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Estimation of swine movement 
network at farm level in the US 
from the Census of Agriculture data
Sifat A. Moon1, Tanvir Ferdousi1, Adrian Self  2 & Caterina M. Scoglio1

Swine movement networks among farms/operations are an important source of information 

to understand and prevent the spread of diseases, nearly nonexistent in the United States. An 

understanding of the movement networks can help the policymakers in planning effective disease 
control measures. The objectives of this work are: (1) estimate swine movement probabilities at the 
county level from comprehensive anonymous inventory and sales data published by the United States 

Department of Agriculture - National Agriculture Statistics Service database, (2) develop a network 
based on those estimated probabilities, and (3) analyze that network using network science metrics. 
First, we use a probabilistic approach based on the maximum information entropy method to estimate 

the movement probabilities among different swine populations. Then, we create a swine movement 
network using the estimated probabilities for the counties of the central agricultural district of Iowa. 

The analysis of this network has found evidence of the small-world phenomenon. Our study suggests 

that the US swine industry may be vulnerable to infectious disease outbreaks because of the small-

world structure of its movement network. Our system is easily adaptable to estimate movement 

networks for other sets of data, farm animal production systems, and geographic regions.

Livestock are often moved between facilities to reduce costs and improve productivity. There is an old adage, 
“Livestock follow the grain”. Even now this aphorism seems true, as shipping animals is less expensive than ship-
ping grains, which are required for animals to attain their slaughter weights. The corn-belt region (Iowa, Missouri, 
Illinois, Indiana, and Ohio states) is the largest market for feeder pigs1 because they are the largest producers of 
two major sources of hog rations (corn and soybeans). Although movements in the livestock industry can reduce 
the cost of production, movements have a major role in the risk of pathogens spread. Movement of swine among 
farms is one of the major pathways for the spread of several diseases (e.g., Porcine reproductive and respiratory 
syndrome-PRRS, Porcine epidemic diarrhea-PED etc.) in the United States (US) swine industry2,3. Knowledge of 
livestock movement can be useful in the control of pathogen spread. In Europe, there are several well-established 
animal tracking systems. However, similar programs are yet to be mandated for the US. In the US, a comprehen-
sive livestock tracking system has not been implemented because of a cultural preference for privacy and compe-
tition between producers4. The United State Department of Agriculture (USDA) collects movement information 
when livestock shipments cross state boundaries. There is no program that collects movement information at the 
county or farm level.

In the prior literature, several models have been developed to understand swine movement in different regions 
of the US4–6. However, all of them used confidential incomplete datasets, which are not publicly accessible, and 
also which are not inclusive of the whole US. Yadav et al.5 developed a model to understand classical swine fever 
outbreak-related outcomes in Indiana. They used data from USAHerds (US Animal Health Emergency Reporting 
and Diagnostic System), where import-export activities, location of import origin, receiving swine premises, ship-
ment size and shipment date are listed. However, only 22% of the states participates in the USAHerds program. 
Another research group predicted movement networks of the swine industry for some counties of Minnesota 
using a machine learning approach6. They used confidential survey data from two counties to train their model. 
The objective of our research is to understand the swine movement network in the US from publicly available 
data. A network is a useful structure in the study of any spreading phenomena, where farm-level animal move-
ment networks are used as a key component in the area of disease spreading7,8.

1Department of Electrical & Computer Engineering, Kansas State University, Manhattan, Kansas, United States of 
America. 2National Agricultural Biosecurity Center, Kansas State University, Manhattan, Kansas, United States of 
America. Correspondence and requests for materials should be addressed to S.A.M. (email: sifatafroj@ksu.edu)

Received: 11 December 2018

Accepted: 22 March 2019

Published: xx xx xxxx

OPEN

https://doi.org/10.1038/s41598-019-42616-w
http://orcid.org/0000-0003-3194-8147
mailto:sifatafroj@ksu.edu


2SCIENTIFIC REPORTS |          (2019) 9:6237  | https://doi.org/10.1038/s41598-019-42616-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

In this work, we estimate the swine movement probabilities between counties based on published inventory 
and sales data from the USDA Census of Agriculture. We develop a convex optimization problem with some 
linear constraints for the US swine industry. To solve this problem, we adapt the cattle movement model from 
Schumm et al.9 for the swine population. In particular, we maximize the entropy of the distributions of the objec-
tive function (Eq. 1). Maximum information entropy methods have been used in various research fields10–12. The 
maximum entropy principle states that the best way to approximate the unknown distribution that satisfies all the 
constraints will have the maximum entropy13.

We propose a novel algorithm to develop a farm level swine movement network using the estimated swine 
movement probabilities. In this network, nodes (or vertices) represent swine-farms and directed links (or edges 
or connections) represent directional swine movements between the farms. Network realizations from the inter-
actions among the elements of different dynamic systems can be seen several times in the literature; for example, 
weighted network for worldwide air transportation14, network for collaboration among scientists14, network to 
understand complex intercellular interactions15, and network to represent interplay among different physiological 
systems16–19. To understand the generated swine movement network, we use network centrality measures. They 
have been used often in the literature to understand the livestock movement patterns20–22. The network centrality 
measures can assist in detection of the important farms, which can control the movement flows in the network. 
This information can be useful to plan effective mitigation strategies to reduce an epidemic size. In the literature, 
researchers have used targeted vaccination, or quarantine, or culling of important agents to control epidemics23,24. 
The network centrality measure also can help us to understand the movement pattern. From the analysis of the 
developed swine movement network, we find a trace of the small world phenomenon and the presence of hubs in 
the US swine movement network.

Materials and Methods
First, we develop a convex optimization problem to estimate swine movement probabilities. Next, we propose an 
algorithm to develop a network based on those probabilities, where nodes or vertices are farms or operations and 
edges among them represent swine movement. Finally, we analyze the network using different network analysis 
metrics.

Data. We have collected the hog inventory, sales, slaughter, and dead/lost pig data from the United States 
Department of Agriculture National Agricultural Statistics Service (USDA-NASS)25. The USDA-NASS con-
ducts a census every five years, which compiles a uniform, comprehensive agricultural data set for each county 
of the entire US. We used the data from the 2012 Census of Agriculture, as the census of 2017 is not published 
fully at the time of this research. For each county, two sets of data are available: (1) inventory and (2) sales. In 
both types, pigs are grouped into seven classes based on operation/farm size. These groups are: size1 (1–24 
pigs), size2 (25–49 pigs), size3 (50–99 pigs), size4 (100–199 pigs), size5 (200–499 pigs), size6 (500–999 pigs), 
and size7 (more than 1000 pigs). For each size group, data for the number of operations and the number of 
pigs are available. However, several data points are not published to maintain anonymity; we estimate those to 
develop the network model. The study time of this research is the year 2012. We have assumed that the inven-
tory sizes are constant throughout the year because of the resolution limitation of the available data. Another 
set of missing data are the geographic farm locations; we use geographical county centroids to measure the 
distances among counties.

We estimate the swine movement probabilities among sub-populations for the State of Iowa, where a 
sub-population is denoted as the swine population in a size group in a county. Iowa has the largest swine inven-
tory (31.43%) in the US25. In the list of America’s top 100 pig farming counties, 42 counties are from Iowa alone26. 
It is also the most vulnerable state for the introduction of classical swine fever and African swine fever viruses 
due to legal import of live swine27. Iowa has 99 counties in total, the number of swine sub-populations in our 
optimization problem is 99 × 7.

Swine movement probability estimation. To estimate the pig movement probabilities in a week among 
different sub-populations, we use a convex optimization problem. This convex optimization problem consists of 
two steps: (1) estimation of the non-disclosed data points in the inventory and sales data and (2) estimation of 
movement probabilities among different sub-populations.

To estimate non-disclosed points in the inventory data, we formulate an entropy function. By maximizing this 
function, we estimate the data points with minimum assumptions28. This process is detailed in Schumm et al.9. 
In step 2, we construct a convex optimization problem, which includes a series of linear constraints. The purpose 
of this problem is to maximize the entropy of the distributions of the objective function, the distributions of the 
objective function for a sub-population are presented in Fig. 1. The maximum entropy is a well-known method of 
statistical inference, which has been used in diverse research fields including ecology, thermodynamics, econom-
ics, forensics, language processing, astronomy, image processing etc.12,29,30. This method produces the least biased 
predictions while maintaining prior knowledge constraints.

In the convex optimization problem, there are C counties and each county has I size groups. A pig from a 
sub-population can be moved to a sub-population in the state, or moved outside of the state, or not moved at all, 
or slaughtered, or lost. Therefore, a pig in a sub-population has five movement options, which construct the dis-
tributions of the objective function. We define the objective function of this estimation problem as,
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The objective function of this problem is to maximize the Entropy. We estimate the movement probabilities 
mi j dist x y

d
, , ( , ), which represents the movement probability from sub-population (x, i) to sub-population (y, j) in a 

week. A sub-population (x, i) is the swine population in the size group i in the county x. The index variable x and 
i are used for the originating sub-population, x = 1, 2, 3 … C and i = 1, 2, … I. Again, y and j are the index variable 
for the receiving sub-populations (y, j). The superscript d marks the decision parameters. The parameter osx i

d
,  

represents movement probability from sub-population (x, i) to outside of the state in a week, rnx i
d

,  is the probabil-
ity to remain or not-moved in the sub-population (x, i) in a week, slx i

d
,  is the probability of pigs being slaughtered 

for meat from sub-population (x, i) in a week, and ltx i
d

,  is the probability of pigs being dead or lost in 
sub-population (x, i) in a week. We divide the distance between counties into five classes: (1) distance ∈[0, 20), (2) 
distance ∈[20, 100), (3) distance ∈[100, 200), (4) distance ∈[200, 400), and (5) distance ∈[400, Dmax]. Dmax is the 
maximum distance between two counties. dist(x, y) represents the distance class for the distance between county 
x and y. We divide the distances between all pairs of counties in that way to group them into discrete distance 
groups. This problem is subject to several linear constraints, which we construct from probability rules, sales data, 
swine population conservation etc.

As a pig can move (from the sub-population (x, i) to a sub-population in the state, or outside of the state, or 
slaughtered, or death) or it could stay in the sub-population, therefore the summation of these possibilities is 
equal to one. From the rule of the probability, we can get the following constraint for any sub-population (x, i),
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The probabilities in Eq. 2 are considered in the objective function.
There are three types of sales in the system, (1) sales for the movement from sub-population (x, i) to the all 

sub-populations in the state, (2) sales for the movement to the outside of the state, and (3) sales for slaughter. 
Constraint for the sales or movement from any county x is,
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The superscript r indicates published data. The parameter Ivx i
r

,  is the swine inventory in the sub-population (x, i),  
and Salesx

r represents the total sales from county x in a year. The parameter scaled is used to convert the timescale, 

Figure 1. The movement flows of a sub-population (x, i). Solid black lines represent the outgoing flows from 
the sub-population, dotted red lines represent the incoming flows into the sub-population, and the blue solid 
line represents the possibility to stay or not moved. Solid lines (black and blue) form the distributions of the 
objective function. The probability of each movement are shown with the arrows.
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this parameter allows us to convert the timescale from yearly to weekly basis. ETx
sales is the error term for the con-

straint 3.
The constraint for the slaughtered swine is,

∑ ∑ ∗ + =
∈ ∈
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The term TotalSlaughteredr represents the total number of slaughtered in a year in the system, and ETsl is the 
error term for slaughtered data.

The constraint for the sales to the outside of the state is;
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The term TotalOutshipmentr is the total sales to the outside of the state in a year, and ETout is the error term for 
outshipment.

The constraint for the inshipments from the outside of the state is;
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The parameter isx i
d

,  indicates the inshipment probability in a week from outside of the state to the 
sub-population (x, i), TotalInshipmentr is the inshipment from outside in a year in the system, and ETin is the error 
term for inshipment.

The constraint for the death or lost is,
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The term TotalLostr represents the total number of death or lost in a year from the system, and ETlt is the error 
term for this constraint.

We assume that the population or inventory size of a sub-population remain constant throughout the year. 
Therefore, in a sub-population, the summation of the outgoing flows from the sub-population (solid black lines 
in Fig. 1) is equal to the summation of the incoming flows into the sub-population (dotted red lines in Fig. 1). 
Constraints for the population conservation are,
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Here, Ivx i b
d

, ,  represents the breeding population, btx i
d

,  is the probability of birth in the sub-population (x, i) in a 
week, and ETx i

pop
,  is the error term. The left side of the Eq. 8 is the summation of the outgoing flows from 

sub-population (x, i) and the right side is the summation of the incoming flows into the sub-population (x, i). The 
range for btx i

d
,  is (7 × 9)/115 − (7 × 12)/112 week−1, as time period for gestation is 112–115 days and average litter 

rate is 9–1225. The range for slx i
d

,  was chosen based on the lifespan of market pigs in the US, which is about 25 to 
28 weeks.

Constraint for the errors is,

∑ ∑∑| | + | | + | | + | | + | | + | | ≤ ∗
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x
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The left side of Eq. 9 represents the summation of all the errors in the optimization problem. Here, Rc is a 
proportional constant, and TotalPopulationr is the total swine population in the system. The inequality (Eq. 9) 
states that the total error in the convex optimization problem should be less than equal to a fraction Rc of the 
TotalPopulationr. The value of Rc is calculated by using trial and error with an objective to minimize the total error.

Convex cost function (Eq. 1) and constraints (Eqs 2–9) constitute our optimization linear problem. The 
objective of this estimation problem is to maximize the entropy of the distributions of the objective function of 
all sub-populations. The performance of entropy measures is sensitive to different factors31. Maximum entropy 
methods can predict accurately given a prior knowledge. However, maximum entropy methods can perform 
poorly if the prior knowledge is insufficient or inaccurate or contains biases32. In our estimation problem, pub-
lished USDA-NASS data are used as the prior knowledge, and the data was sufficient to solve the formulated 
convex optimization problem. Maximum entropy methods can also perform poorly if the system changes very 
rapidly32, which is not our case.

Network development. We develop a network using the movement parameters which are obtained using 
the maximum entropy optimization. The network development is done in two stages: (1) setup of the population 
in each farm and (2) setup of the movement links between farms.
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In order to generate the network, first, we need the farm level estimates of the pig population. The USDA-NASS 
data only provide the number of farms in a size range and the number of total pigs in that range in a county. 
Recorded data on the number of pigs in a farm are generally not available in the US (with the exception of a few 
counties). To allocate the pig population, we generate random numbers for every farm in a size group i within a 
county x with the following constraints:

 (a) The random numbers fall in the range of the corresponding group i.
 (b) The sum of all generated numbers is equal to the total number of pigs in that sub-population (x, i).

The procedure to establish the movement links between farms is inspired by the random network model33. 
Our movement network for pig farms is represented as (V, E, W). The term V denotes the set of nodes, the term 
E represents the set of links or connections among individual nodes, and W denotes the weight of each link. To 
generate the movement network among farms, we use the following procedures:

Step 1 For each pig p1 in a sub-population (x, i), we generate a random number rand from the uniform distri-
bution U(0, 1) for sub-population (y, j), y = 1, 2, 3, ….. C, and j = 1, 2, 3, … I. Here, C is the number of counties in 
the system and I is the number of size groups.

Step 2 If < =rand mi j dist x y
d
, , ( , ), a link is created from pig p1 to another pig p2. Pig p2 is picked randomly from 

the sub-population (y, j).
Step 3 If there is no link from the parent farm f1 of pig p1 to the parent farm f2 of pig p2, we create a link flink 

from f1 to f2. Otherwise, if a link already exists, we increase its weight by 1.
Step 4 For each sub-population (x, i), we repeat Steps 1–3.
This process produces a directed weighted network at the farm level. Links or connections among farms rep-

resent swine movement. The weight of a link represents the volume of movements occurring from one farm to 
another.

Network analysis. To capture the particular features of the developed network, we compute the following 
network analysis metrics: node strength, betweenness, eigenvector, clustering coefficient, and average shortest 
path33–35. Centrality measures can help us determine the most important or central nodes in a network.

The node strength-centrality measure is the strength of the nodes or sum of the weights of the edges connected 
to it36. In a directed network, the nodes have two types of vertex-strength centralities: (1) in-strength InS, and (2) 
out-strength OuS.

∑=
∈

InS k w( )
(10)l NB k

lk
( )

∑=
∈

OuS k w( )
(11)l NB k

kl
( )

Here, wlk is the connection strength of the edge/link from node l to node k, NB(k) is the set of the neighbors of 
node k. Vertex strength can be illuminating in the investigation of diseases spreading. A high in-strength node has 
a high risk of receiving an infection. On the other hand, a high out-strength node is influential over the network, 
as such a node can infect many more nodes.

The betweenness centrality measure suggests which nodes are important in the connection flow or act as 
bridges in the network. Betweenness centrality of a node measures how many shortest paths between different 
pairs of nodes go through that particular node. The shortest path between two nodes is the path with the fewest 
number of connections. Nodes with high betweenness centrality have high control over movement flow (here, 
concerning flow of swine) in the network. Removal of such nodes can effectively reduce connectivity in the net-
work. Knowledge of these nodes can be useful in controlling outbreaks37. Let, pst be the number of shortest paths 
from s∈N to t∈N. We denote, pst(k) to be the number of shortest paths from s to t, that includes node k somewhere 
in between. The betweenness centrality of a node k is defined38 as:

∑=
≠ ≠ ∈

B k
p k

p
( )

( )

(12)s k t N

st

st

Eigenvector centrality is an extension of the degree/strength centrality. In the eigenvector centrality measure, 
the centrality of a node is proportional to the sum of the centralities of its neighbors.

∑λ= ∗−

∈

e k e l( ) ( )
(13)l NB k

1
1

( )

Here, e(k) is the eigenvector centrality of the node k, and λ1 is the largest eigenvalue of the adjacency matrix 
[akl] of the network. Eigenvector centrality of a node can be large if either it has many neighbors or it has impor-
tant neighbors. Nodes with high eigenvector centralities have high probabilities of becoming infected39,40.

The clustering coefficient measures local group cohesiveness. The clustering coefficient Cc(k) for a node k is 
the ratio of the number of edges among the neighbors of k and the maximum possible number of such edges (for 
the fully-connected network formed by the neighbors of node k). If neighboring nodes of node k has ck connec-
tions among them then clustering coefficient can be defined as35:
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The average shortest path is the average of the shortest path length between all pairs of nodes in the network.

Results
Movement probability estimation. In this research, we solve a convex optimization problem to estimate 
the swine movement probabilities by using the maximum entropy approach for Iowa. We utilized the AIMMS 
modeling system41 of Paragon Decision Technology to solve this convex optimization problem. The time-scale of 
our estimation problem is weekly, which we controlled it by using scaled = 52 weeks/year. The boundary of error 
limit in our system is 5.45% of total swine population in Iowa (Rc = 5.45%). The estimated probabilities are given 
in Table 1. This table shows swine movement probabilities between size groups for five different distance ranges. 
The highest movement probability is from size7 to size7 sub-population when the distance between them is less 
than 20 km. We divide seven size groups into three categories; size: 1–3(small farms), 4–5(medium farms), and 

Destination

Size1 Size2 Size3 Size4 Size5 Size6 Size7

Distance < 20 km

Source

size1 1.4899 1.3587 1.3890 1.4007 1.4543 1.4641 1.5083

size2 1.3989 1.5080 1.3755 1.4129 1.4393 1.4611 1.5112

size3 1.2826 1.1726 1.8054 1.4979 1.5580 1.6066 1.6264

size4 1.0582 1.1064 1.4199 2.3913 1.7695 1.9519 2.1038

size5 0 0 0 1.7460 7.1795 6.0844 5.3446

size6 0 0 0 2.5308 8.7793 14.3449 8.8213

size7 0 0 0 0 0 0 11.7828

20 km < Distance < 100 km

Source

size1 1.3334 1.3028 1.3834 1.4076 1.4403 1.4511 1.4972

size2 1.3373 1.2961 1.3767 1.4114 1.4375 1.4463 1.4987

size3 1.2407 1.1528 1.3516 1.4039 1.5402 1.5589 1.6340

size4 1.0077 0.7768 1.2906 1.3337 1.7005 1.7403 1.9707

size5 0 0 0 0.5768 2.4553 3.4121 4.4916

size6 0 0 0 0 2.0213 4.0961 6.3753

size7 0 0 0 0 0 0 0

100 km < Distance < 200 km

Source

size1 1.3211 1.2904 1.3840 1.3943 1.4421 1.4449 1.5056

size2 1.3261 1.3009 1.3899 1.3914 1.4372 1.4392 1.4987

size3 1.2350 1.1626 1.3534 1.3966 1.4823 1.5003 1.6312

size4 0.9633 0.7990 1.3194 1.3922 1.6203 1.6701 1.9975

size5 0 0 0 0.2870 2.0726 2.2576 4.5535

size6 0 0 0 0 0.7503 1.2075 6.5958

size7 0 0 0 0 0 0 0

200 km < Distance < 400 km

Source

size1 1.3092 1.2929 1.3708 1.3906 1.4435 1.4587 1.5156

size2 1.3101 1.2912 1.3705 1.3919 1.4453 1.4608 1.5130

size3 1.1890 1.1582 1.3361 1.3725 1.4957 1.5190 1.6690

size4 0.9148 0.8430 1.2363 1.3534 1.6271 1.6868 2.0233

size5 0 0 0 0.0996 1.9382 2.2667 4.8693

size6 0 0 0 0 0.1753 0.7087 7.3607

size7 0 0 0 0 0 0 0

Distance > 400 km

Source

size1 1.2644 1.2818 1.3040 1.4093 1.4522 1.5169 1.5613

size2 1.2915 1.2876 1.3032 1.4002 1.4492 1.5108 1.5422

size3 1.1489 1.1554 1.1864 1.4614 1.4731 1.6829 1.7441

size4 0.9891 0.8387 0.9770 1.4179 1.6056 1.9855 2.0836

size5 0 0 0 0.1091 0.8917 3.9986 4.4802

size6 0 0 0 0 0 3.3953 5.4755

size7 0 0 0 0 0 0 0.0019

Table 1. Estimated swine movement probabilities mi,j,dist(x,y) × 103 from maximum entropy approach.
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6–7(large farms). From Table 1, we can notice that the movement probabilities from large farms to small farms 
are small and vice versa.

Network description. We generate a swine movement network for the central agricultural district of Iowa. 
It has 12 counties: Boone, Dallas, Grundy, Hamilton, Hardin, Jasper, Marshall, Polk, Poweshiek, Story, Tama, and 
Webster. The total number of farms in those 12 counties is 641, while the net pig population is 2,600,888, which 
is 12.71% of the total pig population in Iowa. Grundy, Hamilton, Hardin, Jasper, Marshall, and Webster Counties 
are within the America’s top 100 pork producer counties. Among these, Hardin County is in the 9th position. The 
descriptions of pig inventories for the above-mentioned counties are provided in the Supplementary Material 
Dataset 1.

For these 12 counties, we have developed a movement network (V, E, W), which is shown in Fig. 2. This net-
work is a realization based on the movement probabilities from Table 1. For the network, |V| = 641 and |E| = 22, 
461, the description of the nodes, and the adjacency list for this network is provided in the Supplementary 
Material Dataset 2 and 3. In Fig. 2, this network has seven types of nodes representing the seven size groups. A 
description of size groups is presented in Table 2. The largest group is the size7, contains 393 nodes which are 
presented by light blue. There are 17484 edges among the nodes of this group (67.41% of total edges).

Figure 2. Movement Network for the pig population at the farm level. Different colors represent different size 
groups. Farms are divided into 7 size groups, size: 1–3(small farms), 4–5(medium farms), and 6–7(large farms).

Group
No. of 
nodes

% of the total 
nodes

No. of edges 
in a group

% of the total 
edges

size1 89 13.88% 15 0.07%

size2 10 1.56% 2 0.01%

size3 13 2.03% 9 0.04%

size4 20 3.12% 50 0.22%

size5 56 8.74% 678 3.02%

size6 60 9.36% 1666 7.42%

size7 393 61.31% 12506 55.68%

Table 2. A summary of the size groups in the network.
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Network analysis. The clustering coefficient of the full network is 0.363, the diameter of the network is 
7, and the average shortest path length is 2.598. A summary of various centrality measures for the network is 
provided in Table 3. Node-strength, betweenness, eigenvector and clustering coefficient centrality for seven size 
groups are presented here. In-strength, out-strength, betweenness, and eigenvector centralities were calculated 
from the overall network. Clustering coefficients in Table 3 were calculated for networks of the same size group 
(any node and its neighbors are in the same size group). We used the open source package Gephi to visualize and 
analyze the network42.

Size1 Size2 Size3 Size4 Size5 Size6 Size7

In-strength

mean 1.292 4.700 6.846 16.050 44.304 63.400 151.891

median 1.000 4.000 5.000 15.000 31.500 44.000 100.000

(95% CI) (0.902, 1.683) (2.620, 6.780) (4.214, 9.478) (11.781, 20.319) (33.070, 55.537) (48.566, 78.234) (135.376, 168.406)

range (0, 8) (1, 9) (1, 17) (5, 42) (12, 267) (18, 347) (11, 1426)

Out-strength

mean 1.214 4.500 11.385 22.200 55.054 138.450 140.461

median 1.000 3.500 9.000 18.500 53.000 109.5000 90.000

(95% CI) (0.935, 1.491) (1.613, 7.386) (6.746, 16.023) (16.830, 27.569) (48.889, 61.217) (123.497, 153.403) (122.477, 154.444)

range (0, 5) (0, 14) (2, 26) (10, 50) (21, 118) (66, 282) (7, 1372)

Betweenness

mean 36.140 386.258 858.157 1531.4 814.294 2390.600 244.137

median 0 86.087 905.169 1289.900 661.0194 2026.000 132.247

(95% CI) (10.639, 61.642) (4.551, 767.964) (413.300, 1303.000) (1127.400, 1935.300) (634.840, 993.748) (1738.500, 3042.600) (183.130, 305.143)

range (0, 699.662) (0, 1237.000) (14.605, 2388.400) (228.138, 3189.900) (48.185, 2715.600) (324.236, 15229.000) (0.256, 9932.100)

Eigenvector

mean 0.00086 0.0032 0.0058 0.0326 0.1072 0.1522 0.2381

median 0.00035 0.0030 0.0038 0.0279 0.0854 0.1263 0.1690

(95% CI) (0.0006, 0.0012) (0.0020, 0.0044) (0.0033, 0.0083) (0.0235, 0.0417) (0.0899, 0.1245) (0.1225, 0.1819) (0.2174, 0.2588)

range (0, 0.0061) (0.0011, 0.0064) (0.00043, 0.0141) (0.0100, 0.0726) (0.0281, 0.3391) (0.0493, 0.6565) (0.0328, 1)

Clustering coefficient

mean 0 0 0 0.124 0.264 0.449 0.755

Table 3. A summary of centrality measures for different size groups in the network.

Figure 3. Node strength distribution of the directed network. (a) In-strength, (b) out-strength.
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From the node-strength centrality measures, we observe that the average node-strength is positively correlated 
with the size groups. Larger size groups have higher average node-strengths. Consequently, size7 has the highest 
average node-strength (Table 3). The node-strength distribution is provided in Fig. 3. In the network, only a few 
nodes have high strength and most of the nodes have low strength. This characteristic is similar to the power-law 
distribution. The range of in-strength is 0–1426. About 90.95% of the total nodes have in-strengths less than 285, 
which is merely the first 20% of the in-strength range. The range for out-strength is 0–1372. About 91.11% of 
the total nodes have out-strengths less than 274, which is within the first 20% of the range of out-strength val-
ues. The correlation coefficient between in-strength and out-strength is 0.9523, which is an indication of strong 
correlation.

The betweenness centrality is positively correlated with size groups until group6, after which farms in the 
group7 have lower betweenness. The farms in group6 have the highest average betweenness. The distribution of 
betweenness centrality measure is given in Fig. 4. Most of the farms have low betweenness. Few farms act as hubs 
in the network which have high betweenness. The range for betweenness is 0–15229. We divide the nodes into 
three groups, (1) low-betweenness (0–50), (2) medium-betweenness (51–500), and (3) high-betweenness (>500). 
These three groups contain 183, 302, and 156 nodes respectively. These three groups are illustrated in Fig. 5. In 
the low-betweenness group majority of the nodes are from small size groups, in the medium-betweenness group 
most of the nodes are from group7, and in the high-betweenness group, most of the nodes are from group6.

The mean eigenvector centrality is positively correlated with the size groups. Larger size groups have higher 
eigenvector centralities (Table 3). We have divided the nodes (farms) into three groups: (1) low-eigenvector cen-
tral nodes (0–0.1), (2) medium-eigenvector central nodes (0.11–0.3), and (3) high-eigenvector central nodes 
(0.31–1). The low-eigenvector central group consists of 298 nodes, the medium group consists of 233 nodes, and 
the high group contains the rest of the nodes. The network for different eigenvector groups is presented in Fig. 6. 
Clustering coefficient for group size 7 is 0.755, which is quite high. The nodes from this group form several clus-
ters, which are quite visible in Figs 2 and 6.

In the network, the importance of links is another useful topic to study17. From the link strength or weight 
distribution, we can see that the majority of the links have a low weight however very few links have high weight 
(Fig. 7). A link with high-weight represents a high volume swine movement. For a susceptible farm, an infected 
neighbor connected by a high-strength-link is riskier than an infected neighbor connected by a low-strength-link.

Discussion
In this study, we have three objectives: (1) we compute optimal estimates swine movement probabilities among 
counties from the aggregated data of USDA-NASS, (2) we develop a realization of the network from the estimated 
probabilities, and (3) we analyze the developed network with different network analysis metrics.

Animal movement has been one of the major causes of diseases spread among farms for several outbreaks 
in the US swine industry. A better understanding of the swine movement network can increase the feasibility of 
planning effective mitigation strategies that can reduce the risk of disease spread. There is no mandatory animal 
movement tracking system in the US due to the industry preference for privacy in the swine business. We have 
estimated the movements among different swine sub-populations using a convex optimization problem, have 
formulated according to the USDA-NASS data. The discrepancy from our optimization problem is about 5.45% 
of the total swine population, which is slightly higher than that of a similar work on cattle movement probability 
estimation9 due to a greater amount of data available for cattle. Our estimation can be improved if more data are 
available. The additional data that would improve the results most is the type of swine operations (for example, 
nursery, farrow-to-feeder, farrow-to-wean, farrow-to-finish, finish only etc.) at the county level. The USDA-NASS 
department can collect and publish this information in future reports, as this additional data would not hamper 
the anonymity of the Census of Agriculture yet greatly improve movement estimations.

Figure 4. Betweenness distribution of the network.
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Figure 5. Node groups according to betweenness. (a) nodes with low-betweenness, (b) nodes with medium-
betweenness, and (c) nodes with high-betweenness. The connections among visible nodes are presented here.
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Figure 6. Node groups according to eigenvector centrality, (a) low-eigenvector central nodes, (b) medium-
eigenvector central nodes, and (c) high-eigenvector central nodes. The connections among visible nodes are 
presented here.
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The network development algorithm can provide us a realization of the network from the estimated move-
ment probabilities. The generated swine movement network was well connected with a giant component contain-
ing 95.94% of the farms. The implication of this high connectivity is that the swine industry may be vulnerable 
to infectious diseases. All the disconnected farms were smaller farms (inventory size less than 100) where most 
of them produce meat for their own consumption (60.5% of all small swine farms)43. In addition to that, most 
of these small farms are engaged in all of the phases of swine production (farrow-to-finish producers)44. On the 
other hand, larger farms have more connections among them. One possible reason could be that most of the large 
farms are specialized in a single production phase to increase productivity45,46. Consequently, pig shipments are 
very frequent among them.

We use centrality measures to understand the characteristics of the movement network. From the analysis of 
the node-strength centrality measure, we notice that many nodes in the network have low node-strength however 
very few nodes have high node-strength, who work as hubs in the network. The node-strength distribution of the 
network is similar to that of scale-free networks (Fig. 3). Compared to a random network, epidemics can spread 
faster in a scale-free network. In addition to that, scale-free networks have lower epidemic threshold than compa-
rable random networks47. This information could be useful because targeted vaccination/node-removal is more 
effective in scale-free structures than random vaccination48. The vaccination, or culling, or quarantine of the hubs 
(farms with high node-strength) can be crucial to control an epidemic.

If we analyze the average shortest path length and the clustering coefficient of the overall network, we see 
evidence of the small-world phenomenon in the network. The average path length was similar and clustering 
coefficient was more than six times larger compared to the similar properties of the equivalent Erdos-Renyi ran-
dom network49, which satisfy the sufficient conditions for small-world properties of the network50. The US swine 
movement network structure is quite vulnerable to any pathogen spreading because of its small-world nature. 
This result is similar to other studies as well20–22. This network has high local clustering. Size7 group (larger oper-
ations: headcount is more than 1000) has the highest amount of local clustering (Figs 2 and 6). Therefore, large 
operations are highly interconnected, making them more vulnerable to outbreaks. Moreover, the structure of 
the US swine industry has been changing over several years. The number of large operations is increasing, where 
most of them specialize in one particular phase of production. These changes are increasing the risk for disease 
outbreaks in the swine industry.

The correlation between in-strength (incoming movements) and out-strength (outgoing movements) is 
strong. The nodes with high out-strength values also have high in-strength values. This is an important indicator 
as the nodes with a high risk of receiving infection are also highly capable of spreading them.

Although the group size7 (largest operations) has the highest values of node-strength, clustering coefficient, 
and eigenvector centralities it is not necessarily highest in terms of the betweenness centrality measure. We found 
that group size6 has the highest betweenness centrality values (Table 3). The groups size4 and size5 also show high 
betweenness. The above-mentioned properties indicate that the group size7 forms various clusters in the network, 
where the operations are highly connected. The operations of medium size, however, maintain the connectivity 
among the clusters of the largest group. Hence, these medium size operations play a key role in the system. During 
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Figure 7. Link-strength or connection-weight distribution of the network. Log-log scale has used for better 
visualization.
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an epidemic, it is possible to use these high betweenness farms to disconnect the movement network and confine 
the disease in a smaller part of the network.

We make several assumptions to simplify our model as all necessary data are not available. We assume that 
the inventory size of the operations is constant on a year-to-year basis. We also consider that movement flows are 
the same throughout the year because of the resolution limitation of the available data. However, movement flows 
can be different from one season to another season. The movement flows also can be sensitive to other factors, for 
example, production technology, business strategy, and food availability. However, we do not have specific knowl-
edge about these factors at this point and inclusion of too many unknown factors increases the complexity of the 
estimation problem given the limited data. Our estimation steps can be easily adapted by adding more constraints 
when more data are available.

One immediate use of this network could be the investigation of the stochastic spreading processes51–55. This 
kind of study can help us understand the underlying mechanisms and threshold conditions of spreading pro-
cesses for various swine diseases including porcine reproductive and respiratory syndrome (PRRS), classical 
swine fever (CSF), African swine fever (ASF) and many more.

In summary, we present a maximum entropy approach to estimate the swine movement network from aggre-
gated anonymous census data. This method can be used to estimate movement probabilities of other farm animals 
too for various locations.

Data Availability
The dataset used to perform this research is available from https://quickstats.nass.usda.gov/, https://quickstats.
nass.usda.gov/. The authors are willing to provide further details upon request.
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