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Abstract
In previous studies, measures of technical ine¢ciency e¤ects derived from sto-

chastic production frontiers have been estimated from residuals which are sensitive
to speci…cation errors. This study corrects for this inaccuracy by extending the
doubly heteroscedastic stochastic cost frontier suggested by Hadri (1999) to the
model for technical ine¢ciency e¤ects in a stochastic frontier production func-
tion for panel data proposed by Battese and Coelli (1995). The correction for
heteroscedasticity is supported by the data. The study uses, for illustration of
the techniques, data on 101 mainly cereal farms in England. We provide both
point estimates and con…dence intervals for technical e¢ciencies. The con…dence
intervals are constructed by extending the “Battese-Coelli” method reported by
Horrace and Schmidt (1996) by allowing the technical ine¢ciency to be time
varying and the disturbance terms to be heteroscedastic. The con…dence intervals
reveal the precision of technical e¢ciency estimates and show the de…ciencies of
making inferences based exclusively on point estimates.

JEL classi…cation: C23; C24; D24; Q12.
Keywords: stochastic frontier production; heteroscedasticity; technical e¢ciency;
panel data.
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1. Introduction

In previous studies of e¢ciency using stochastic frontier models, Caudill et al.
(1995) noted that measures of ine¢ciency are based on residuals derived from
the estimation of a stochastic frontier. They observed that residuals are sensitive
to speci…cation errors, particularly in stochastic frontier models, and that this
sensitivity will be passed on to the ine¢ciency measures. To correct for this,
they suggested that one should consider testing for and, if present, correcting
for heteroscedasticity in the one sided error term. Hadri (1999) argued that the
two-sided error term might be expected to be a¤ected by heteroscedasticity as
well. Ignoring this likely eventuality leads to inconsistent maximum likelihood
(ML) estimators and the usual tests are no longer valid. Hence, in order to obtain
correct estimators and valid tests one must test for heteroscedasticity in both error
terms and, if indicated, appropriate correction should be made in the estimation
procedure. Using the same data as Caudill et al. (1995), Hadri (1999) found that
…rm-speci…c ine¢ciency measures are extremely sensitive to the correction for
heteroscedasticity in both random terms. Other forms of known heteroscedasticity
have been considered in the literature, see for instance Kumbhakar (1997). For a
recent review of stochastic frontier models the reader is referred to Greene (1997).

In this paper, we consider heteroscedasticity of a known form in the stochastic
terms in the model for technical ine¢ciency e¤ects in a stochastic frontier pro-
duction function for panel data proposed by Battese and Coelli (1995). In their
model, Battese and Coelli (1995) explicitly express technical ine¢ciency e¤ects
in terms of appropriate explanatory variables. The parameters of the stochastic
frontier and the ine¢ciency model are then estimated simultaneously using the
method of maximum likelihood with panel data. Previous applied papers, in-
cluding Pitt and Lee (1981) and Kalirajan (1981), adopt a two-stage approach
in which the …rst stage involves the speci…cation and estimation of the stochas-
tic frontier production function and the prediction of the technical ine¢ciency
e¤ects, under the assumption that these ine¢ciency e¤ects are identically distrib-
uted. The second stage requires the speci…cation of a regression model for the
predicted technical ine¢ciency e¤ects. However, this contradicts the assumption
of identically distributed ine¢ciency e¤ects in the stochastic frontier. The si-
multaneous estimation avoids this serious problem (see Battese and Coelli (1995)
for more details and other related references). Additionally, the consideration,
in this paper, of heteroscedasticity in Battese and Coelli model seeks to prevent
inconsistency and to obtain valid tests when heteroscedasticity of a known form
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is present. Three speci…cations are considered: heteroscedasticity in the one sided
term, heteroscedasticity in the symmetrical error term and in both error terms.
We also calculate technical e¢ciency and their con…dence intervals for several
formulations of the stochastic frontier models. We extend the “Battese-Coelli
method” (see Horrace and Schmidt (1996)) for constructing con…dence intervals
to the case of time varying technical ine¢ciency and heteroscedastic error terms.
The con…dence intervals reveal the precision of technical e¢ciency estimates and
show the de…ciencies of making inferences based exclusively on point estimates.
To illustrate the application of these techniques, we apply them to a set of panel
data on 101 mainly cereal farms in England for the harvest years 1982-1987.

The paper is organised as follows. The theoretical models are presented in
section 2. In section 3 the models are applied to our data set . Section 4 deals with
the construction of con…dence intervals and their analysis. Section 5 concludes
the paper.

2. Theoretical models

Before presenting the heteroscedastic stochastic production frontier models with
technical ine¢ciency e¤ects, we brie‡y present the model of Battese and Coelli
(1995):

yit = xit¯ + wit ¡ vit; (1)

where yit denotes the logarithm of the production for the ith sample farm (i =
1; : : : ; N) in the tth time period (t = 1; : : : ; T); xit is a (1 £ k) vector of the
logarithm of the inputs associated with the ith sample farm in the tth time period
(the …rst element is set to one if an intercept term is included); ¯ is a (k£1) vector
of unknown parameters to be estimated; the wit s are assumed to be iid N (0, ¾2w)
error terms, independent of the vits which are non-negative disturbance terms,
associated with the technical ine¢ciency of production. The vits are assumed to
be independently distributed, such that vit is obtained by truncation at zero of
the normal distribution with mean Zit±, and variance ¾2v : Zit is a (1£m) vector of
…rm-speci…c variables which may vary over time. ± is an (m£1) vector of unknown
coe¢cients of the …rm-speci…c ine¢ciency variables. The one-sided disturbance
vit re‡ects the fact that each …rm’s production must lie on or below its frontier.
Such a term represents factors under the …rm’s control. The two-sided error term
represents factors outside the …rm’s control. Battese and Coelli (1995) assume
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that the vits are a function of a set of explanatory variables, the Zits, an unknown
vector of coe¢cients, ± and a disturbance term, uit, de…ned by the truncation of
the normal distribution with mean zero and variance ¾2v:

Under the above assumptions, Battese and Coelli (1995), following Weinstein
(1964), derive the density function of ²it = wit¡ vit which we reproduce here with
a slightly di¤erent notation:

f(²it) =

"
¾©
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Zit±

¾v
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©
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¹¤it
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are respectively, the standard normal density and distribution functions. The
advantage of stochastic frontier estimation is that it permits the estimation of
…rm-speci…c ine¢ciency. Following Jondrow et al. (1982) it is straightforward to
show that the conditional expected value of v given ² is given by:

E [vitj²it] = ¹¤it + ¾¤
Á (¹¤it=¾

¤)
© (¹¤it=¾¤)

; (3)

where ¹¤it and ¾¤ are as de…ned previously. We use this formula to evaluate e¢-
ciencies. More speci…cally, if yit is the logarithm of output, technical e¢ciency of
the ith …rm in the tth time period is TEit = exp (¡ [vit]) and technical ine¢ciency
is equal to 1¡ TEit:

The log-likelihood function of a homoscedastic model given by (1) and (2) for
possibly unbalanced panel data is given by:

L
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In considering the three possible cases of heteroscedasticity (in the one-sided,
two-sided and both error terms), we follow Hadri (1999) in assuming the following
multiplicative heteroscedasticity for the one-sided error term
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¾vit = exp(Vit°); (5)

where Vit is a vector of nonstochastic explanatory variables related to characteris-
tics of …rm management and ° is a vector of unknown parameters that is assumed
to include an intercept parameter. Vit is assumed to include an intercept term.
The standard deviation of the two-sided error term is also written in exponential
form so that ¾w = exp(®0): To obtain the density function corresponding to the
model where only the one-sided error term is assumed heteroscedastic, we replace
the variances by their new expressions in (3).

As argued earlier, in the cross-section dimension the two-sided error is likely
to be a¤ected by size-related heteroscedasticity. The misspeci…cation resulting
from not incorporating heteroscedasticity in the ML estimation of our frontier
can cause parameter estimators to be inconsistent as well as invalidating standard
techniques of inference, see White (1982). In order to incorporate heteroscedas-
ticity in the two-sided error term we write ¾wit = exp(Wit®); where Wit is a
vector of nonstochastic explanatory variables related generally to characteristics
of …rm size and ® is a vector of unknown parameters that is assumed to include
an intercept parameter. Wit is assumed to include an intercept term. The stan-
dard deviation of the one-sided error term, assumed here to be homoscedastic,
becomes ¾v = exp(°0): The density function remains as in (3) but the variances
are replaced by their new expressions.

Last but not least, the most general speci…cation is the one where both error
terms are assumed to be concurrently heteroscedastic. The density in (3) is still
appropriate but, now we have to use ¾wit = exp(Wit®) and ¾vit = exp(Vit°):

3. Illustrative application

As an illustration, a set of panel data on 101 English farms, classi…ed as ‘mainly
cereal’ under the nationally organised Farm Business Survey, was used for the years
1982-1987 to estimate the four stochastic frontier production functions. Data
on output and input are collected only in value and cost terms, and are here
de‡ated by the appropriate price index to proxy physical output and inputs. The
characteristics of the data are summarised in Table 1. One feature of the sample
is variability. In all variables, the standard deviation is large compared to the
mean. The range of the data in Table 1 also indicate the diversity of the sample.
Another feature is size dispersion; a farm that is one standard deviation above
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the mean is more than 6 times larger than a farm that is one standard deviation
below the mean.

[Table 1 here]

In this study, we consider the ‡exible translog function

lnCit = ¯0 +
5X

j=1

¯jxjit +
5X

j�k

5X

k=1

¯jk xjitxkit + wit ¡ vit; (6)

where
C represents the cereal output;
x1 represents the logarithm of labour;
x2 represents the logarithm of the total amount of land (in acres) on which

cereals were grown;
x3 represents the logarithm of chemicals (fertilizers and crop protection);
x4 represents the logarithm of other inputs (machinery, energy, seeds, and

others);
x5 represents the year of observation.
The model for the technical e¢ciency e¤ects in the stochastic frontier of equa-

tion (6), is de…ned by

vit = ±0+ ±1z1it + ±2z2it + ±3z3it + ±4z4it + uit; (7)

where
z1 and z2 are dummy variables for business type (sole trader, partnership, and

farm company); where z1 = 1 for partnership and zero otherwise, and z2 = 1 for
farming company and zero otherwise.
z3 is a dummy representing whether the farm produces cereals only (z3 = 1

for specialised farms, zero otherwise);
z4 represents the year of observation.

¾wit = exp(®0 +®1TAit); (8)

where TA is the logarithm of total area. The two-sided error term is likely to be
a¤ected by size-related heteroscedasticity. We consider that the best measure of
size is the total area. This last measure includes all size-related heterogeneities,
the one due to cereals production as well as other productions.
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¾vit = exp(°0 + °1x3it); (9)

where x3it represents the logarithm of chemicals . The usual assumption here
is that the heteroscedasticity in the one-sided stochastic term is associated with
factors under the farm’s control. We believe that the variable, chemicals, ful…lls
adequatly this requirement.

The elasticity of mean production is given by:

@ ln[E(Cit)]

@xk
= ¯k + 2¯kkxkit +

5X

j 6=k
¯kj xjit: (10)

For models M2 and M3 and only for the elasticity with respect to x2;we should
add the following term:

(exp [®0 + ®1TAit])
2 ®1 exp [x2it ¡ TAit] : (11)

This last term is due to the fact that the variance of the two-sided stochastic term,
in the heteroscedastic case, depends indirectly on x2 for these two models:

The year of observation is included in the model to account for technological
change (Hicksian neutral) even though the time period considered is short.

Although we use the ‡exible translog function, we note that there are other
potential ‡exible functional forms, including the use of neural network (for more
details see Guermat and Hadri (1999)).

Generally, management characteristics such as age and education are taken as
important determinants of technical ine¢ciency. Unfortunately, we do not have
such data. Instead, we use business type and specialisation dummies to repre-
sent management characteristics. The time variable is included to see whether
ine¢ciency e¤ects change linearly with respect to time as in Battese and Coelli
(1995).

We estimated seven stochastic frontier production functions using GQOPT/PC
version 6.01 routines for the optimisation of the likelihood functions. Model M1
is the most general model with a translog functional form and both error terms
accounting for heteroscedasticity. Model M2 is the same as M1 except that it
has a Cobb-Douglas functional form. All the remaining models have a translog
functional form. Model M3 excludes explanatory variables for the technical in-
e¢ciency e¤ects. Model M4 assumes both error terms to be homoscedastic. In
model M5 only v is assumed to be homoscedastic, whereas in model M6 sole w is
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homoscedastic. Model M7 is the selected model. It assumes a translog functional
form, technical ine¢ciency e¤ects, w homoscedastic, v heteroscedastic and no time
e¤ect in the technical ine¢ciency component. Maximum-likelihood estimates of
the seven models are reported in Table A1.

Likelihood ratio statistics were used to test the above speci…cations and are
reported in Table 2. All the tests were carried out using 5% signi…cance level.
Model M1 nests all the other models. We started by testing Cobb-Douglas versus
Translog, obtaining a likelihood ratio of 84.07 indicating the rejection of the Cobb-
Douglas speci…cation. We then tested the hypothesis that there are no technical
ine¢ciency e¤ects. This hypothesis is also rejected on the basis of a likelihood
ratio of 53.476. The null hypothesis of v and w being homoscedastic is rejected
with a likelihood ratio of 15.91. Next, we tested the hypothesis of a homoscedastic
v. This hypothesis is rejected. However, the null hypothesis of w homoscedastic
is not rejected. Finally, there is insu¢cient evidence to reject the restrictions
entailed by model M7.

[Table 2 here]

Technical e¢ciency was estimated for the selected model (M7) and three other
models for comparison purpose. The aim was to examine the e¤ects of using the
Cobb-Douglas functional form (M2), ignoring technical ine¢ciency e¤ect (M3)
and ignoring heteroscedasticity in both error terms (M4).

The histograms of technical e¢ciencies from the four models are shown in
Figure 1. The various models clearly produce di¤erent empirical distributions.

[Figure 1 here]

Table 3 displays the yearly mean technical e¢ciency of all farms for the four
models. Model M2 has the most monotonic (same tendency) yearly mean technical
e¢ciency over time. The Cobb-Douglas model is unstable, giving the highest
mean e¢ciency (0.918) in 1982 and the lowest mean e¢ciency (0.758) in 1987.
The highest average of e¢ciency is produced by model M3, which suggests that
in our case, using the wrong model might overestimate the mean e¢ciency.

[Table 3 here]
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The di¤erence between the four models is more obvious when we compare the
ranking of yearly mean e¢ciency. Table 4 gives the highest, median and lowest
three e¢ciencies for each model respectively. Both M4 and M7 place farm 21 and
51 at the top three farms, and farm 70 and 76 at the bottom three farms. The
two models give di¤erent farms at the middle ranking. The other models produce
very di¤erent ranking of farms. We notice, however, that farm 21 is classi…ed in
the top three farms in three out of four models, while farm 76 is classi…ed in the
bottom three farms in three out of four models. The median farms show a clear
cut di¤erence among the models, as no model suggest the same median farms.

[Table 4 here]

In addtion to the absolute measures of e¢ciency, the relations between the
…rm-speci…c e¢ciency ranking are of interest to establish the extent to which the
four models a¤ects the determination of relative rather than absolute e¢ciency.
Table 5 gives the correlation between the rankings of these models. It is clear that
the rankings are generally sensitive to the assumption adopted.

[Table 5 here]

The elasticities, shown in Table 6, are all positive as expected. Models M7
and M4 produce similar elasticities and return to scale. However, although the
estimated returns to scale are similar in M2 and M3, the individual elasticities
are di¤erent. Models M4 and M2 produce the lowest and the highest return to
scale respectively. All these elasticities are signi…cant at the 5% level except the
mean labour elasticities in model M3 (t = 1:59): The standard errors have been
calculated using the delta method as suggested by one of the referees.

[Table 6 here]

4. Technical e¢ciency and con…dence intervals

The construction of con…dence intervals for panel data assuming technical ine¢-
ciency time invariant is reported by Horrace and Schmidt (1996) who refer to it as
the “Battese-Coelli” method . We extend this method to allow for the technical
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ine¢ciency to be time varying. The (1-¸)100% con…dence interval (Lit; Uit) for
TEit = exp(¡E [vitj²it]) is given by:
Lit = exp(¡¹¤it ¡ zLit¾¤it);
Uit = exp(¡¹¤it ¡ zUit¾¤it);
where
zLit = ©

¡1f1 ¡ (¸=2)[1¡ ©(¡¹¤it=¾¤it)]g;
zUit = ©

¡1f1 ¡ (1¡ ¸=2)[1¡ ©(¡¹¤it=¾¤it)]g;
and © is the standard normal cdf and the other parameters have been de…ned

previously. Due to the large numbers of farms only nine are reported for each
year; these are the three farms with the highest technical e¢ciencies, the three
with median technical e¢ciencies and the three farms with the lowest technical
e¢ciencies. The e¢ciency levels are not estimated as precisely as one might have
desired. For the year 1987 the farm with the highest estimated e¢ciency level
had an estimated e¢ciency of 0.9566 but a 95% con…dence interval ranging from
0.8646 to 0.9987. The median farm for the same year had an estimated e¢ciency
of 0.8846, with a 95% con…dence interval of (0.7272, 0.9942). The worst farm in
the sample had an estimated e¢ciency of 0.4785 with a 95% con…dence interval of
(0.3959, 0.5784). For the other years we obtain similar patterns. The con…dence
intervals are relatively wide and overlapping. If we consider the year 1982 for
example, all the highest and median farms reported in Table 6 overlap. Only the
three lowest farms do not overlap with the …rst six farms. This would lead us to
deduce that the six farms (highest and median) are e¢cient and that the three
bottom farms are less e¢cient. This contrasts with the point estimates of technical
e¢ciency for which we would conclude that farm 21 is the most e¢cient farm and
that the following farms would be ranked in decreasing order of e¢ciency. As
noted by Horrace and Schmidt (1996), the method used to construct con…dence
intervals considers the parameters of the model to be known and therefore the
con…dence intervals do not re‡ect uncertainty about these parameters. For large
N this is not signi…cant since the variability in the parameters estimates is small
relative to the variability intrinsic to the distribution of the vit given ²it. On
the other hand, the lack of precision in the estimation of technical ine¢ciency is
mainly due to the relative variability of vit and wit: In our case we obtain for the
estimate of var(w) = ¾2w; 0.0445 and for the estimate of var(vit) = 0:0186: This
means that on average the variance of w (statistical noise) is almost two and half
times as large as the variance of v: This makes it very di¢cult to estimate vit
precisely, hence the wide con…dence intervals obtained. To evaluate var(vit); we
used the formula derived by Stevenson (1980).
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[Table 7 here]

Figure 2 shows the estimated technical e¢ciencies for 1987 along with their
corresponding 95% con…dence intervals for models M4 and M7 respectively. Due to
space, the graphs for models M2 and M3 are not reported. In all the models, farms
were ranked according to model M7 ranking. The smoothness of the plot for M7 is
clearly disturbed in the other models. This indicates that di¤erent speci…cations
lead to di¤erent ranking of farms as found for instance in Hadri (1999). It is
not easy to compare the con…dence intervals of the di¤erent models. However, it
seems that the Cobb-Douglas model has the widest con…dence intervals for almost
all farms.

[Figure 2 here]

In …gure 3 the technical e¢ciencies for the four models, M2, M3, M4 and M7
are plotted concurrently using M7 ranking. It is clear that the Cobb-Douglas
(M2) speci…cation consistently and greatly underestimates technical e¢ciency.
The homoscedastic model M4 also underestimates technical e¢ciency for most
farm, but the magnitude of this underestimation is generally less than that of M2.
Ignoring technical e¢ciency e¤ects (M3) leads to an overestimation of technical
e¢ciency for a great majority of farms, especially those at the lower end.

[Figure 3 here]

…gures 4 and 5 show for model M4 and M5 respectively, the evolution of
technical e¢ciencies during 1982 to 1987 for three top farms, three middle farms
and three bottom farms. The …gures for models M2 and M3 are not reported
here for the same reason as above. The ranking is based on the average technical
e¢ciencies during the six years. Overall, the top farms are the most stable during
the period concerned followed by the middle farms. The least stable during the
same period are the least e¢cient farms.

[Figures 4 and 5 here]
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5. Conclusion

This study has demonstrated that heteroscedasticity within an estimation can
have signi…cant e¤ects on results. The models developed in this paper allow for
heteroscedasticity in the Battese and Coelli (1995) stochastic production frontier
with technical ine¢ciency e¤ects model. Having tested for heteroscedasticity, we
found that only the two-sided error was homoscedastic. The results provide fur-
ther support for the Hadri (1999) argument that the correction for heteroscedas-
ticity is essential in order to obtain correct estimates, valid tests and satisfactory
measures of e¢ciency. We also extended the “Battese-Coelli” method for con-
structing con…dence intervals to the case of time varying technical ine¢ciency
and heteroscedastic error terms. Finally, our results points to the importance of
(a) using a ‡exible functional form for the unknown production technology, (b)
considering technical e¢ciency e¤ects and (c) allowing for heteroscedasticity in
the error terms.
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The elasticity of mean production with respect to x2 when heterocedasticity
is assumed to be present in the two-sided disturbance term (models M2 and and
M3):

@ ln[E(Cit)]
@x2

= ¯2 + 2¯22x2it +
P5
j 6=2 ¯2j xjit + (exp [®0+ ®1TAit])

2 ®1X2
where X2 represents the total amount of land (not the logarithm) on which

cereals were grown.
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Table 1. Summary statistics for variables in the stochastic frontier model. 
 Minimum Maximum Mean Std. Deviation Skewness Kurtosis
C 6098.51 1278502.46 211068.08 167984.19 1.897 5.439
LABOUR 656.88 115959.93 22352.58 16987.90 2.212 6.920
CAREA 7.30 882.62 134.92 97.62 2.113 8.494
CHEM  574.96 166491.58 27080.09 22947.91 2.110 6.575
OTHER 3801.69 267854.71 43333.90 34240.50 2.491 9.979
TOTAREA 34.10 1107.21 174.69 127.32 2.274 9.123
Size dispersion = (mean+sd)/(mean-sd)=8.80. (for C). 
Cereal Area and Total Area are in hectares. All other variables are in Sterling Pounds at 1985 prices. 
 
Table 2. Likelihood-ratio tests. 

Null Hypothesis  Log Likelihood LR Critical Value 
(5%) 

Decision 

M1 (Translog) 771.446    
M2  
H0 : βij=0, 
i≤j=1,…,5 

729.410 84.072 24.99 Reject H0 

(Cobb -Douglas) 

M3  
H0 : δi=0, i=1,… ,4 

745.131 52.630 9.48 Reject H0 

(No  ineff. effect) 
M4  
H0 : α1 = γ1 = 0 

763.493 15.906 5.99 Reject H0 

(v and w homosc.) 
M5  
H0 : α1 =  0 

771.214 0.464 3.84 Accept H0  
(v homosc.) 

M6 
H0 : γ1 = 0 

768.311 6.270 3.84 Reject H0 

(w homosc.) 
M7 
H0 : δ4 = α1 = 0 

771.188 0.516 5.99 Accept H0 

 
Table 3.  Yearly Mean Technical Efficiency. 

 1982 1983 1984 1985 1986 1987 Average 
M2 0.9188 0.8860 0.8907 0.8452 0.8388 0.7584 0.856314 
M3 0.8976 0.8639 0.8962 0.8702 0.9036 0.8770 0.884741 
M4 0.8655 0.8165 0.8621 0.8284 0.8723 0.8332 0.846319 
M7 0.8777 0.8368 0.8754 0.8475 0.8866 0.8599 0.863988 
 
Table 4. Mean efficiency ranking. (Mean of each firm over 6 years) 

 M2  M3 M4  M7  
 Firm Efficiency Firm Efficiency Firm Efficiency Firm Efficiency 

Highest 40 0.9517 38 0.9491 21 0.9446 21 0.9550 
 21 0.9424 51 0.9481 51 0.9409 63 0.9481 

 54 0.9379 28 0.9446 24 0.9407 51 0.9475 
Median 65 0.8715 45 0.9006 47 0.8588 45 0.8795 
 52 0.8698 96 0.8995 74 0.8494 92 0.8789 

 49 0.8684 81 0.8980 96 0.8473 72 0.8783 
Lowest 73 0.6824 76 0.7266 76 0.6533 85 0.6864 
 89 0.6557 46 0.7230 70 0.6495 70 0.6827 

 85 0.6292 85 0.6674 79 0.6111 76 0.6721 
 
Table 5.Elasticities 

 Labour Cereal 
Area 

Chemicals Other 
Inputs 

Return to 
Scale 

M2 0.040 0.379 0.359 0.328 1.106 
M3 0.035 0.360 0.372 0.334 1.101 
M4 0.063 0.369 0.301 0.329 1.062 
M7 0.064 0.380 0.301 0.326 1.071 



Table 6. Confidence intervals (95%) for the selected model (M7).  
Year  Farm No. T.eff.  Lbnd Ubnd 
1982 Highest 21 0.9701 0.9006 0.9991 
  51 0.9621 0.8761 0.9989 
  35 0.9616 0.8781 0.9989 
 Median 78 0.9007 0.7790 0.9936 
  23 0.8998 0.7786 0.9933 
  61 0.8995 0.7670 0.9944 
 Lowest 100 0.7091 0.5573 0.8990 
  46 0.6735 0.5663 0.8009 
  73 0.6456 0.5333 0.7815 
1983 Highest 52 0.9704 0.9044 0.9991 
  23 0.9592 0.8742 0.9987 
  51 0.9516 0.8503 0.9985 
 Median 11 0.8577 0.6883 0.9911 
  56 0.8571 0.7203 0.9850 
  77 0.8548 0.6963 0.9891 
 Lowest 79 0.6439 0.5006 0.8281 
  85 0.6193 0.5287 0.7254 
  76 0.5596 0.4544 0.6893 
1984 Highest 63 0.9670 0.8931 0.9990 
  52 0.9616 0.8832 0.9988 
  64 0.9591 0.8737 0.9987 
 Median 49 0.9007 0.7563 0.9954 
  42 0.9007 0.7464 0.9959 
  92 0.8993 0.7705 0.9940 
 Lowest 89 0.6822 0.5947 0.7826 
  79 0.6742 0.5229 0.8679 
  76 0.6446 0.5282 0.7867 



Table 6. Continued. 
Year  Farm No. T.eff.  Lbnd Ubnd 
1985 Highest 63 0.9582 0.8709 0.9987 
  20 0.9571 0.8691 0.9987 
  21 0.9544 0.8591 0.9986 
 Median 43 0.8766 0.7277 0.9922 
  66 0.8757 0.7484 0.9885 
  19 0.8745 0.7543 0.9862 
 Lowest 79 0.6469 0.5034 0.8309 
  70 0.6413 0.5130 0.8016 
  85 0.5903 0.5032 0.6926 
1986 Highest 52 0.9734 0.9124 0.9992 
  51 0.9661 0.8878 0.9990 
  84 0.9651 0.8853 0.9990 
 Median 6 0.9095 0.7716 0.9960 
  101 0.9068 0.7576 0.9962 
  42 0.9065 0.7562 0.9963 
 Lowest 9 0.6980 0.5570 0.8737 
  18 0.6683 0.5333 0.8374 
  7 0.5799 0.4593 0.7322 
1987 Highest 24 0.9566 0.8646 0.9987 
  84 0.9526 0.8537 0.9985 
  21 0.9465 0.8410 0.9983 
 Median 8 0.8846 0.7272 0.9942 
  48 0.8778 0.7160 0.9936 
  72 0.8754 0.7348 0.9909 
 Lowest 22 0.6575 0.5352 0.8079 
  70 0.5548 0.4429 0.6949 
  82 0.4785 0.3960 0.5784 
 
 



Table A1. Estimation Results for the Seven Models.  
  Translog   

(M1) 
Cobb-Douglas  

(M2) 
No T. Eff. Effect  

(M3) 
Homoscedastic v & w 

(M4) 
Homoscedastic  v  

(M5) 
Homoscedastic  w  

(M6) 
Selected Model 

(M7) 
  Coef t-value Coef t-value Coef t-value Coef t-value Coef t-value Coef t-value Coef t-value 

Constant (β0) 4.429 1.810 2.979 12.861 11.045 5.174 4.305 2.060 4.155 1.572 3.882 2.758 3.863 2.794 
Labour (β1) -1.796 -4.944 0.040 2.051 -2.614 -8.387 -1.315 -2.748 -1.443 -2.632 -1.610 -6.626 -1.618 -9.449 
Cereal Area (β2) 0.923 0.990 0.379 8.801 2.923 7.837 1.660 3.183 1.095 1.940 0.853 2.042 0.855 3.427 
Chemicals (β3) 0.466 0.468 0.359 9.913 -0.871 -1.286 -0.487 -0.890 -0.010 -0.030 0.360 2.051 0.369 1.187 
Other Inputs (β4) 1.517 2.149 0.328 10.707 1.343 1.906 1.640 5.045 1.628 4.147 1.583 21.753 1.584 8.924 
Year  (β5)   -0.096 -0.838 0.003 0.205 -0.093 -0.788 -0.001 -0.005 -0.050 -0.466 -0.094 -0.836 -0.090 -0.837 
Labour2  (β11) 0.066 3.084   0.079 4.339 0.061 2.734 0.058 2.600 0.061 8.150 0.061 3.385 
Cereal Area2   (β22) -0.116 -0.903   0.042 0.690 -0.000 -0.004 -0.046 -0.640 -0.102 -2.949 -0.102 -1.861 
Chemicals2    (β33) -0.386 -6.647   -0.290 -3.960 -0.283 -3.641 -0.322 -7.337 -0.363 -18.270 -0.364 -12.328 
Other Inputs2    (β44) -0.258 -3.635   -0.263 -11.787 -0.239 -7.947 -0.249 -4.344 -0.250 -15.369 -0.249 -7.502 
Year2    (β55) -0.015 -5.343   -0.013 -4.494 -0.013 -4.425 -0.013 -4.751 -0.015 -5.243 -0.015 -5.276 
Labour x Cer. Area (β12) -0.305 -5.088   -0.433 -7.191 -0.264 -3.078 -0.263 -2.786 -0.275 -8.550 -0.278 -6.775 
Labour x Chem   (β13) 0.242 4.267   0.315 4.366 0.195 4.195 0.204 2.224 0.230 11.773 0.230 6.211 
Labour x Other   (β14) -0.035 -0.440   0.004 0.149 -0.047 -1.454 -0.038 -0.350 -0.045 -1.570 -0.045 -0.922 
Labour x Year   (β15) -0.008 -0.696   -0.009 -0.775 -0.007 -0.633 -0.005 -0.406 -0.006 -0.580 -0.006 -0.534 
CerArea x Chem   (β23) 0.227 1.291   -0.012 -0.112 0.093 0.662 0.149 1.537 0.199 7.425 0.202 3.180 
CerArea x Other   (β24) 0.138 1.209   0.147 1.202 0.042 0.477 0.083 1.188 0.128 3.425 0.127 2.417 
CerArea x Year   (β25) -0.038 -1.710   -0.035 -1.563 -0.021 -0.989 -0.029 -1.349 -0.036 -1.908 -0.036 -1.689 
Chem x Other   (β34) 0.383 3.533   0.372 3.813 0.389 3.571 0.381 8.842 0.375 12.379 0.372 13.505 
Chem x Year   (β35) 0.019 0.969   0.023 1.169 -0.002 -0.105 0.000 0.025 0.015 0.759 0.014 0.782 

Frontier 

Other x Year    (β45) 0.022 1.255   0.017 0.947 0.024 1.409 0.027 1.656 0.024 0.924 0.024 1.513 
Constant   (δ0) 0.188 1.750 -0.072 -0.558 -0.301 -0.518 0.149 1.322 0.167 1.683 0.143 1.127 0.129 1.192 
D(partnership) (δ1) -0.151 -1.942 -0.099 -2.509   -0.186 -2.644 -0.201 -2.934 -0.192 -1.961 -0.191 -2.088 
D(farm company) (δ2) -0.176 -1.771 -0.162 -1.864   -0.258 -1.912 -0.191 -1.556 -0.183 -1.603 -0.183 -1.665 
D(cereal only) (δ3) -0.305 -1.789 -0.150 -3.777   -0.302 -2.552 -0.454 -2.627 -0.405 -1.562 -0.396 -1.711 

Effic- 
iency 

Year (δ4) -0.004 -0.216 0.069 2.444   0.005 0.255 -0.006 -0.309 -0.005 -0.230   
Constant (α0) -2.407 -2.082 -4.371 -4.446 -2.694 -3.041 -1.527 -9.372 0.058 0.111 -1.555 -7.838 -1.555 -8.221 

 σσw Total Area  (α1) 0.153 0.745 0.482 2.841 0.265 2.255   -0.316 -2.880     
Constant (γ0) 1.034 1.151 0.704 0.708 1.570 2.492 -2.129 -22.380 -2.116 -26.610 0.401 0.755 0.398 0.675 

 σσv Chemicals (γ1) -0.316 -3.324 -0.266 -2.508 -0.362 -5.322     -0.250 -4.357 -0.250 -3.967 
Log Likelihood 771.446  729.410  745.131  763.493  768.311  771.214  771.188  

Likelihood Ratio   82.332  52.630  15.906  6.270  0.464  0.516  

The statistics in bold are significant at the 5% level of significance. 
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Figure 1. Empirical Distribution of Technical Efficiencies. 
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Figure 2. Technical efficiencies ranked according to selected model with 95% confidence intervals 
(1987).  
The graphs in figure 2 were produced by ranking farms according to their technical efficiency using the 
selected model. The other three models then follow the same ranking of the selected model. In this way 
we can compare the three models with the selected model. 
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Figure 2.  Continued. 
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Figure 3. Technical efficiencies based on the ranking from the selected model (1987).  
 
(you will see it better if you print it) 
 
 
- Cobb-Douglass consistently underestimates technical efficiency. 
- Ignoring heteroscedasticity  underestimates technical efficiency for about the third of farms. At the 
upper end the difference is  less prominent. 
- Ignoring technical efficiency effect over estimates technical efficiency for more than half the farms. 
The difference is smaller at the very top. 
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Figure 4. Technical Efficiency of  Three Top, Middle and Bottom Farms (Cobb-Douglas, M2). 
 
 

 
Figure 5. Technical Efficiency of  Three Top, Middle and Bottom Farms (No technical Efficiency 
Effect, M3). 
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Figure 6. Technical Efficiency of  Three Top, Middle and Bottom Farms (Homosecedastic, M 4). 
 
 
 

 
 
 
 
 
Figure 7. Technical Efficiency of  Three Top, Middle and Bottom Farms (Selected M odel, M7). 
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