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Abstract. Radar remote sensing has demonstrated its ap-

plicability to the retrieval of basin-scale soil moisture. The

mechanism of radar backscattering from soils is complicated

and strongly influenced by surface roughness. Additionally,

retrieval of soil moisture using AIEM (advanced integrated

equation model)-like models is a classic example of underde-

termined problem due to a lack of credible known soil rough-

ness distributions at a regional scale. Characterization of this

roughness is therefore crucial for an accurate derivation of

soil moisture based on backscattering models. This study

aims to simultaneously obtain surface roughness parame-

ters (standard deviation of surface height σ and correlation

length cl) along with soil moisture from multi-angular ASAR

images by using a two-step retrieval scheme based on the

AIEM. The method firstly used a semi-empirical relationship

that relates the roughness slope, Zs (Zs = σ 2/cl) and the dif-

ference in backscattering coefficient (1σ ) from two ASAR

images acquired with different incidence angles. Meanwhile,

by using an experimental statistical relationship between σ

and cl, both these parameters can be estimated. Then, the

deduced roughness parameters were used for the retrieval of

soil moisture in association with the AIEM. An evaluation of

the proposed method was performed in an experimental area

in the middle stream of the Heihe River Basin, where the Wa-

tershed Allied Telemetry Experimental Research (WATER)

was taken place. It is demonstrated that the proposed method

is feasible to achieve reliable estimation of soil water content.

The key challenge is the presence of vegetation cover, which

significantly impacts the estimates of surface roughness and

soil moisture.
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(lixin@lzb.ac.cn)

1 Introduction

Surface soil moisture (mv) is important in agronomic, hydro-

logical, and meteorological processes at all spatial scales. It

plays a key role in water stress detection and irrigation man-

agement, especially for arid and semi-arid regions. The abil-

ity of inferring mv using both active and passive microwave

techniques has been intensively demonstrated (Baghdadi et

al., 2008; Jackson et al., 1995, 2002; Kerr et al., 2001; Moran

et al., 2004; Njoku and Entekhabi, 1996; Njoku et al., 2003;

Parajka et al., 2009; Sinclair and Pegram, 2010; Su et al.,

1997; Ulaby et al., 1982, 1986; Wigneron et al., 2003, 2007).

It is well known that space-borne microwave radiometers and

scatterometers possess the advantage of high revisit capac-

ity but deficient in coarse spatial resolution (Brocca et al.,

2010; Wagner et al., 1999, 2007). On the contrary, synthetic

aperture radar (SAR) sensors have the capability to provide

finer spatial resolution, on the order of tens of meters, meet-

ing most spatial requirements for watershed management and

hydrological applications.

Radar systems emit pulses and receive echoes backscat-

tered from the illuminated areas. The intensity value of each

pixel is proportional to the radar backscattering coefficient

(σ 0), which depends on several factors, including the instru-

ment’s technical specifications (frequency and polarization),

terrain, dielectric characteristics (εr; strongly related to the

soil water content) and the geometrical structure (roughness)

of the target surface.

Three categories of methods were developed to investigate

the relationship between land surface properties and SAR ob-

served backscattering coefficient. The first kind is theoretical

scattering model, which was derived and employed to gain

insight into the interaction of microwave propagation with

natural surfaces based on physical laws, including the Kirch-

hoff approximation (KA), which consists of the geometrical
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optics model (GOM) and physical optics model (POM), the

small perturbation model (SPM) (Ulaby et al., 1982), and

the integral equation model (IEM) (Fung et al., 1992; Fung,

1994). The IEM unites the KA and the SPM and was verified

by laboratory measurements of bistatic scattering from sur-

faces with small, intermediate and large scale roughness. The

advanced IEM (AIEM) improves the calculation accuracy of

scattering coefficient by keeping the absolute phase term in

Greens function which was neglected by IEM (Chen et al.,

2003; Wu et al., 2001). In principle, the dielectric constant

of the soil surface and hence the soil water content can be

estimated from the mathematical inversion of these models

with the requirement of some restrictive assumptions. The

IEM and the AIEM were often used for bare or sparse vege-

tation soils.

In contrast, the second kind method is empirical approach,

with little physics behind it. Traditionally, some known in

situ soil moisture measurements and corresponding radar

backscattering coefficients were used to calibrate a simple

form to predict unknown soil moisture (Ulaby et al., 1986).

This type of connection was evolved with increasingly fruit-

ful datasets in recent years (Baghdadi et al., 2006a; Holah et

al., 2005). In addition, some sophisticated empirical methods

have been proposed as well, with varying degrees of success

(Baghdadi and Zribi, 2006). For example, Oh et al. (1992,

2002) separated the individual effects of roughness, vege-

tation, topography, and soil moisture on radar response us-

ing multi-frequency and multi-polarization measurements.

Dubois et al. (1995) delineated the contributions of all com-

binations of surface conditions (roughness and vegetation)

and radar configurations (frequency, polarization, and inci-

dence angle) to the co-polarized backscattering coefficients

σ 0
HH and σ 0

VV. However, these empirical relationships are

site-specific and may not be applicable to datasets other than

those used for development (Dubois et al., 1995).

To circumvent this problem, semi-empirical backscatter-

ing models may be more useful in determination of land sur-

face geophysical parameters including soil moisture which

represent a compromise between the complexity of the theo-

retical models and the simplicity of empirical models. They

are an improvement on empirical models as they start from

a physical background and then use simulated or experimen-

tal data sets to simplify the theoretical backscattering models

(D’Urso and Minacapilli, 2006; Loew et al., 2006; Shi et al.,

1997; Zribi et al., 2006).

In the IEM and AIEM, surface roughness is an essential

input, thus, if only a single configuration (e.g., one polar-

ization, one frequency) of radar data is available, roughness

parameters should be known as a priori information in order

to retrieve soil moisture using these models. Unfortunately,

field measuring surface roughness is very time-consuming

and almost impractical at the regional scale. Moreover, ap-

preciable inaccuracies may occur due to various deployments

of instrumentation, sampling strategy, and the ambiguous

scale effect during field campaigns and data post-processing

(Bryant et al., 2007; Davidson et al., 2000). Hence, it is crit-

ical to obtain appropriate physical model-dependent surface

roughness information at remote-sensing spatial scales in the

context of soil moisture inversion.

Generally speaking, surface roughness is statistically char-

acterized by three parameters: the standard deviation of sur-

face height (σ ), the correlation length (cl), and the auto-

correlation function type (ACF). From pixel to pixel, these

parameters vary remarkably, moreover, the significant influ-

ence of surface roughness on scattering properties still lim-

its the ability to correctly infer mv values unless detailed

roughness measurements or estimates are available (Lievens

et al., 2009; Verhoest et al., 2008; Zribi et al., 2005). Su

et al. (1997) demonstrated that calibration of surface rough-

ness could reduce the number of unknowns in the IEM, re-

sulting in successful soil moisture retrievals. Baghdadi et

al. (2002, 2004, 2006b) empirically calibrated the cl values

based on the IEM, a large number of SAR images, and cor-

responding field measurements. Therefore, empirical rela-

tionships were obtained between σ and cl depending on fre-

quency, polarization, and incidence angle, thus reducing the

problem to the estimation of only one parameter (Baghdadi

et al., 2006b). Álvarez-Mozos et al. (2008) applied the ap-

proach developed by Baghdadi et al. (2006b) to Radarsat-1

data and obtained promising soil moisture retrieval results.

Through calibration of roughness parameters, two-step re-

trieval schemes (Lievens et al., 2011; Saleh et al., 2009) were

proposed to obtain reliable soil moisture estimates. Further-

more, Zribi and Dechambre (2002) revealed the merits of us-

ing multi-angular SAR observations for surface roughness

estimation and proposed a Zs-index that integrates σ and

cl. It was demonstrated that the difference in backscatter-

ing coefficients between two incidence angles is very sensi-

tive to the Zs-index. Rahman et al. (2007, 2008) also indi-

cated both roughness parameters and mv can be inferred via

multi-angular radar images instead of using ancillary data.

Besides, dependent on time series SAR imagery, change de-

tection method is a simple and effective way to capture soil

moisture variations. In this method, a dry reference image is

subtracted from each individual SAR image in an attempt to

correct for roughness and vegetation effects (Mladenova et

al., 2010; Pathe et al., 2009; Wagner et al., 1999, 2007).

The objective of this paper is to develop and evaluate an

effective method that could acquire surface roughness based

solely on multi-angle SAR data, and the estimated rough-

ness can be further used in the backscatter models to re-

trieve soil water content. The strategy is a two-step retrieval

scheme. Firstly, a semi-empirical relationship was deduced

from AIEM simulations. Combined with a calibrated scheme

within σ and cl proposed by Baghdadi et al. (2006b), rough-

ness parameters for each grid cell can be estimated from

multi-angular ASAR images. Once σ and cl were obtained,

soil moisture can then be retrieved by using the AIEM. This

paper is organized into four sections. In Sect. 2, which fol-

lows the introduction, the proposed methodology, the study
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site and datasets are described. Section 3 presents the de-

tailed application on estimating both surface roughness and

soil moisture over the study area. Then, the retrieved results

in terms of soil moisture are validated by in situ measure-

ments and the error sources are analyzed. Finally, Sect. 4

gathers our conclusions.

2 Method and data

2.1 Backscattering model for vegetated rough surface

For a given incidence angle θ , the backscattering coefficient

above canopy (σ 0
can(θ), m2 m−2) can be expressed as

σ 0
can(θ) = σ 0

veg(θ) + σ 0
veg+soil(θ) + γ 2(θ) σ 0

soil(θ) (1)

where, the first term σ 0
veg(θ) represents the backscattering

from the vegetation canopy, the second term σ 0
veg+soil(θ) rep-

resents the interaction between the vegetation layer and the

soil underneath and accounts for multiple scattering effects,

and the third term γ 2(θ)σ 0
soil(θ) represents the backscattering

from the soil layer that is attenuated by the canopy. γ 2(θ) is

the two-way vegetation transmissivity.

In this study, backscattering from vegetation canopy and

the vegetation transmissivity are calculated by the water

cloud model (Attema and Ulaby, 1978), since this model

is assumed that the vegetation-soil interactions can be ne-

glected, and, therefore,

σ 0
can(θ) = σ 0

veg(θ) + γ 2(θ) σ 0
soil(θ) (2)

with

σ 0
veg = Avwc cos (θ)

[

1 − γ 2(θ)
]

(3)

γ 2(θ) = exp [−2 bvwc/cos(θ)] (4)

where vwc represents the vegetation water content (kg m−2).

Parameters A and b depend on the vegetation type, growth

condition, and radar frequency.

The backscattering coefficient from the soil layer is cal-

culated by the AIEM which is a physically based radiative

transfer model and applicable to a wider range of land sur-

face conditions (Chen et al., 2003; Wu et al., 2001). The

AIEM essentially quantifies (or simulates) the backscatter-

ing coefficient as a function of the sensor configurations (i.e.,

radar frequency, polarization, and incidence angle) and land

surface parameters (e.g., soil dielectric constant and surface

roughness).

In AIEM, the single scattering term is given by

σ S
pq =

k2

2
exp

[

−(σ )2
(

k2
z + k2

sz

)]
∞
∑

n=1

(σ )2n
∣

∣

∣
In
pq

∣

∣

∣

2
(5)

W (n)
(

ksx − kx, ksy − ky

)

n!

In
pq = (ksz + kz)

n fpq exp
[

−(σ )2 kz ksz

]

(6)

+
(ksz)

n Fpq

(

−kx, −ky

)

+ (kz)
n Fpq

(

−ksx, −ksy

)

2

with

kx = k sin θ cos φ

ky = k sin θ sin φ

kz = k cos θ

ksx = k sin θs cos φs

ksy = k sin θs sin φs

ksz = k cos θs

where k is the wave number, In
pq is a function of θ , φ, σ and

εr (soil dielectric constant), Fpq denotes the complementary

field coefficient. W (n) is the Fourier transform of the n-th

power of the surface correlation function. The subscripts p

and q indicate polarization state. θ and φ are zenith angle and

azimuth angle of the sensor, θs and φs are zenith and azimuth

of scattering angle, respectively.

2.2 Inversion strategy for soil moisture

In SAR remote sensing applications, sensor configurations

are known, while surface roughness and dielectric constant

are unknown. Estimation of soil surface parameters was usu-

ally implemented by using theoretical models to convert the

measured backscatter coefficient into soil surface roughness

and moisture. In the current study, the first procedure of soil

moisture inversion is to remove the vegetation effect, which

can be achieved by using Eqs. (2) to (4). Soil texture and land

surface correlation function type can be measured in field and

assumed as a priori information. Thereby, the remained three

unknown surface parameters are soil moisture mv, standard

deviation of surface height σ , and correlation length cl.

Therefore, for inversion of soil moisture, at least three in-

dependent backscattering observations are needed. Multi-

frequency configuration onboard aircraft platform (Bindlish

and Barros, 2000), multi-angular, or multi-polarization ob-

serving ability of current satellite-borne SAR such as ASAR

offer this possibility. However, multi-dimensionality obser-

vations are usually highly correlated between each other.

Therefore, to increase the robustness for the retrieval pro-

cess, a two-step inversion strategy is employed in this paper

since the multi-angular method is considered.

During the first step, roughness parameters σ and cl are re-

trieved from multi-angular observations. Zribi and Decham-

bre (2002) showed that, if all other parameters are kept con-

stant, the difference in backscattering coefficient (1σ , in dB)

between two distinct incidence angles is proportional to the

index of the roughness slope, Zs, which can be expressed as

Zs = σ 2/cl (7)
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Through IEM simulations, it was found that Zs is linked to

1σ via the following relationship (Zribe and Dechambre,

2002)

Zs = f
(

1σθ1−θ2

)

(8)

The specific function needs to be obtained through statistical

analysis.

Additionally, on the basis of various SAR instrumental

configurations and abundant in situ measurements, Baghdadi

et al. (2006b) has deduced the calibrated correlation length

from SAR images and found a statistical relationship be-

tween σ and cl, which is

cl (σ, θ, pp) = δ(sinθ)µ σ (ηθ+ξ) (9)

The parameters δ and ζ depend on the polarization, while µ

and η were found to be independent of the polarization. All

of them are functions of incident angle θ .

Therefore, through Eq. (9) that relating cl and σ , one of

the unknown roughness parameters can be reduced. Once

the ACF was predefined, by combined using only one further

equation (Eq. 11) as described in Section 3.1, it is possible to

completely characterize the three roughness parameters and

subsequently use them in the AIEM to inverse soil moisture.

During the second step, soil dielectric constant is esti-

mated using an iterative least squares minimization algo-

rithm, which minimize the difference between observed and

AIEM computed backscattering coefficients. Dobson model

(Dobson et al., 1985) was used to convert soil dielectric con-

stant into soil moisture values. The cost function is defined

as

J =

[

σ 0
obs − σ 0

est(mv)
]2

(10)

where σ 0
obs is the radar observation, σ 0

est (mv) represents the

estimation obtained from the AIEM simulations and mv is

the soil moisture that needs to be determined.

2.3 Study area

The study was carried out at one of the WATER foci ex-

perimental areas (FEAs). WATER is a simultaneous air-

borne, satellite-borne, and ground-based remote-sensing ex-

periment taking place in the Heihe River Basin, the second

largest inland river basin in an arid region of northwestern

China (Li et al., 2009). One of the most important compo-

nents of the WATER is the arid region hydrology experiment

(ARHE).

Linze grassland (LZG; 100◦04′ E, 39◦15′ N), which cov-

ers an area of 2 × 2 km2, locates in Linze county, Zhangye

city in the middle stream of the Heihe River Basin (Fig. 1). It

was selected as one of the foci experimental areas in ARHE

and is the study area in this investigation. Land cover types

are diverse in this region, with wetland, grassland, and farm-

land distributed in the vicinity. During the field campaigns

conducted in the intensive observation period (IOP) from

Table 1. Ground truth measurements of soil moisture and surface

roughness.

In situ measurement

site

mv (cm3 cm−3) σ (cm)

(27 June 2008)

range mean standard range mean standard

deviation deviation

A 0.23 ∼ 0.54 0.39 0.08 1.11 ∼ 2.09 1.51 0.31

B 0.13 ∼ 0.42 0.28 0.05 0.68 ∼ 4.08 1.40 0.53

C N/A 0.58 ∼ 4.46 1.28 0.66

D 0.02 ∼ 0.20 0.09 0.05 N/A

E 0.08 ∼ 0.34 0.25 0.05 N/A

May to August 2008, five experimental sites (ESs), each

360 × 360 m2 in size, were established (Fig. 2). Most of the

grassland areas (including ESs A, B, and C) were severely

encrusted with salt and alkali materials. Alfalfa and barley

were planted at sites D and E, both of them are irrigated farm-

land.

2.4 Ground truth measurements

Ground truths, including soil moisture, land surface temper-

ature (T ), and bulk density, were collected at all five ESs

concurrently with radar acquisitions. A three-level stratified

sampling strategy, illustrated in Fig. 2, was designed to col-

lect ground truths. The elementary sampling plots (ESP),

which is embedded within each ES, covering an area of ap-

proximately 120 × 120 m2 in a grid pattern at 20 m spacing,

is assumed to be representative of entire ES in which 49 soil

samples were collected.

Concurrently with radar overpasses on 27 June 2008,

ground measurements were carried out from 10:00 a.m. to

01:00 p.m. (Beijing Time) (within ±2 h of the satellite over-

pass) at every ESP. The moisture contents of sites D and E

were measured by time domain reflectometry (TDR). Gravi-

metric sampling method was used at sites A and B due to

strong salinization effect. At site C, soil moisture measure-

ment was not carried out. Soil moisture was sampled for

the topsoil layer (5 cm), which is assumed as the maximum

penetration depth by ASAR, at a frequency of 5.3 GHz. Soil

bulk density was measured in order to transform gravimet-

ric content into volumetric soil moisture content. Soil tex-

ture was analyzed in the laboratory. No rainfall and tillage

practice were recorded in the time windows of satellite ac-

quisitions, thus, surface roughness is assumed to be invariant

during these dates. Surface roughness measurements were

conducted at non-vegetated sites A, B, and C to deduce the

ACF as a prior roughness information. Detailed sampling of

soil moisture and roughness is summarized in Table 1 and

other soil properties are summarized in Table 2.
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Fig. 1. Locations of the Linze grassland in the arid region hydrology experiment area (right) in the Heihe River Basin (bottom left).

Table 2. Summary of the parameter values used in the Dobson

dielectric mixing model and the AIEM.

Parameters Value

f (GHz) 5.3

θ (◦) 18.4, 28.5, 43.9

Initial value of mv (cm3 cm−3) 0.2

Land surface temperature T (◦) 27

Soil density specific density bulk density

(g cm−3) 2.70 1.31

Soil porosity 0.51

Soil texture (%) sand clay

20.5 8.5

σ (cm) min max increment

0.3 3.0 0.1

cl (cm) min max increment

3 35 2

Correlation function type Exponential

As for the parameters used in the water cloud model,

vegetation water content was measured only at site E on

18 June 2008. Due to limited resources, sufficient canopy

properties measurements were not obtained. Therefore, vwc

at site D was inferred on the basis of local growing status

and constants A and b used in the water cloud model were

Table 3. Vegetation parameters used in the water cloud model.

site A b vwc (kg m−2) land cover

D 0.01 0.084 0.3 alfalfa after harvest

E 0.05 0.3 1.46 barley in mature stage

not able to be calibrated based on the ground truth measure-

ments. Thus, their estimates were referenced from Bindlish

and Barros (2001). Parameters used for vegetation effects

correction are shown in Table 3.

2.5 Radar imagery

ASAR operates at C-band (5.3 GHz) and was launched on-

board ENVISAT in 2002. ASAR features enhanced capa-

bility in terms of coverage, with selectable incidence angles,

polarizations, and operational mode configurations. In this

investigation, three contiguous ASAR images in alternating

polarization precision (APP) modes with different incidence

angles ranging from IS1 (18.4◦) to IS7 (43.9◦) were acquired.

The orbital information of the images is presented in Table 4.

Absolute calibration of the ASAR images was performed

to transform the radar signals (DN values) into backscat-

tering coefficients (σ 0). After radiometric calibration, the

speckle noise in the images was filtered by a 5 × 5 enhanced

Lee filter. Changes in the local incidence angle were not
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Fig. 2. The three-level soil moisture field sampling strategy.

considered because the topography is flat in the study area.

Geolocation was performed according to the UTM projec-

tion system using a Landsat ETM+ image as a reference.

The registration error was within one pixel. After image pro-

cesses, the resolution of the imagery used for the estimation

of roughness and soil moisture is 30 m. Figure 3 illustrates

the subsets of the processed images of the study area.

3 Results and discussion

3.1 Mapping surface roughness and soil moisture

As has been mentioned in Sect. 2.2, the specific function of

Eq. (8) needs to be obtained through statistical analysis. In

the current study, all of the three scenes of ASAR images

with HH polarization were involved in the pairwise calcu-

lation. A forward simulation was carried out based on the

AIEM, with σ ranging from 0.3 to 3.0 cm and cl from 3 to

35 cm, and soil moisture was set as 0.2 cm3 cm−3. From the

analysis of in situ roughness measurements, the correlation

function type is found to be fit for the exponential one.

Through statistical analysis, it was found the best re-

gressed relationship was generated from the pair of IS1 and

IS7 swaths. The simulated data were fitted by a cubic poly-

nomial function, which is expressed as

Table 4. List of ASAR images used in this study.

ASAR images

Date Polarization Swath Central lat/long (degree)

25 June 2008 HH/HV IS3, 28.5◦ 38.97/100.23

27 June 2008 HH/HV IS7, 43.9◦ 38.97/100.08

28 June 2008 HH/HV IS1, 18.4◦ 38.89/100.48

Zs = −0.0009 (1σIS1−IS7)
3 + 0.0142 (1σIS1−IS7)

2 (11)

− 0.0813 (1σIS1−IS7) + 0.3545

where, 1σIS1−IS7 denotes the difference in backscattering

coefficient between two incidence angles (i.e., IS1 and IS7

swaths) at HH polarization. As shown in Fig. 4, this func-

tion fits the simulation data fairly good with a coefficient of

determination (R2) equal to 0.94. For the other two pairs,

1σIS1−IS3 and 1σIS3−IS7, the R2 values are equal to 0.85

and 0.89 respectively. From a temporal viewpoint, using

IS1–IS7 pair is also the optimal choice since the two scenes

were acquired on successive dates (Table 4). Accordingly,

distributed Zs information can be obtained based on these

two images. Small values of Zs correspond to smooth condi-

tions, due to small values of σ and/or large values of cl. In

contrast, large values of Zs represent rough surfaces.
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    (a) 

    (b) 

    (c) 

Fig. 3. Segment scenes of the processed images in the regions of

the study area, (a), (b), and (c) corresponding to the IS1, IS3, and

IS7 swaths, respectively.

By specifying an incidence angle of 43.9◦ at HH polar-

ization, the values of those coefficients (i.e., δ, ζ , µ, and η)

involved in Eq. (9) can be obtained based on Baghdadi et

al. (2006b). The relationship between cl and σ is

cl = 7.62 σ 1.44 (12)

 

º º

Fig. 4. Sketch map of the relationship between Zs and 1σIS1−IS7

(incidence angles of 18.4◦ and 43.9◦) provided by Eq. (11).

 

Fig. 5. Estimated results of the standard deviation of surface height

from multi-angular ASAR images.

Substituting Eq. (12) into Eq. (11) with the combination of

Eq. (7), σ and cl can be calculated for every pixel. As an

example, the distribution of the standard deviation of surface

height is shown in Fig. 5. The results shown most of the

experimental area is characterized by high values of σ .

After obtaining the roughness, soil moisture distribution

over the study area was estimated using the inversion proce-

dure described in Sect. 2.2. Results are illustrated in Fig. 6.

The dominant yellow colors in the map represent low lev-

els of soil moisture. In general, saline effect may lead to

an underestimate of soil moisture. Therefore, the low soil

moisture retrieval results distribution is coherent with salin-

ized sparse grass covered areas. Compared to the land use

map (Fig. 7), the blue colors correspond to higher soil wa-

ter content which appeared mainly in farmlands (west part)

and wetland (east part). Except for a small area in the lower

www.hydrol-earth-syst-sci.net/15/1415/2011/ Hydrol. Earth Syst. Sci., 15, 1415–1426, 2011
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Fig. 6. Retrieved soil moisture based on the obtained surface rough-

ness estimates.

Fig. 7. Land use map of the study area.

part of the study area, the spatial pattern of mv distribution

is reasonable, agreeing well with the local situation since an

irrigation event had taken place 5 days before, thus the veg-

etated areas were still wet but the sparse grass covered areas

had turned into dry condition due to considerably high evap-

oration in this arid region.

3.2 Validation

Due to strong salinization in the grassland sites A, B, and C,

roughness and soil moisture estimation were not performed

but for sites D and E. In addition, roughness results could not

be validated because in situ roughness measurements were

not conducted at sites D and E due to vegetation obstacles.

(a) 

(b) 

◆ △Fig. 8. Comparison between soil moisture estimated from radar

imagery and in situ measurements at (a) site D and (b) site E, before

( (◆) △) and after (◆ r (△) the correction of vegetation effect.

As shown in Fig. 8, soil moisture estimates were compared

against the in situ TDR measurements. Two groups of scat-

ter points were plotted in each diagram, i.e., before and af-

ter the correction of canopy interference for each study site.

For each ES, 45 points of in situ measurements were used to

validate the estimates from SAR imagery while other 4 soil

samples were discarded for their obviously irrational val-

ues. The results demonstrate that, for site D, the root mean

square error (RMSE) and the mean error (ME) of mv after

the correction of vegetation effect are 0.04 cm3 cm−3 and

−0.02 cm3 cm−3, respectively. For site E, the RMSE and

the ME of mv after the correction of vegetation effect are

0.06 cm3 cm−3 and −0.03 cm3 cm−3, manifesting that the

soil moisture is slightly underestimated in both sites. The

correlation coefficient (R) between observed and estimated

soil moisture values at sites D and E are 0.70 and 0.35, re-

spectively. Compared the RMSEs and the correlation coef-

ficients, it is shown that the results at site D are better than

those at site E. This might due to the fact that (1) canopy in
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site E is much thicker than D and (2) site D is more homoge-

neous than site E.

3.3 Vegetation effect

The results indicate that vegetation has a very signifi-

cant effect on soil moisture estimation. For site D, the

RMSE and the ME of mv without correcting the vegeta-

tion effect are 0.06 cm3 cm−3 and −0.03 cm3 cm−3, respec-

tively. For site E, the two values are 0.14 cm3 cm−3 and

−0.12 cm3 cm−3. It is evident that thin canopy (alfalfa stub-

ble) at site D slightly impact mv estimations while the thicker

canopy presented at site E could yield more extinction and

result in a significant underestimation of mv.

Undoubtedly, canopy effect should be minimized in order

to guarantee the applicability of the AIEM. The parameter

values of A, b, and vwc, are all important for using the water

cloud model to correct the vegetation effect. Usually, A and

b can be calibrated from observations but these are not avail-

able in this study. A sampling of vwc did take place at site E,

but preceded the SAR data acquisition nearly 10 days. Thus,

the parameters used in vegetation correction are mainly de-

rived from literatures. It is suggested that although the mv

estimates were improved after using the water cloud model,

more satisfied results could be expected by using some so-

phisticated vegetation models or adequate vegetation mea-

surements (Joseph et al., 2010).

3.4 Error analysis

It can be seen in Fig. 8 that at sites D and E, the estimated val-

ues of mv are lower than those measured in situ, even after the

correction of vegetation effects. It is supposed that this is par-

tially caused by the difference of sensing depth for soil me-

dia between remote sensing and in situ measurements. Radar

signals in C band essentially perceives the dielectric proper-

ties of the superficial soil layer (usually around or less than

1 cm). On the contrary, for TDR measurements used for the

validation, the detected mv is the integral value through the

entire sampling depth (∼5 cm) in the measured soil volume.

The uppermost soil layer is usually drier than deeper layers,

especially the case in arid regions. This probably could be

an explanation to the underestimation of mv as reported in

previous investigations (Escorihuela et al., 2010; Wagner et

al., 2007).

Furthermore, we are quite aware that some biases in the

results can be attributed to the method used to acquire rough-

ness parameters. Equation (12), which is crucial to the

derivation of σ and cl, inherently depends on the selection

of data acquisitions and study sites. In spite of the fact that a

large quantity of images and corresponding in situ measure-

ments were involved in the deduction of the coefficients used

in Eq. (9) presented by Baghdadi et al. (2006b), it is conceiv-

able that this empirical relationship could contribute more

or less errors when it is deployed in our study environment.

Uncertainties also arise from the definition of Eq. (11), pri-

marily in two aspects:

– The specific form of the function is greatly impacted by

the values of the input parameters used in the forward

simulations. For example, the expression of the Eq. (11)

evidently differs from the one proposed by Zribi and

Dechambre (2002). The difference can be attributed to

the dissimilar domains of the input roughness parame-

ters values.

– One of the basic hypotheses for using multi-

dimensionality method is the land surface properties are

assumed to be unchanged over the satellite data acqui-

sition period. Unfortunately, at present, no SAR sen-

sors onboard satellite platforms have been able to of-

fer multi-angular measurements simultaneously. Thus,

a variant of soil moisture is expected during data acqui-

sitions, especially when the radar scenes were collected

from different dates. Accordingly, some uncertainties

can be ascribed to this aspect although the temporal gap

of the images used in this study is very small (1 day) to

the revisit capabilities of existed space-borne SAR sys-

tems.

3.5 Discussion

The main purpose of this paper is to develop a method that

can reduce the impact of roughness on soil moisture retrieval.

In the past few years, some studies have addressed on this

issue, both for active and passive microwave remote sensing.

They shall be compared with the current study.

Lievens et al. (2011) proposed a statistical model to es-

timate roughness parameter based solely on a normalized

backscatter observation, subsequently, the deduced rough-

ness can be used in the inversion of soil moisture by the IEM.

Saleh et al. (2009) reported a two-step and two-parameter in-

version approach. Joseph et al. (2010) also estimated surface

roughness parameters by tuning known data sets. It can be

perceived that these investigations adopted similar retrieval

strategies as compared to the proposed method in this study.

That is, first, the roughness parameters that are needed by

the radiative transfer models were calibrated or estimated.

Then, soil moisture retrievals were conducted based on the

obtained roughness estimates. In comparison to our case

study, the main difference is existed in the roughness deriva-

tion step. The above studies used training data sets consisting

of remote sensed observations and corresponding field mea-

surements, in association with radiative transfer models (e.g.,

IEM). While our study applied AIEM simulations and the cl

calibration approach proposed by Baghdadi et al. (2006b),

since this calibration scheme was also developed based on

abundant data sets and has been proven effective (Álvarez-

Mozos et al., 2008; Baghdadi et al., 2006b).

With respect to the approaches for the correction of vege-

tation effects, Joseph et al. (2010) proposed a novel method
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(ratio method) and proved that it is superior to the water

cloud model when vegetation scattering component is dom-

inant. The general accuracy of the soil moisture retrievals

was obtained with an RMSE level of 0.04 cm3 cm−3 across

two frequencies observations. Good agreement was found

between the inversion results and the ground-truth measure-

ments in semi-arid regions (Zribi et al., 2011). The retrieved

soil moisture mean errors were equal to 0.039 cm3 cm−3 for

olive trees areas. The water cloud model was also used in

this study, and leaf area index values were used to estimate

vegetation water content, which in turn results in accurate

soil moisture estimates in wheatland, with a mean RMSE

of 0.058 cm3 cm−3. To use these methods depends on the

availability of reliable vegetation water content data. Unfor-

tunately, the resources in the current study are not able to

provide appropriate data sets to perform the specific param-

eterization scheme to derive or calibrate the vegetation water

content.

Both Pathe et al. (2009) and Mladenova et al. (2010) ap-

plied the change detection method by using ASAR global

monitoring data to derive or validate soil moisture in differ-

ent test sites. The RMSEs of these reported soil moisture es-

timations were generally on the orders of 0.04 cm3 cm−3 to

0.14 cm3 cm−3 over different land covers and scales. Wag-

ner et al. (2007) compared four kinds of published global

soil moisture products between each individual data set in

the Duero basin in Spain. In total, the RMSE is around

0.06 cm3 cm−3 across different satellite estimates. There-

fore, the RMSE of 0.06 cm3 cm−3 for soil moisture estimates

after vegetation effect correction in the current study is com-

parable to the results referred above. It is probably an accept-

able magnitude to be of use for various applications (Wagner

et al., 2007), although the value is higher than the targeted er-

ror of 0.04 cm3 cm−3 for AMSR-E (Njoku et al., 2003) and

SMOS products (Kerr et al., 2001). It can be concluded that

both sensors and retrieval methods must be carefully chosen

in order to achieve more accurate soil moisture retrievals de-

pending on the characteristics of the study area and available

data sets, particularly if the operational retrieval application

is envisaged (Pathe et al., 2009).

4 Conclusions

Previous studies have demonstrated that it is still problem-

atic to accurately assess soil moisture using theorized mod-

els, e.g., IEM or AIEM, if the surface roughness is not ap-

propriately quantified. Conventionally, areal roughness can

be obtained from parameterization, ancillary datasets, or by

upscaling point measurements. Although these methods are

practicable in some way, it is still worth seeking a direct

way of quantifying the spatial distribution of roughness at

the pixel scale.

The investigation presented in this paper proposes a

promising two-step retrieval strategy to estimate surface

roughness and soil moisture without auxiliary information.

Both standard deviation of surface height and correlation

length can be estimated from multi-angular SAR observa-

tions. Then, the derived roughness parameters were used in

the inversion of soil moisture based on the AIEM. An evalua-

tion was carried out in the middle reaches of the Heihe River

Basin and the results show that this method is reliable. Af-

ter a correction of vegetation effect by using the water cloud

model, the resulting RMSE of soil moisture range between

0.04 cm3 cm−3 to 0.06 cm3 cm−3. It is suggested that the er-

rors of the estimation can be attributed to the presence of re-

maining vegetation effects, the semi-empirical deduction of

surface roughness, and the difference in sensing depths be-

tween SAR and TDR probe measurements. In summary, the

proposed method is shown to be an effective method for sur-

face roughness characterization and soil moisture mapping at

regional scale, based solely on satellite data instead of using

ancillary information, such as point measurements by pin-

profilometer. Therefore, not only time and resources can be

saved, the uncertainties in association with the upscaling of

point roughness measurement can be avoided as well.

Potential future works in this area should extend the ap-

plication of the proposed method over other study regions.

Besides, with more and more satellites carrying payloads

of polarimetric SAR, such as ALOS-PALSAR, Radarsat-2,

and TerraSAR constellation, the usage of the polarimetric-

decomposition technique for soil moisture derivation can be

anticipated. This technique facilitates the separation of the

scattering signature into different parts attributed to different

objective properties in order to obtain the exclusive contribu-

tion of soils underlying canopy layer (Hajnsek et al., 2009).

Furthermore, airborne 3-D light detection and ranging (LI-

DAR) systems may make it possible to effectively collect sur-

face roughness information over large areas, thereby solving

the problem of acquiring statistically representative surface

roughness measurements. Such a development would dra-

matically conduce to the inversion of soil moisture (Wagner

and Pathe, 2004).
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