counters and U1, U2, . . . , Ul to be l stacks of candidate
bases.

2: Estimate the set of fitting polynomials Q(X), and compute their derivatives J (Q)(X)
for all zk.

3: for all samples zk do

4: for all 1 ≤ i ≤ l do

5: Assume zk is drawn from a subspace of codimension c′
i. Find the first c′

i principal
vectors of J (P )(zk) and stack them into the matrix Bi(zk) ∈ R

D×c′

i .
6: If 〈Bi(zk), Ui(j)〉 < τ for some j, increase ui(j) by one and reweight Ui(j) by adding

Bi(zk). Otherwise, create a new candidate basis in Ui and a new counter in ui with
initial value one.

7: end for

8: end for

9: for all 1 ≤ i ≤ l do

10: Choose the highest vote(s) in ui with their corresponding basis/bases in Ui.
11: Assign the samples to their closest subspaces, and remove their votes in other counters

and bases of higher codimensions.
12: end for

13: Segment the remaining samples that are not in the stacks of the highest votes based on
the estimated bases.

Table 3.1 The percentage of sample points misgrouped by different algorithms. The number of
subspaces and their dimensions are given to all algorithms. The EM and K-subspaces al-
gorithms are randomly initialized. “GPCA-voting+K-subspaces” means the K-subspaces
method initialized with the GPCA-voting algorithm. The sample number for each sub-
space is 200 times its dimension.

Methods (2, 2, 1) ∈ R
3 (2, 2, 2) ∈ R

3 (4, 2, 2, 1) ∈ R
5 (4, 4, 4, 4) ∈ R

5

EM 29% 11% 53% 20%
K-subspaces 27% 12% 57% 25%

Algebraic GPCA 10.3% 10.6% 39.8% 25.3%
GPCA-voting 6.4% 9.2% 5.7% 17%
GPCA-voting

5.4% 8.6% 5.7% 11%+ K-subspaces

respectively. We then randomly draw a set of samples from them. The samples are
corrupted with Gaussian noise. Here we choose the level of noise to be 4%. The error
is measured in terms of the percentage of sample points that are wrongfully grouped.12

All cases are averaged over 100 trials. The performance of all the algorithms is com-
pared in Table 3.1. The reader can download the MATLAB codes from our website.

As we can see from this table, the voting scheme improves the performance of
the algebraic GPCA algorithm. In particular, significant improvements are achieved
where the subspaces have different dimensions, e.g., the (4, 2, 2, 1) case. The per-
formance is slightly further improved by combining GPCA-voting with the iterative
K-subspace process, which uses the result from GPCA-voting to initialize the iteration.

12Notice that even with prior knowledge of the subspaces, due to the samples drawn at subspace
intersections and sample noises, the segmentation error cannot be zero.
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3.3. Model-Selection Criteria for Subspace Arrangements. The methods that
we have discussed so far for the estimation of subspace arrangements (e.g., EM, K-
subspaces, and GPCA) assume that the number of subspaces and their dimensions
are known. If they are not given, the problem of fitting multiple subspaces to a set of
samples becomes much more elusive. For instance, sample points drawn from two lines
and one plane in R

3 can also be fit by two planes, one of which is spanned by the two
lines. In section 2, we suggested that in this case one can apply the algebraic GPCA
algorithm in a recursive fashion to identify all the subspaces and their dimensions.

However, when there is noise in the given data, the purely algebraic GPCA al-
gorithm may fail to return a meaningful solution. In fact, up till now, we have been
purposely avoiding a fundamental difficulty in our problem: it is inherently ambiguous
in fitting multiple subspaces for any given data set when the number of subspaces and
their dimensions are not given a priori. When the data are noisy or nonlinear, it is
unlikely that any model can fit the data perfectly except for the following pathological
cases: 1. All points are viewed as in a D-dimensional subspace—the ambient space;
2. Every point is viewed as on an individual one-dimensional subspace through the
origin. In general, the more subspaces we use to overfit a data set, the higher accuracy
we may achieve. Thus, a fundamental question we address in this section is: Among
the class of subspace arrangements, what is the “optimal” model that fits a given data
set? From a practical point of view, we also need to know under what conditions
the optimal model exists and is unique, and, more importantly, how to compute it
efficiently.

3.3.1. Model-Selection Criteria for Subspaces. Many general-purpose model-
selection criteria have been developed in the statistics community and the algorithmic
complexity community for general classes of models. These criteria include the fol-
lowing:

• Akaike information criterion (AIC) [1] (also known as the Cp statistic [38])
and geometric AIC (G-AIC) [31].

• Bayesian information criterion (BIC) (also known as the Schwartz criterion;
see [24] and references therein).

• Minimum description length (MDL) [43] and minimummessage length (MML)
[62].

Although these criteria were originally motivated and derived from different points of
view (or in different contexts), they all share a common characteristic: The optimal
model should be the one that strikes a good balance between the model complexity
(which typically depends on the dimension of the parameter space) and the data
fidelity to the chosen model (e.g., measured as the sum of squared errors assuming a
Gaussian noise model). In fact, some of the criteria are essentially equivalent despite
their different origins. Roughly speaking, BIC is equivalent to MDL, and AIC is
equivalent to the Cp statistic. It is not our intention to give a detailed review of all
the model-selection criteria in this paper. In the following, we use AIC to illustrate
some of the key ideas behind model selection.

Given N independent sample points Z = {z1,z2, . . . ,zN} drawn from a distribu-

tion denoted by p(z, θ0), the maximum-likelihood estimate θ̂N of the parameter θ is

the one that maximizes the log-likelihood function L(θ,Z) =
∑N

i=1 log p(zi, θ). From
an information-theoretic point of view,

(3.21) E[− log p(z, θ̂N )] =

∫

(

− log p(z, θ̂N )
)

p(z, θ0) dz
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corresponds to the expected code length that we use in the optimal coding scheme
of p(z, θ̂N ) for a random variable with actual distribution p(z, θ0). Thus, for model
selection, it is desirable to choose the model that minimizes the expected log-likelihood
loss above.

AIC relies on an approximation to the expected log-likelihood loss above that
holds asymptotically as N → ∞:

(3.22) AIC
.
= −

2

N
L(θ̂N ,Z) + 2

d

N
≈ 2E[− log p(z, θ̂N )],

where d is the number of free parameters for the class of models of interest. For an
(isotropic) Gaussian noise model with variance σ2, we have

L(θ̂N ,Z) = −
1

2σ2

N
∑

i=1

‖zi − ẑi‖
2,

where ẑi is the best estimate of zi given the model p(z, θ̂N ). Thus, if σ
2 is known

(or approximated by the empirical sample variance), minimizing AIC is equivalent to

minimizing the Cp statistic, Cp =
1
N

∑N
i=1 ‖zi − ẑi‖

2 + 2 d
N
σ2, where the first term

is obviously the mean squared error (a measure of the data fidelity) and the second
term depends linearly on the dimension of the parameter space (a measure of the
complexity of the model).

Now consider multiple classes of models whose parameter spaces are of different
dimensions. Denote the dimension of model class m by d(m). Then AIC selects the
model class m∗ that minimizes the following objective function:

(3.23) AIC(m) =
1

N

N
∑

i=1

‖zi − ẑi‖
2 + 2

d(m)

N
σ2.

Although motivated by a different reason, BIC results in a formula similar to
AIC except that the factor 2 in front of the second term in AIC is replaced by log(N)
in BIC. Because normally log(N) ≫ 2, BIC penalizes complex models much more
than AIC does. Thus, BIC tends to choose simpler models. In general, no model-
selection criterion is always better than all others under all circumstances; the best
criterion depends on the purpose of the model. From our experience, AIC tends to
provide more satisfactory results for the estimation of subspaces. That makes it more
favorable in the context of PCA and GPCA.

We now discuss how to apply the above criterion to the problem of PCA, where
we try to fit a subspace V of an unknown dimension d in R

D to a given set of data
points Z = {z1,z2, . . . ,zN} ⊂ R

D. Denote the projection of each data point zi ∈ Z

onto the subspace by ẑi and let Ẑ = {ẑ1, ẑ2, . . . , ẑN}. Then the sum of squared

errors is ‖Z − Ẑ‖2 =
∑N

i=1 ‖zi − ẑi‖
2.

The Grassmannian variety of dimension d subspaces of RD has dimension (D−d)d.
Therefore AIC minimizes

(3.24) AIC(d)
.
=
1

N
‖Z − Ẑ‖2 + 2

(Dd− d2)

N
σ2

for our model with parameter space of dimension Dd − d2 and Gaussian noise with
variance σ2. More recently, a geometric version of AIC was proposed by [31], which
minimizes

(3.25) GAIC(d)
.
=
1

N
‖Z − Ẑ‖2 + 2

(Dd− d2 +Nd)

N
σ2,
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where the extra term Nd accounts for the number of coordinates needed to represent
(the closest projection of) the given N data points in the estimated d-dimensional
subspace. From the information-theoretic point of view, the additionalNd coordinates
are necessary if we are interested in encoding not only the model but also the given
data. This is often the case when we use PCA or GPCA for purposes such as data
compression and dimension reduction.

3.3.2. Effective Dimension of Samples on a Subspace Arrangement. If we
were to apply any of the model-selection criteria (or their concepts) to subspace
arrangements, at least two needs must be addressed:

1. We need to know how to measure the model complexity of arrangements of
subspaces (possibly of different dimensions).

2. We need to know how to balance properly the model complexity and the
modeling error for subspace arrangements, since the choice of a subspace
arrangement involves both continuous parameters (the subspace bases) and
discrete parameters (the number of subspaces and their dimensions).

Although model selection for subspace arrangements in its full generality is still an
open problem at this point, in the next two subsections we introduce a few specific
approaches to attempt to solve the problem of model selection from slightly different
aspects. We hope the basic concepts introduced in this and the next subsection may
help the reader to appreciate better the subtlety and difficulty of the problem.

Definition 3.1 (effective dimension). Given an arrangement of n subspaces
A
.
= ∪n

j=1Vj in R
D of dimension dj < D and Nj sample points Zj drawn from each

subspace Vj, the effective dimension of the entire set of N =
∑n

j=1Nj sample points,
Z = ∪n

j=1Zj, is

(3.26) ED(Z,A)
.
=
1

N





n
∑

j=1

dj(D − dj) +

n
∑

j=1

Njdj



 .

We contend that ED(Z,A) is the “average” number of (unquantized) real num-
bers one needs to assign to Z per sample point in order to specify the configurations
of the n subspaces and the relative locations of the sample points in the subspaces.13

In the first term of (3.26), dj(D − dj) is the total number of Grassmann coordinates
needed to specify a dj-dimensional subspace Vj in R

D; in the second term of (3.26),
Njdj is the total number of real numbers needed to specify the dj coordinates of the
Nj sample points in the subspace Vj . In general, if there is more than one subspace
in A, ED(Z,A) can be a rational number instead of an integer for the conventional
dimension.

Notice that, in the above definition, the effective dimension of Z depends on the
subspace arrangement A. The reason is that in general there are many subspace
arrangements that can fit the same data set Z, as we discussed in the beginning of
this section. Therefore, we define the minimum effective dimension (MED) of a given
sample set Z to be the minimum among all possible subspace arrangements that can
fit the data set14

(3.27) MED(Z)
.
= min

A:Z⊂A
ED(Z,A).

13We choose here real numbers as the basic “units” for measuring complexity in a similar fashion
to binary numbers, “bits,” traditionally used in algorithmic complexity or coding theory.

14The space of all subspace arrangements (with a bounded number of subspaces) is topologically
compact and closed, hence the MED is always achievable and hence well-defined.
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Example 3.2 (samples from one plane and two lines). As shown in Figure 1.1,
suppose that we have a set of samples drawn from one plane and two lines in R

3.
Obviously, the points in the two lines can also be viewed as lying in the plane that is
spanned by the two lines. However, that interpretation would result in an increase in
the effective dimension, since one would need two coordinates to specify a point in a
plane, as opposed to one in a line. For instance, suppose there are fifteen points in each
line, and thirty points in the plane. When we use two planes to represent the data, the
effective dimension is 1

60 (2×2×3−2×2
2+60×2) = 2.07; when we use one plane and two

lines, the effective dimension is reduced to 1
60 (2×2×3−22−2×1+30×1+30×2) = 1.6.

In general, if the number of points N is arbitrarily large (say, approaching infinity),
depending on the distribution of the points on the lines or the plane, the effective
dimension will be between 1 and 2, the true dimensions of the subspaces.

As suggested by the above example, the subspace arrangement model that leads to
the MED normally corresponds to a “natural” and hence “efficient” representation of
the data in the sense that it achieves the best dimension reduction among all possible
subspace arrangements.

3.3.3. MED of Noisy Samples. In practice, real data are corrupted with noise,
hence we normally do not expect a model to fit the data perfectly. The conventional
wisdom is to strike a good balance between the complexity of the chosen model and
the data fidelity. As all model-selection criteria exercise the same rationale, we here
adopt the G-AIC criterion (3.25),15 which leads to the following objective for selecting
the optimal subspace arrangement model:

(3.28) A∗ = argmin
A:Ẑ⊂A

{ 1

N
‖Z − Ẑ‖2 + 2σ2ED(Ẑ,A)

}

,

where σ2 is the variance of the Gaussian noise model (3.3). However, this optimization
problem can be very difficult to solve. The variance σ2 might not be known a priori
and we need to search for the global minimum in the configuration space of all subspace
arrangements, which is not a smooth manifold and has very complicated topological
and geometric structures. The resulting computation can be prohibitive.

To alleviate some of the difficulties, in practice, we may instead minimize the
effective dimension subject to a maximum allowable error tolerance. That is, among
all the subspace arrangements that fit the data within a given error bound, we choose
the one with the smallest effective dimension. To this end, we define the MED subject
to an error tolerance τ as

(3.29) MED(Z, τ)
.
= min

A: ‖Z−Ẑ‖∞≤τ

ED(Ẑ,A),

where Ẑ is the projection of Z onto the subspaces in A and the error norm ‖ · ‖∞

indicates the maximum norm: ‖Z − Ẑ‖∞ = max1≤i≤N ‖zi − ẑi‖. Based on the above
definition, the MED of a data set now becomes a notion that depends on the error
tolerance. In the extreme, if the error tolerance is arbitrarily large, the “optimal”
subspace arrangement for any data set can simply be the (zero-dimensional) origin;
if the error tolerance is zero instead, for data with random noise, each sample point
needs to be treated as a one-dimensional subspace in R

D of its own that brings the
MED up close to D.

15We here adopt the G-AIC criterion only to illustrate the basic ideas. In practice, depending on
the nature of the problem and its purpose, it is possible that other model-selection criteria may be
more appropriate and effective.
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Fig. 3.2 Left: sample points drawn from two lines and a plane in R
3 with 5% Gaussian noise are

segmented recursively by the GPCA algorithm with an error tolerance τ = 0.05. Right:
plot of the MED versus the error tolerance.

In many applications, the notion of maximum allowable error tolerance is partic-
ularly relevant. For instance, in image representation and compression, the task is
often to find a linear or hybrid linear model to fit the imagery data subject to a given
peak signal-to-noise ratio (PSNR), where the noise becomes the difference between the
original image and the approximate one. The resulting effective dimension directly
corresponds to the number of coefficients needed to store the resulting representation.
The smaller the effective dimension, the more compact or compressed is the final rep-
resentation. In section 5.2, we will see exactly how the MED principle is applied to
image representation. The same principle can be applied to any situation in which
one tries to fit a piecewise linear model to a data set whose structure is nonlinear or
hybrid.

Unlike the G-AIC (3.28), the MED objective (3.29) is relatively easy to achieve.
For instance, the recursive version of the GPCA algorithm discussed in section 2 can
be easily modified to minimize the effective dimension subject to an error tolerance:
We allow the recursion to proceed only if the effective dimension decreases while the
resulting subspaces still fit the data with the given error bound.

3.3.4. Simulation Results. Figure 3.2 demonstrates the result of such a recur-
sive GPCA algorithm segmenting synthetic data drawn from two lines (100 points
each) and one plane (400 points) in R

3 corrupted with 5% Gaussian noise. Given a
reasonable error tolerance, the algorithm stops after two levels of recursion (left side
of Figure 3.2). Note that the pink line is a “ghost” line at the (virtual) intersection
of the original plane and the plane spanned by the two lines.16 The right side of
Figure 3.2 is the plot of the MED of the same data set subject to different levels of
the error tolerance. As we see, the effective dimension decreases monotonically with
the increase of the error tolerance.

4. Estimation of Subspace Arrangements with Outliers. In many practical
situations the sample points can be contaminated by some atypical samples known

16Points on the intersection of the two planes get assigned arbitrarily to either plane depending
on the random noise. If needed, the points on the ghost line can be merged with the plane by some
simple postprocessing.
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Fig. 4.1 Results of GPCA (with voting) for samples drawn from two planes and one line in R
3, with

6% Gaussian noise as well as 6% outliers drawn from a uniform distribution (marked as
black asterisks “∗”). Left: the ground truth. Right: estimated subspaces and segmentation
result.

as “outliers” in addition to the noise that we have discussed above. The application
of any of the GPCA algorithms to a data set contaminated with such outliers can
lead to disastrous results. Both the estimated subspaces and the segmentation can
be far from the ground truth, as illustrated by the example in Figure 4.1. Thus, in
this section we introduce some relevant robust statistical techniques that can detect
or diminish the effect of outliers in estimating subspace arrangements.

Despite an extended history of interest and study, there is unfortunately no uni-
versally accepted definition of “outlier.”17 Most definitions (or tests) are based on
one of the following three guidelines:

1. Outliers form a set of small-probability samples with respect to the distribu-
tion in question [28, 9]. The given data set is therefore an atypical set if such
samples constitute a significant portion of the data.

2. Outliers form a set of samples that have relatively large influence on the
estimated model parameters [8, 11, 23]. A measure of influence is normally
the difference between the model estimated with and without the sample in
question.

3. Outliers form a set of samples that are not consistent with (the model inferred
from) the remainder of the data [2, 44, 20]. A measure of inconsistency is
normally the error residue of the sample in question with respect to the model.

Despite their dissimilarity, these guidelines result in essentially equivalent criteria for
testing for outliers. In different contexts, one of the guidelines may become more
natural or convenient to use than the others. In our context, as our goal is to obtain
the vanishing polynomials of the subspace arrangement, we assume that the “outliers,”
together with the valid samples, cannot be fit well by any of the polynomials.18

In the robust statistics literature, there have been extensive studies about outlier
detection and rejection [23, 30, 57, 49]. Most of them are conducted with the assump-
tion that the valid samples points, i.e., the inliers, are drawn from a conventional

17Earliest documented discussions among astronomers about outliers or “erroneous observations”
date back to the mid-18th century. See [3, 28, 4] for a more thorough exposition of the studies of
outliers in statistics.

18In situations when a data set contains samples drawn from some nonlinear algebraic sets, e.g.,
a quadratic surface, it is no longer appropriate to view such data as outliers. One way to resolve
the problem is to view the linear and nonlinear structures together as an algebraic set and develop
solutions to this new class of hybrid models. The interested reader may refer to [42] for a more
detailed discussion along these lines.
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statistical (or geometric) model. In our case we need to examine how to apply the ba-
sic principals of robust statistics to subspace arrangements to determine which of the
existing techniques is the most relevant and efficient. In this section, we discuss first
the simpler situation in which the percentage of outliers is known (section 4.1). Two
methods, namely, the influence function and robust covariance estimator, can both
be adopted to robustify the GPCA algorithm. When the percentage of outliers is not
given, we propose a criterion to conveniently estimate the percentage in section 4.2.
Finally, in section 4.3, we discuss several other common robust statistical techniques
such as LME [44] and RANSAC [20]. These techniques have been widely used in the
areas of computer vision, image processing, and pattern recognition.

4.1. Robust Estimation of Vanishing Polynomials.

4.1.1. Influence Functions. When we try to estimate the parameter θ of the
distribution p(z, θ) from a set of samples {z1,z2, . . . ,zN}, every sample zi might have

an uneven effect on the estimated parameter θ̂. The samples that have relatively large
effect are called influential samples and they can be regarded as outliers [8, 11, 23].

To measure the influence of a particular sample zi, we may compare the difference
between the parameter θ̂ estimated from all the N samples and the parameter θ̂(i)

estimated from all but the ith sample. We consider the maximum-likelihood estimate
as an example:

(4.1) θ̂ = argmax
θ

N
∑

j=1

log p(zj , θ), θ̂(i) = argmax
θ

∑

j �=i

log p(zj , θ),

and the influence of zi on the estimation of θ can be measured by the difference

(4.2) I(zi; θ)
.
= ‖θ̂ − θ̂(i)‖.

The function I(zi; θ) is also called the sample influence function in the literature of
robust statistics.

If a set of sample points {z1,z2, . . . ,zN} is drawn from a subspace arrangement
A = ∪n

i=1Vi ⊂ R
D, then GPCA relies on obtaining the set of polynomials Q(X) =

{q1(X), q2(X), . . . , qm(X)} of degree n that vanish on the subspace arrangement.
As we discussed in section 3, the coefficients C =

(

c1, c2, . . . , cm

)

of the polynomials
{qi(X) = νn(X)T ci} are estimated from the eigenvectors associated with the smallest
eigenvalues of the matrix Σ for least-square fitting or the generalized eigenvectors of
the matrix Γ−1Σ (see (3.17)). Regardless of the case, we denote the estimate as Ĉ.

The outliers mainly affect the final results by influencing the eigenvectors Ĉ, and
subsequently lead to erroneous estimates of the coefficients of the vanishing polynomi-
als. Therefore, to eliminate the effect of outliers, we seek a robust method to estimate
the eigenvectors in such a manner that they would be insensitive to the outliers, or to
reject the outliers before the eigenvectors are estimated. Such a robust modification
applies to all versions of GPCA introduced earlier.

Notice that, for our problem, we are not interested in the individual vectors in Ĉ,
but rather the eigensubspace spanned by the eigenvectors, Ŝ = span(Ĉ). Therefore,
the influence of the sample zi on the estimate of the eigensubspace can be measured
by

(4.3) I(zi;S) = 〈Ŝ, Ŝ(i)〉,

where 〈·, ·〉 denotes the subspace angle between two subspaces [5] and Ŝ(i) is the eigen-
subspace estimated with the ith sample omitted. All samples then can be sorted by
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their influence values, and the ones with the highest values will be rejected as “out-
liers” and will not be used for the estimation of the eigensubspace (or the vanishing
polynomials).

Equation (4.3) is a precise expression in describing the influence of a sample on
the estimation of the vanishing polynomials Q(X). However, the complexity of the
resulting algorithm is rather high. Suppose we have N samples, then we need to
perform PCA N +1 times in order to evaluate the influence values for the N samples.
In light of this drawback, some first order approximations of the influence values were
developed at roughly the same time that the sample influence function was proposed
[8, 11], when computational resources were scarcer than they are today. In robust
statistics, formulas that approximate a sample influence function are referred to as
theoretical influence functions.

While it is rather difficult to approximate the influence of each sample on the
estimated subspace S, it is relatively easier to approximate the sample’s influence on
the (coefficient) vectors {c1, c2, . . . , cm} as the eigenvectors of the sample covariance
matrix

(4.4) Σ
.
=

1

N − 1

N
∑

i=1

νn(zi)νn(zi)
T .

The basic idea here is to assume that each cj is a random vector with a cumulative
distribution function (c.d.f.) F . The distribution can be perturbed by a change of
the weighting ǫ ∈ [0, 1] of the ith sample,

(4.5) Fi(ǫ) = (1− ǫ)F + ǫδi,

where δi indicates the c.d.f. of a random variable that takes the value zi with proba-
bility 1. When F becomes Fi(ǫ), let cj(ǫ) be the new estimate of cj after the change.
Now we can define a theoretical influence function I(zi; cj) of the ith sample on cj

as the first order approximation of the sample influence above,

(4.6) cj(ǫ)− cj = I(zi; cj)ǫ+ h.o.t.(ǫ).

As derived in [11], the theoretical influence function I(zi; cj) =̇ limǫ→0
cj(ǫ)−cj

ǫ
is

given by

(4.7) I(zi; cj) = −zj
∑

h�=j

zhch(λh − λj)
−1 ∈ R

M [D]
n ,

where {λj , cj} are the eigenvalues and eigenvectors of the sample covariance matrix Σ
and zh is the hth principal component of the sample zi, i.e., the coordinate value with
respect to the hth eigenvector ch of the covariance matrix Σ. A further discussion of
this solution can be found in [30].

Notice that in order to compute the theoretical influence function (4.7), one needs
only to compute once the sample covariance matrix Σ and its eigenvalues and eigen-
vectors. Thus, computationally, it is much more efficient than the sample influence
function.

4.1.2. Robust Covariance Estimators. As we noticed in the estimation of the
vanishing polynomials, if we view the vectors νn(zi) as random samples, the problem
becomes how to estimate robustly the covariance matrix of the random vector u =
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νn(z). It is shown in [19] that if both the valid samples and the outliers are of
zero-mean Gaussian distribution and the covariance matrix of the outliers is a scaled
version of that of the valid samples, then the Mahalanobis distance

(4.8) di = u
T
i Σ

−1
ui,

based on the empirical sample covariance Σ = 1
N−1

∑N
i=1 uiu

T
i , is a sufficient statistic

for the optimal test that maximizes the probability of correct decision about the
outliers (in the class of tests that are invariant under linear transformations). Thus,
one can use di as a measure to down-weight or discard outlying samples while trying
to estimate the correct sample covariance Σ.

Depending on the choice of the down-weighting schemes, many robust covariance
estimators have been developed in the literature. Among them, two methods have
been widely adopted, namely, theM-estimator [28] and multivariate trimming (MVT)
[22]. A major constraint for robust covariance estimators is the maximal percentage
of outliers in a data set that an algorithm can effectively handle. This percentage
is called the breakdown point [28, 23]. Roughly speaking, for the M-estimator it
is inversely proportional to the dimension of the samples, and it usually becomes
prohibitive when the data dimension is higher than 20. For MVT, it is equal to
the percentage of samples trimmed from the data set, which can be very high. The
convergence rate of MVT is also the fastest among all methods of this kind. In the

case of subspace arrangements, the dimension of u = νn(z), i.e., M
[D]
n , is normally

very high. Thus, the M-estimator becomes impractical and MVT becomes the method
of choice.

The MVT method proceeds as follows. As the random vector νn(z) is not neces-
sarily of zero mean, we first obtain a robust estimate of the mean ū of the samples
{ui = νn(zi)} (using techniques such as in [22]). We then need to specify a trimming
parameter α, which is essentially equivalent to the outlier percentage. To initialize
the covariance matrix Σ0, all samples are sorted by their Euclidean distance ||ui−ū||,
and Σ0 is calculated as

(4.9) Σ0 =
1

|U | − 1

∑

h∈U

(uh − ū)(uh − ū)T ,

where U is the set of indexes of the first 100(1−α)% samples with the smallest distance.
In the kth iteration, the Mahalanobis distance of each sample, (ui−ū)TΣ−1

k−1(ui−ū),
is calculated, and Σk is again calculated using the set of first 100(1 − α)% samples
with the smallest Mahalanobis distance. The iteration terminates when the difference
between Σk−1 and Σk is small enough.

To proceed with the rest of the GPCA algorithm, we treat the trimmed samples
in the final iteration as the outliers and estimate Q(X) from the last m eigenvectors
of the resulting covariance matrix.

4.2. Estimating the Outlier Percentage. All the above techniques did not com-
pletely solve the outlier issue, since usually we do not know the outlier percentage,
and hence the rejection rate, for a given data set. In this subsection, we introduce
a solution to estimate the outlier percentage. The percentage will be determined
so that the GPCA algorithm returns a “good enough” subspace arrangement model
from the remaining sample points. The main idea is to conduct the outlier rejection
process multiple times under different rejection rates and verify the “goodness” of the
resulting models.
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Fig. 4.2 Maximal sample residuals with various rejection rates on subspace arrangement models
estimated using the MVT covariance estimator. The data set is contaminated by 16%
uniformly distributed outliers.

Fig. 4.3 Subspace segmentation results. Left: a priori data (outliers are marked as black asterisks
“∗”). Middle: the estimation result with 7% samples rejected. Right: the estimation result
with 38% samples rejected.

We first illustrate the basic ideas with an example. We randomly draw a set of
sample points from three subspaces of dimensions (2, 2, 1) in R

3 with sample sizes
(200, 200, 100) and add 6% Gaussian noise. Then the data are contaminated by 16%
uniformly distributed outliers. We use MVT as an example to trim out various per-
centages of samples ranging from 0% to 54%, and compute the maximal residual
of the remaining samples with respect to the subspace arrangement given by the
GPCA-voting algorithm. Figure 4.2 shows the plot of the maximal residual versus
the rejection rate. The maximal sample residual reaches a plateau right after 7%
rejection rate, and the residual decreases when the rejection rate increases. Figure
4.3 shows the segmentation results at rejection rates 7% and 38%, respectively.

In the experiment, although the 7% rejection rate is far less than the a priori 16%
outlier percentage, the remaining outliers in the sample set are nevertheless close to
the subspaces (in terms of their residuals w.r.t. the estimated subspace arrangement),
and the resulting subspace arrangement is close to the ground truth. We also see that
MVT is moderately stable when the rejection rate is higher than the actual percentage
of outliers. In this case, when the rejection rate is 38%, MVT also trims out inlying
samples that have relatively larger noise, which results in an even smaller maximal
residual as shown in Figure 4.2.

Therefore, one does not have to reject the a priori outlier percentage in order
to obtain a good estimate of the arrangement model. An estimate of the percentage
will be the rejection rate that results in small sample residuals of the remaining
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sample points. These observations suggest two possible approaches for determining
the rejection rate from a plot of the maximal sample residual:

1. The rejection rate can be determined by finding the first “knee point,” or
equivalently the first “plateau,” in the residual plot (in the above example,
at 7%).

2. The rejection rate can be determined by a prespecified maximal residual
threshold.

In practice, one may choose to use either approach based on the nature of the applica-
tion. However, for the first approach, it is commonly agreed in the pattern recognition
literature that a method that finds knee points and plateaus in a plot may not be
robust if the data are noisy, since they are both related to the first order derivatives
of the residual curve. For example, in Figure 4.2, the rejection rate 3% is arguably a
knee point too. In addition, a well-shaped plateau may not exist in the residual plot
at all if the a priori outlier percentage is small. Two such examples will be shown in
Figure 5.2.

In this work, we propose to determine the outlier percentage as the smallest
percentage such that the maximal sample residual is smaller than a given residual
threshold for several consecutive rejection rates (i.e., the residual “stabilizes”). The
residual threshold can be seen as the variance of the noise of the valid data. It plays
a similar role as the error tolerance when we determine the MED of a noisy sample
set (see section 3.3.3). The choice of a residual threshold also helps us to conduct a
fair comparison with other robust statistical techniques, in particular the RANSAC
algorithm [20], later in this section. Algorithm 3 gives an outline of the resulting
algorithm, which we refer to as Robust GPCA (GRGPCA).

Algorithm 3. Robust GPCA.
Given a set of samples X = {z1, z2, . . . , zN} in R

D, a threshold τ for the subspace angle, and
a residual threshold σ, fit n linear subspaces of codimensions c1, c2, . . . , cn:

1: Set a maximal possible outlier percentage M%.
2: Normalize the data such that the max vector magnitude is 1.
3: for all rejection rate 0 ≤ r ≤ M do

4: X
′ ← removing r% samples from X using MVT or influence function.

5: Estimate the subspace bases {B̂1, B̂2, . . . , B̂n} by applying GPCA to X
′ with param-

eters τ and c1, c2, . . . , cn.
6: Maximal residual σmax ← maxz∈X′ mink ‖z − B̂kB̂T

k z‖.
7: if σmax is consistently smaller than σ then

8: Bk ← B̂k for k = 1, 2, . . . , n. Break.
9: end if

10: end for

11: if σmax > σ then

12: ERROR: the given σ is too small.
13: else

14: Label z ∈ X as an inlier if mink ‖z − BkBT
k z‖ < σ.

15: Segment the inlying samples to their respective subspaces.
16: end if

To demonstrate the performance of the algorithm, we conduct two simulated
experiments. 1. Three subspaces with dimensions (2, 2, 1) in R

3 and sample sizes
(200, 200, 100). 2. Four subspaces with dimensions (4, 2, 2, 1) in R

5 and sample sizes
(400, 200, 200, 100). The maximal data magnitude is 1, and it is corrupted with 6%
Gaussian noise and uniformly distributed outliers of a series of percentages from 0%
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(a) (2, 2, 1) in R
3 (b) (4, 2, 2, 1) in R

5

Fig. 4.4 Average space angle errors (in degree) of arrangements estimated by RGPCA.

Table 4.1 Average time for estimating the three subspace arrangements with 24% uniform dis-
tributed outliers via RGPCA.

Arrangement (2, 2, 1) in R
3 (4, 2, 2, 1) in R

5

Sample influence 3m 58m
Theoretical influence 1.4m 40m

MVT 46s 23m

to 48%. The experiment is repeated 100 times at each percentage. For RGPCA using
either MVT or the influence functions, the residual threshold σ is fixed at 0.04 and
the angle threshold τ is fixed at 0.3 rad. Figure 4.4 shows the results of the average
angle error in the unit of degree. Table 4.1 shows the average time of the algorithm
on a dual 2.7 GHz Macintosh workstation.

We compare the performance of the three different RGPCA algorithms. In terms
of accuracy, MVT gives the best overall estimation on the two synthesized data sets.
The subspace angle errors for the two cases are both within two degrees with up to
50% outliers. The two influence function approaches also give comparable results for
the data sets that have outliers less than 30%. In terms of speed, MVT is also the
fastest among the three algorithms, and the sample influence approach naturally falls
to the slowest.

Finally, we need to caution the reader that the excellent performance given by
MVT here is partially due to the fact that the outliers in the simulations are gener-
ated from an idealistic uniform distribution. However, in real applications where the
outliers may come from any arbitrary distribution, the influence function approach
may outperform the MVT approach. For more detailed discussion and comparisons
in applications in computer vision, the reader is referred to [64, 63].

4.3. Other Robust Statistical Techniques. The above robust techniques have
one thing in common: To begin with, they all rely on an estimate of the model from
all the samples. This to some extent puts a limit on the number of outliers that
these techniques can deal with. Depending on the nature of the data and the actual
implementation of the algorithm, these techniques, particularly robust covariance es-
timators, can only handle up to 50% outliers [45, 49]. There is yet another category
of robust statistical techniques that are based on random sampling, including but not
limited to LME [44], RANSAC [20], and the Hough transform [2], developed in the
computer vision literature. They typically start with certain estimates of the model
from randomly drawn subsets of the whole sample set and then select the best one in
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terms of the resulting residual or consensus for the remaining samples. In principle,
these techniques can deal with over 50% outliers.

In the context of subspace segmentation, there are at least three possible ways to
estimate an arrangement model using the random sampling scheme. In the following,
we briefly discuss their implementations and difficulties when applied to subspace
arrangements.

1. Estimating Vanishing Polynomials. Similar to the previous methods, a ran-
dom sampling algorithm can be applied to the estimation of a set of poly-
nomials that consistently vanish on a subset of the sample data. In this
approach, the number of random samplings becomes prohibitive when the
model dimension is high. For instance, in the context of GPCA, assume that
the dimension of the vector νn(z) is 70 (which corresponds to the case of 4
subspaces in R

5). To estimate a hyperplane of dimension 69 in R
70 with 20%

outliers, in order to have at least one subset of 69 inliers with probability
0.95, one needs to subsample over 14 millions subsets, not to mention that
we still need to use GPCA to calculate the subspace bases using the resulting
polynomials. This drawback makes it impractical to apply random sampling
techniques to the estimation of the vanishing polynomials.

2. Estimating One Subspace at a Time. One may consider applying the ran-
dom sampling techniques to find one subspace at a time. The number of
sampling subsets becomes relatively reasonable in this case. For instance, for
4 hyperplanes in R

5 with 20% outliers, suppose the samples are somewhat
evenly distributed among the 4 hyperplanes. Then, with respect to each hy-
perplane, the outliers are actually 80%. In order to get at least one subset
of 4 inliers with probability 0.95, we need to subsample about 1,900 subsets.
However, when an arrangement contains subspaces of different dimensions,
samples from one subspace can also result in high consensus on other subspace
models of higher or lower dimensions. Therefore, an algorithm has to be able
to detect degenerate models in the estimation to achieve good performance.

3. Estimating Mixture Models. For a mixture model such as a subspace ar-
rangement, another natural sampling scheme is to subsample a set of inliers
drawn on all subspaces. For instance, to estimate an arrangement model of
three subspaces of dimensions (5, 5, 5) in R

6, we can subsample 15 samples
each time and evenly partition the set into three subsets and estimate three
individual subspace models. Although an arrangement model is directly ob-
tained from this approach, unfortunately, the number of sampling subsets is
still high even for a relatively small number of subspaces. To estimate the
above arrangement model with 600 inliers drawn from each subspace and 20%
outliers, one needs to subsample over 1.2 billion subsets to have one subset
of 15 inliers with probability of 95%.

In the computer vision literature, RANSAC has shown good performance for
some special subspace arrangements. For instance, if all subspaces are of the same
dimension, the second approach has been successfully used to iteratively recover one
subspace model at a time [55]. If the subspaces have different dimensions, a Monte
Carlo scheme can be applied to speed up the third approach for the estimation of a
hybrid model [56, 48]. The reader can find more comparisons between RGPCA and
RANSAC in [64].

5. Applications. There have been many successful applications of the algebraic
GPCA algorithm and its statistical variations in a wide range of research areas, includ-
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ing computer vision, image processing, pattern recognition, and system identification.
In this section, we present a couple of representative examples that demonstrate the
basic reasons why subspace arrangements may become the model of choice in many
real-world problems.

Roughly speaking, there are two categories of applications in which subspace
arrangements have proved useful. In the first category, the given mixed data are
known to have a piecewise-linear structure. That is, the data can be partitioned into
different subsets such that each subset is drawn from a linear subspace model. Then
we can apply GPCA to extract such hybrid linear structures. This is the case with
motion segmentation in computer vision (see section 5.1). In the second category,
the exact structure of the given data is more complex, but known to be somewhat
heterogeneous or even nonlinear. In such cases, we apply GPCA to find a hybrid
linear model that can approximate the data up to a desired degree of accuracy. The
resulting model provides a compact (lossy) representation of the data as well as a
partition of the data into approximately homogeneous subsets. This is the case with
sparse image representation in image processing (see section 5.2).

5.1. Motion Segmentation in Computer Vision. The scene observed in a video
sequence typically consists of multiple objects moving independently against the back-
ground. Suppose multiple feature points are detected on the objects and the back-
ground. These could be either corner points or other local texture patterns that are
invariant to camera motions. An important problem in computer vision is how to
group feature points that belong to different moving objects. More precisely, denote
by {X1,X2, . . . ,XN} ⊂ R

3 a set of points in the three-dimensional scene that are
attached either to the moving objects or to the background. Suppose the video se-
quence contains F frames of images. The image of every Xj in the ith image frame is
denoted by zij ∈ R

2, a point in the two-dimensional image plane. Then the problem
is how to group the images zij so that, for each subset, their corresponding Xj ’s
belong to the same moving object or the background in the three-dimensional scene.

Of course, the problem depends on how the three-dimensional points X1,X2,
. . .XN are projected onto the image plane (i.e., the camera model) and what class
of motions we consider for Xj or for zij (i.e., the three- or two-dimensional motion
models). Nevertheless, it has been shown that the motion segmentation problem can
be converted to a subspace segmentation problem for most motion models that have
been considered in computer vision [59]. Thus, the GPCA algorithm in this paper
provides a unified solution to all the possible cases. We present below one of those
cases that has some practical importance.

For feature points on one object, the projection can be modeled as an affine
camera model19 from R

3 to R
2:

(5.1) zij = AiXj + bi ∈ R
2 for all i = 1, 2, . . . , F,

where Ai ∈ R
2×3 and bi ∈ R

2 are the affine camera parameters for the ith frame. If
we stack all the image measurements into a 2F ×N matrix W , we obtain

W
.
=







z11 · · · z1N

...
...

zF1· · · zFN







2F×N

=







A1 b1
...

...
AF bF







2F×4

[

X1 · · · XN

1 · · · 1

]

4×N

.(5.2)

19A more precise model for conventional cameras is a perspective projection. However, when the
objects have a small depth variation relative to their distance to the camera, an affine projection is
a good approximation.
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Fig. 5.1 The first and last frames of sequences A (left), B (middle), and C (right) with point
correspondences superimposed.

Notice that the product of the two matrices on the right-hand side of the equation
should result in a matrix of maximum rank 4. It follows that rank(W ) ≤ 4, hence
the two-dimensonal trajectories of the image points across multiple frames, i.e., the
columns of W , live in a subspace of R

2F of dimension less than 5.
For multiple moving objects, it can be shown under mild conditions that the

trajectories of their image points span different subspaces in R
2F . Thus, if we view

the columns of W as the sample points, then these sample points belong to multiple
subspaces (of dimension less than 5) in R

2F . In the computer vision literature, many
algorithms have been developed to solve the problem of segmenting the points into
their respective subspaces; see [10, 32, 50] and the references therein.

We first give the experimental results of GPCA-voting (Algorithm 2) on two
outdoor sequences taken by a moving camera tracking a car moving in front of
a parking lot and a building (sequences A and B) and one indoor sequence taken
by a moving camera tracking a person moving his head (sequence C), as shown in
Figure 5.1. The data for these sequences are borrowed from [51], which consist of
outlier-free point correspondences in multiple views and are available at the website
http://www.suri.it.okayama-u.ac.jp/data.html.

We apply GPCA on the three sequences. Given N feature points in F consecutive
frames, we first stack all points into 2F -dimensional vectors,

(5.3) zj = [z
T
1j ,z

T
2j , . . . ,z

T
Fj ]

T ∈ R
2F , j = 1, 2, . . . , N,

and project the sample points to a 5-dimensional space by PCA. Then we use Algo-
rithm 2 to segment two hyperplanes of dimension 4 in the 5-dimensional space. For all
three cases, the angle tolerance is fixed at 0.3 rad. GPCA-voting gives a percentage
of correct classification of 100.0% for all three sequences, as shown in Table 5.1. The
table also shows results reported in [51] from other existing multiframe algorithms for
motion segmentation.

Next, we demonstrate the performance of RGPCA (Algorithm 3) with MVT on
sequences A and C with original tracking outliers added in, as shown in Figure 5.2.
The data are borrowed from [50] and are also available at the website http://www.suri.
it.okayama-u.ac.jp/e-program-separate.html. The reported outlier percentages in [50]

http://www.suri.it.okayama-u.ac.jp/e-program-separate.html
http://www.suri.it.okayama-u.ac.jp/e-program-separate.html
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Table 5.1 Classification rates given by various subspace segmentation algorithms for sequences A,
B, and C.

Sequence A B C
Number of points 136 63 73
Number of frames 30 17 100

Costeira–Kanade 60.3% 71.3% 58.8%
Ichimura 92.6% 80.1% 68.3%
Kanatani: subspace separation 59.3% 99.5% 98.9%
Kanatani: affine subspace separation 81.8% 99.7% 67.5%
Kanatani: multistage optimization 100.0% 100.0% 100.0%
GPCA-voting 100.0% 100.0% 100.0%

Fig. 5.2 The first (left) and last (middle) frames of sequences A and C with the original tracking
outliers. The right column shows the maximal residual values of the two sequences with
various rejection rates using the MVT algorithm. Sequence A contains 140 feature points,
and sequence B contains 107 feature points.

were 1.4% and 30%, respectively. We use Algorithm 3 with MVT to segment two
hyperplanes of dimension 4 in both sequences. For both cases, the angle tolerance
is fixed at 0.3 rad and the boundary tolerance is fixed at 0.065. The segmentation
results are shown in Figure 5.3. The RGPCA algorithm achieves perfect segmentation
with the rejection rate of 0% and 18% for sequences A and C, respectively, which
outperforms the results reported in [50].

In sequence A, the camera is far away from the scene, so the projection relation
is well described by the affine camera model (5.1), which also results in very small
sample residuals in Figure 5.2. The spike in the plot of maximal sample residuals
indicates the transition phase when all features on the car are trimmed out by the
algorithm.

In sequence C, because the camera is close to the foreground object, the affine
camera model does not approximate the actual camera projection well. Furthermore,
the motion of the man’s upper body is nonrigid, which leads to outliers on the face and
shoulders. These observations are consistent with the result of the maximal sample
residuals shown in Figure 5.2. We notice that the second plateau in the residual plot
indicates that a good segmentation can be achieved at the 30% rejection rate, which
conforms to the percentage given in [50]. To make the comparison complete, we show
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(a) Segmentation of sequence A. The estimated outlier percentage is 0%.

(b) Segmentation of sequence C. The estimated outlier percentage is 18%

Fig. 5.3 Segmentation results of sequences A and C. Left: group 1. Middle: group 2. Right:
outliers.

Fig. 5.4 Segmentation results of C with 30% rejection rate. Left: group 1. Middle: group 2. Right:
outliers.

the segmentation result of RGPCA with 30% rejection rate using MVT in Figure
5.4. Although more samples are trimmed as outliers, the algorithm still gives good
segmentation on the inlying samples.

5.2. Hybrid Linear Representation of Images. An important problem in image
processing is to find efficient and sparse representations of images (rather than the
original bitmaps). Such representations are often the first step for many subsequent
processes of the images: compression, classification, retrieval, synthesis, etc. A pop-
ular and still dominant approach to represent images is to transform the images via
certain linear transformations so that the energy of the image will be concentrated in
the coefficients of a sparse set of bases.

A linear transformation can be either prefixed for all images (such as the discrete
cosine transform (DCT) used for the JPEG standard and the wavelet transform for
the JPEG2000 standard) or adaptive for each image (such as the Karhunen–Loève



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ESTIMATION OF SUBSPACE ARRANGEMENTS 453

Fig. 5.5 Left: the baboon image. Right: the coordinates of each dot are the first three principal
components of a 2 × 2 color block of the image (stacked into a vector in R

12). There is a
visible multimodal structure in the data.

z ∈ R
12

G

B

R

I

V1

V2 V3

R
12

Fig. 5.6 In a hybrid linear model, vectors {zi} (obtained by stacking the image blocks) are assumed
to reside in multiple subspaces which may have different dimensions.

transform (KLT) that is equivalent to PCA). However, natural images typically ex-
hibit multimodal statistics as they usually contain many heterogeneous regions with
significantly different geometric or statistical characteristics, loosely known as “tex-
tures.” Figure 5.5 shows a typical example. Such heterogeneous data can be better-
represented using a mixture of linear models, one for each homogeneous subset. Figure
5.6 illustrates the basic idea.

Obviously, the same assumptions can be made for any transformed image, say,
a subsampled version of the image and its residuals. Figure 5.7 (left) shows a three-
level representation of the baboon image in terms of a (twice) subsampled version
and its residuals at two higher levels. Figure 5.7 (right) shows the segmentation of
the subsampled image and its residuals according to the subspaces of their associated
hybrid linear models. Using a slight variation of the GPCA algorithm, the number
and dimensions of the subspaces of each hybrid linear model are found automatically
in such a way that they minimize the effective dimension of the imagery data subject
to a given error threshold. For more details about the algorithmic implementation,
the reader may refer to [26].

Typically, such a multiscale scheme can achieve a more compact representation
because it extracts low-frequency parts of the image first.20 Figure 5.8 gives a com-

20The energy of typical natural images concentrates more in low frequencies.
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Fig. 5.7 A multiscale representation of the baboon image. Left: twice subsampled image and its
residuals at two higher levels. Right: the segmentation of vectors (2×2 blocks) by a hybrid
linear model at each level—different subspaces are denoted by different colors. The black
regions correspond to data vectors whose energy is below a given error threshold.

Fig. 5.8 Comparison of several lossy image representation schemes for the baboon image. Vertical
axis: here the signal is the original image and the noise is the difference between the original
image and its approximation given by different representation schemes. Horizontal axis:
percentage of the ratio of coefficients kept.

parison of the efficiency of different lossy image representation schemes for the baboon
image: the DCT, the KLT, the hybrid linear model (without subsampling), the level-
3 biorthogonal 4.4 wavelets (used in JPEG2000), and the level-3 multiscale hybrid
linear model.21

Potentially, there might be many other ways of applying the (multiscale) hybrid
linear model to images that could achieve even better performance. In fact, a higher
PSNR curve can be achieved for the baboon image if we apply the multiscale hybrid
linear model in the wavelet domain (see [26]).

21The experimental results given here are attributed to Dr. Wei Hong.
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5.3. Other Applications. Subspace arrangements have been proven to be perti-
nent for many other problems that arise in image processing, computer vision, pattern
recognition, and system identification. Besides the two applications mentioned above,
we list a few more examples and references:

1. Identification of Hybrid Linear Systems. It is known from system theory that
the input-output data of a linear dynamical system lie on a subspace. Thus,
for a hybrid linear system that may switch among multiple linear systems,
its input-output data lie on a union of multiple subspaces. The problem of
identifying the component systems (as well as the switching as a function
of time) is essentially a problem of subspace arrangement estimation. The
GPCA algorithm has been successfully applied to the identification of hybrid
linear systems such as the hybrid autoregressive exogeneous (ARX) model
[36] and the hybrid autoregressive moving average (ARMA) model [27].

2. Classification of Face Images. It is known that the frontal images of a person’s
face under different lighting conditions form a low-dimensional subspace [25].
Thus, the problem of clustering face images that belong to different people
can also be characterized as a problem of subspace arrangement estimation.
The GPCA algorithm has been quite successful in solving this problem [61].
This approach can be generalized to the classification of other types of images
(e.g., hand-written digits).

3. Segmentation of Video Sequences. One problem in computer vision is how to
partition a long video sequence into multiple short segments such that each
segment corresponds to a different scene or event. By viewing each image
frame as a sample point, we can fit a piecewise-linear model to the video
sequence. Image frames that belong to the same linear piece are naturally
grouped together according to their appearance. GPCA has started to be-
come a popular algorithm for video segmentation, in both the spatial and
temporal domains [27, 61].

6. Conclusions and Perspectives. This paper introduces a set of new mathe-
matical models—subspace arrangements—for the analysis of multivariate mixed data.
Based on the algebraic and statistical properties of subspace arrangements, a set of
new computational tools has been developed for the modeling and segmenting mixed
data. One important feature of these tools is that they take a “top-down” approach
to the estimation of multiple subspaces. That is, the overall algebraic structure of
the data set is found first and then the geometric information of the individual sub-
spaces and segmentation of the data are subsequently retrieved. This runs somewhat
contrary to the conventional approach taken by existing data clustering methods
in statistical learning, such as EM and K-means. As a consequence, the resulting
algorithms, GPCA and its variations, require no initialization and can be used in
combination with EM and K-means.

These new algorithms have been shown to be particularly effective in the modeling
and segmenting of imagery data, including but not limited to conventional images,
videos, and biological images, as well as hyperspectral images. The initial success of
these tools in the identification of hybrid systems [36, 27] also suggests that there is
good potential in extending them into the dynamical domain.

In many scientific studies, the structure of the data can be modeled as a low-
dimensional (nonlinear) manifold embedded in a high-dimensional space. Many algo-
rithms have been proposed to identify such a manifold [53, 46]. GPCA provides yet
another class of tools that allow us to obtain a piecewise linear approximation of the
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manifold (subject to an error threshold). Important geometric or topological proper-
ties, e.g., dimension(s) or components, of the manifold can be extracted from such an
approximation. Our recent work has also shown that it is possible to extend the ideas
of GPCA to other polynomial rings such as the ideals of quadratic algebraic surfaces
[42]. This suggests that there is much more to come for modeling and segmenting
mixed data with other classes of hybrid algebraic manifolds.

Our exposition also conveys an important message: The confluence of algebra,
statistics, and computation is crucial for a complete and thorough understanding of
the modeling of mixed data. It is often the source of inspiration for many of the new
algorithms. In our most recent work, parallel to the algebraic framework that we
have covered in this paper, we have revealed a somewhat unusual connection between
subspace arrangements and information theory: data from a subspace arrangement
can be very effectively segmented via lossy data compression [35]. Other ongoing
research also suggests that tools from sparse representation and ℓ1-minimization [16,
15] may also lead to effective algorithms for segmenting data from arrangements of low-
dimensional subspaces. Given this intensifying confluence, we would not be surprised
if even more powerful algorithms are found in the near future, capable of handling
massive, multivariate, and mixed data.
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