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Abstract

This paper presents two related advancements to the diffusional kurtosis imaging (DKI) estimation

framework to increase its robustness to noise, motion, and imaging artifacts. The first

advancement substantially improves the estimation of diffusion and kurtosis tensors

parameterizing the DKI model. Rather than utilizing conventional unconstrained least squares

(LS) methods, the tensor estimation problem is formulated as linearly constrained linear LS, where

the constraints ensure physically and/or biologically plausible tensor estimates. The exact solution

to the constrained problem is found via convex quadratic programming methods or, alternatively,

an approximate solution is determined through a fast heuristic algorithm. The computationally

more demanding quadratic programming-based method is more flexible, allowing for an arbitrary

number of diffusion weightings and different gradient sets for each diffusion weighting. The

heuristic algorithm is suitable for real-time settings such as on clinical scanners, where run time is

crucial. The advantage offered by the proposed constrained algorithms is demonstrated using in

vivo human brain images. The proposed constrained methods allow for shorter scan times and/or

higher spatial resolution for a given fidelity of the DKI parametric maps. The second advancement

increases the efficiency and accuracy of the estimation of mean and radial kurtoses by applying

exact closed-form formulae.
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Introduction

Diffusion of water molecules in biological tissues is conventionally quantified via diffusion

tensor imaging (DTI) (1). DTI is a valuable tool for noninvasive characterization of tissue

microstructural properties (2–3). The DTI model uses a Gaussian approximation to the

probability distribution governing the random displacement of water molecules. In many
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biological tissues, however, the displacement probability distribution can deviate

considerably from a Gaussian form. Several techniques have been proposed to characterize

non-Gaussian diffusion, with diffusion spectrum imaging (DSI) (4) being arguably the most

comprehensive. Although it is being used in human research, the application of DSI as a

routine clinical protocol has been limited by its extended acquisition time and hardware

requirements.

Diffusional kurtosis imaging (DKI) is a clinically feasible extension of DTI which enables

the characterization of non-Gaussian diffusion by estimating the kurtosis of the displacement

distribution (5–8), in addition to the estimation of the standard DTI-derived parameters. DKI

has shown promising results in studies of human brain aging (9), tumor characterization in

gliomas (10) and head and neck cancers (11), and rodent brain maturation (12). Moreover,

the additional information provided by DKI has been exploited to resolve intravoxel fiber

crossings (13), which could help to improve upon DTI-based fiber tracking methods.

The DKI model is parameterized by the diffusion tensor (DT) and kurtosis tensor (KT) from

which several rotationally-invariant scalar measures are extracted. The most common DT-

derived measures are mean, axial, and radial diffusivity (2,14), as well as fractional

anisotropy (FA) (2); and the KT-derived measures are axial, radial, and mean kurtoses (6–

7,15). The interpretability of these metrics is influenced by the estimation accuracy of the

tensors. Noise, motion, and imaging artifacts can introduce errors into the estimated tensors.

Sufficiently large errors can cause the tensor estimates to be physically and/or biologically

implausible. For instance, the directional diffusivities may become negative, that is, the DT

may become non-positive definite (NPD). A well-known consequence of NPD DT estimates

is that FA values, which in theory should range between 0 and 1, may exceed 1, particularly

in high FA regions of the brain such as the corpus callosum (16). Inaccuracies in the

estimated tensors may also drive the directional kurtoses outside of an acceptable range.

Empirical evidence in the brain as well as idealized multi-compartment diffusion models

suggest that directional kurtoses should typically be positive and should not exceed a certain

level depending on tissue complexity (6). The maximum allowable kurtosis is also

influenced by the maximum b-value used in image acquisition (8,13).

In our previous work, the DT and KT were estimated using unconstrained nonlinear least

squares (UNLS) (7). In a related work, higher-order DTs were estimated using

unconstrained linear least squares (ULLS) (17). These unconstrained schemes do not

guarantee acceptable tensor estimates. To address this drawback in the context of DTI, the

Cholesky decomposition has been utilized to impose the non-negative definiteness

constraint on the DT (16,18) using either the ULLS or UNLS algorithms. Moreover, a

parameterization has been proposed in a UNLS framework to guarantee a positive

diffusivity function in a fourth-order tensor-only model of the diffusion signal (19). While

these methods outperform other algorithms for imposing the positive diffusivity function in

the context of a second order-only and a fourth order-only diffusion signal model, their

generalization to impose the constraints on the DKI signal model is not straightforward.

We propose that the tensor estimation problem be cast as linear least squares (LS) subject to

linear constraints. The constraints ensure that the directional diffusivities and kurtoses along

the imaged gradient directions remain within a physically and biologically plausible range.

The proposed constrained linear LS (CLLS) formulation yields a convex objective function

that permits efficient solutions via convex quadratic programming or a fast heuristic

algorithm. The two algorithms proposed for solving the CLLS problem strike different

tradeoffs between the speed and exactness of the solution as well as algorithm flexibility.

The quadratic programming-based (CLLS-QP) algorithm exactly satisfies the constraints

and can also handle an arbitrary number of diffusion weightings and different gradient sets
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for each diffusion weighting, but it does so at a moderately high computational cost. On the

contrary, the heuristic (CLLS-H) algorithm produces an approximation to the optimal

solution, but it accomplishes this at almost no computational overhead compared to the

ULLS. Both constrained algorithms substantially improve the estimation fidelity of the

tensors.

Once the tensors are estimated, they are utilized to determine the scalar diffusion and

kurtosis measures. In our previous work, mean kurtosis (MK) was being approximated as

the average of directional kurtoses (5–7). Here, we present an exact analytical formula for

the MK, expressing it as an explicit function of the DT and KT. We also present an exact

analytical expression for the radial kurtosis, defining it as the diffusional kurtosis averaged

over all directions perpendicular to the DT eigenvector with the largest eigenvalue. Our

definition is consistent with the definition of radial diffusivity in DTI and the definitions

given in (8,20), but is different from that of (15). The analytic formulae for the MK and

radial kurtosis were previously quoted in (8) but here for the first time we present their

derivations and discuss important practical details of their implementation. The application

of these formulae improves both the accuracy and efficiency of DKI parameter estimation.

Theory

Constrained LS Formulation

For direction vector n and diffusion weighting b, the DKI approximation to diffusion signal

intensity S(n,b) is given by (6)

[1]

where S0 is the signal intensity for b = 0, Dij and Wijkl are the elements of the second-order

DT D and fourth-order kurtosis tensor W, respectively, and D ̅ = (1/3)tr(D) is mean

diffusivity, where tr(.) denotes matrix trace. For the classic Stejskal-Tanner sequence (21),

the b-value is given by b = (γδg)2(Δ − δ/3), where Δ is the diffusion time, δ is the pulse

duration, g is the diffusion-sensitizing gradient amplitude, and γ is the nuclear spin

gyromagnetic ratio. Diffusivity D(n) and kurtosis K(n) along direction n are given by

[2]

and

[3]

Both D and W are symmetric, that is, they are invariant to permutations of their indices.

Consequently, D has 6 and W has 15 independent parameters.

To ensure that the diffusivity and kurtosis parameters are physically and biologically

plausible, D(n) and K(n) must satisfy

[4]

and
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[5]

and

[6]

where n ∈ N, with N denoting the set of gradient directions used in acquisition. The

constraints in Eq. [4] ensure that D satisfies the necessary conditions for non-negative

definiteness. The constraints in Eq. [5] arise from the fact that biologically relevant tissue

geometries impose restrictions on physically acceptable directional kurtoses (6). While the

theoretically feasible minimum kurtosis of a probability distribution is −2, multi-

compartment diffusion models and empirical evidence in the brain suggest a super-Gaussian

displacement distribution; that is, Kmin = 0 (6). Although scenarios are conceivable under

which S(n,b) can be an increasing function of b (22), this has never been observed in

biological tissues. Thus, it is reasonable to require that the estimated S(n,b) be strictly

decreasing functions of b for all n ∈ N. The maximum K(n) in Eq. [6] with C = 3 ensures

that this condition is satisfied in the range of b-values used for data acquisition (13). Smaller

C values may be used to further constrain the directional kurtoses.

The objective in the estimation problem is to find D and W such that the right-hand side of

Eq. [1] closely matches its left-hand side, while the constraints in Eqs. [4] and [5] are

satisfied. The estimation problem may therefore be formulated as

[7]

where

[8]

is a 21×1 vector of unknowns, and

[9]

The change of variables in Eq. [9] is made to permit a linear LS formulation. Note that V is

reminiscent of the fourth-order tensor in the formulation of (17).

Matrix A is given by

[10]

where M is the number of nonzero b-values, and row k of  and  are given by

[11]
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where . Note that each diffusion weighting bm may correspond to a

distinct gradient set . The number of rows of A is thus given by

Vector B is given by

[12]

where  is the diffusion signal intensity for gradient direction  and

diffusion weighting bm, and

Matrix C representing the linear constraints is given by

[13]

where

[14]

and

[15]

Vector d is given by

[16]

where the zero vectors are 1 × N -dimensional.

Two comments regarding the above formulation are in order:

1. At least two nonzero b-values and 15 gradient directions per b-value are required

for the solution of Eq. [7]. The need for two b-values can also be seen from Eq. [1],

where to find the two unknowns D(n) and K(n), at least two signal measurements

(obtained with two different b-values) are needed.
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2. For the typical choice Kmin = 0, Eq. [7] provides an exact formulation of the

estimation problem. If Kmin ≠ 0, the  terms in d need to be approximated.

This may be accomplished via estimating D once and plugging that estimate into

Eq. [2]. The estimate of D may be obtained from the ULLS estimate of X, denoted

as X ̂, given by

[17]

where A+ denotes the pseudoinverse of A. The  terms can be further refined

using the CLLS-based estimate of D.

Quadratic Programming (CLLS-QP) Algorithm

The problem defined by Eq. [7] is a convex quadratic programming problem whose solution

can be determined via standard algorithms. Two common classes of algorithms for solving

this problem are active set and interior-point methods (23). Here we used the active set

method which works as follows. First, the algorithm is initialized with a feasible point, if

one exists. A feasible point, defined as a point that satisfies the constraints in Eq. [7], may be

found via linear programming. In our implementation, the ULLS solution of Eq. [17] is used

first as a potential feasible point. If this point is feasible, it is also the solution to the CLLS

problem. If the point is not feasible, then the algorithm uses the feasible point found via

linear programming.

In the second phase, the feasible point is iteratively refined until it converges to the optimal

solution. At each iteration, an estimate of the active constraints in Eq. [7] is maintained.

Active constraints are a subset of the constraints that are actually enforced, that is, they are

the ones that become equality constraints. As the algorithm proceeds, the set of active

constraints is updated by sequentially adding the active and removing the inactive

constraints from the set.

Heuristic (CLLS-H) Algorithm

Alternatively, the heuristic procedure described below may be used to estimate D and W

such that the constraints of Eqs. [4] and [5] are approximately satisfied. This algorithm

assumes that exactly two nonzero b-values are used, and that the gradient directions are the

same for both b-values; that is, N(1) = N(2) = {n1,…,nN}. The central idea in this algorithm

is to first estimate D(ni) and K(ni) along individual gradient directions, and then to threshold

the ones that violate the constraints of Eqs. [4] and [5] to within their prescribed limits (steps

D1, K1, and K2 below). More specifically, D(ni) and K(ni) are first determined from

S(ni,b1) and S(ni,b2) (Eqs. [18] and [19]). Then, D(ni) are thresholded such that they satisfy

the constraints on both D(ni) and K(ni) (steps D1-D4). Next, the constrained D(ni) are used

to estimate D (Eq. [21]), which in turn is used to re-estimate D(ni) (Eq. [22]). The re-

estimated diffusivities D(R) (ni) are then used to obtain the re-estimated K(R) (ni) (Eq. [23]).

Finally, K(R) (ni) are thresholded (steps K1 and K2), and are then used along with D(R) (ni)

to compute W.

Along direction ni, Di = D(ni) and Ki = K(ni) can be estimated using S(ni,b1) and S(ni,b2) as

[18]

and
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[19]

where

[20]

Note that Eqs. [18] and [19] result when exactly two nonzero b-values are used.

Next, a set of rules is applied to constrain Di:

D1. If Di ≤ 0, set Di = 0.

D2.
Otherwise, if , set Di = 0.

D3. Otherwise, if Di > 0 and Ki < Kmin,

a.
If Kmin = 0, set .

b. Otherwise, set

D4. Otherwise, if Di > 0 and Ki > K maxi
, where Kmaxi

 = Kmax (ni), set

where bmax = max(b1,b2). Note that the above equation results by plugging the

expression for Kmaxi
 = Kmax(ni) given by Eq. [6] into Eq. [1], setting b = b1, and

solving for Di. The diffusion signal for b = b1 is utilized here, as it is less

sensitive to noise and is a stronger function of Di.

From the constrained Di set, D may be estimated as

[21]

where X ̂D is the ULLS estimate of XD = [D11 D22 D33 D12 D13 D23]T, and bD = [D1 …

DN]T.

The re-estimated  is then obtained as

[22]

The re-estimation step has a noise removal effect on bD by forcing it to be consistent with

X ̂D. Next,  are used to obtain  as
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[23]

Next, a set of rules is applied to constrain :

K1.
If , set .

K2.
If , set .

Finally, the kurtosis tensor is estimated as

[24]

where X ̂K is the ULLS estimate of XK = [W1111 … W1112 …W1122 … W1233]T, and

.

Tensor-Derived Kurtosis Measures

The MK is defined as the diffusional kurtosis averaged over all gradient directions. In a

reference frame that diagonalizes D, it may be calculated as (see Appendix for the

derivation)

[25]

where λ1 > λ2 > λ3 denote the eigenvalues of D, and W ̃ijkl are the elements of the kurtosis

tensor in the rotated frame and are given by

[26]

with Rij being the j-th component of the eigenvector of D corresponding to λi. Functions F1

and F2 are given by

[27]

and
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[28]

where RF and RD are Carlson’s elliptic integrals (24) defined as

[29]

and

[30]

As there are highly efficient numerical algorithms for calculating Carlson’s elliptic integrals

(24–25), Eqs. [27] and [28] may be used for fast computation of the MK. Note that when

two or more of the eigenvalues of D coincide, F1 and F2 have removable singularities whose

treatment is discussed in the Appendix.

The axial kurtosis K║ is the diffusional kurtosis in the direction of the highest diffusion. In a

reference frame that diagonalizes D, it is simply given by

[31]

The radial kurtosis K⊥ is defined as the mean diffusional kurtosis perpendicular to the

direction of highest diffusion, consistent with the definition of radial diffusivity. In a

reference frame that diagonalizes D, it is given by (see the Appendix for the derivation)

[32]

where

[33]

and

[34]

The treatment of the singularities of G1 (λ1,λ2,λ3) and G2 (λ1,λ2,λ3) is discussed in the

Appendix.

Method

Magnetic Resonance Imaging Procedure

DKI scans were performed on three healthy volunteers using a 3 T Siemens Tim Trio system

with a 12-channel head coil. This study was approved by the New York University School

of Medicine Institutional Review Board and written informed consent was obtained from all

subjects. Diffusion-weighted images (DWI’s) were acquired along 30 gradient directions

with a twice-refocused spin-echo sequence. Scan parameters were TR = 5900 ms, TE = 96
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ms, matrix = 82 × 82, FOV = 222 × 222 mm2, 45 slices, slice thickness = 2.7 mm with no

gap, partial Fourier encoding = 3/4, NEX = 44 for b = 0 (NEX = 45 for Dataset 2), and NEX

= 4 for b = 500, 1000, 1500, and 2000 s/mm2 (NEX = 5 for Dataset 2). The total acquisition

time was 53:20 minutes (65:32 minutes for Dataset 2). We emphasize that standard DKI

scans (discussed below) require 7:29 minutes.

Processing Pipeline

In the first stage of processing, the DWI’s are optionally smoothed using a Gaussian kernel

to reduce the impact of noise and misregistration. Next, D and W are estimated using the

CLLS-QP algorithm, and finally, the scalar measures are obtained from the tensors. The

pipeline was implemented in-house in the MATLAB environment

(http://www.mathworks.com). The program, designated as Diffusional Kurtosis Estimator

(DKE), is available upon request from the corresponding author.

The parameters used with DKE were as follows: the full width at half maximum of the

Gaussian kernel was 3.375 mm; Kmin = 0; and C = 3. The tensors were also estimated using

the UNLS, ULLS and CLLS-H algorithms following smoothing of DWI’s. Three processing

protocols were considered where different subsets of the acquired DWI’s were used to

estimate the parametric maps. In the reference protocol, the maps were obtained using all of

the available DWI’s. In the standard protocol, the maps were estimated using NEX = 11 for

b = 0 images, and NEX = 1 for b = 1000, 2000 s/mm2 DWI’s. Finally, in the fast protocol,

the maps were obtained with NEX = 11 for b = 0 images, and NEX = 1 with 15 of b = 1000

s/mm2 and all of b = 2000 s/mm2 DWI’s. We used the maps obtained using the reference

protocol and ULLS as baseline for evaluating the maps estimated with the other protocols.

The standard protocol is currently used for clinical research acquisitions, and the fast

protocol was conjured up as a potential candidate for future clinical research acquisitions.

The estimated acquisition time for the fast protocol is 5:54 minutes.

Results

Table 1 shows the processing times for generating the scalar tensor-derived measures using

different tensor estimation methods, and summarizes the features of the algorithms. Figure

1, Figure 2, and Figure 3 show the MK, MD, and FA maps obtained using the standard

protocol. The regions with the most noticeable change in the estimated MK across all

datasets are in the splenium and the genu of the corpus callosum, where the voxels with the

incorrectly estimated MK values are in black. The CLLS-H algorithm corrects the MK

values for some of these voxels, whereas the CLLS-QP method corrects all of the voxels.

Although constrained methods also improve the estimates of the MD and FA, this

improvement is visually less discernible. Figure 4 shows the voxels where tensor estimates

obtained via ULLS and the standard and reference protocols violate the constraints in Eqs.

[4] or [5]. With the standard protocol, very few voxels violate the Eq. [4] constraint in

general. Such voxels are typically located in the corpus callosum. Minimum kurtosis

constraint violations also typically occur in the corpus callosum. These voxels are less likely

to violate the maximum kurtosis constraints, although this is not uncommon. The

cerebrospinal fluid (CSF) voxels show a prominent pattern of violating the maximum

kurtosis constraints.

Table 2 shows the root mean-square error (RMSE) between the maps obtained using the

standard protocol and the maps estimated using the reference protocol. RMSE values are

shown for the whole brain as well as for voxels with constraint violations. The whole-brain

RMSE values averaged over all subjects indicate that the constrained methods outperform

the unconstrained methods in estimating all three scalar quantities. The RMSE improvement

offered by the constrained methods for the voxels with constraint violations is more
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dramatic, and is more than 35% for the MK, 7% for the MD, and 8% for the FA. Note that a

lower threshold of −2, the theoretical minimum kurtosis, was applied to MK values

estimated with the unconstrained methods to prevent their RMSE values from becoming

excessively large. The difference between the RMSE’s of the two unconstrained methods is

fairly small, and so is the difference between the constrained methods.

Figure 5, Figure 6, and Figure 7 show the MK, MD, and FA maps estimated using the fast

protocol, while Figure 8 shows the voxels for which the constraints are violated. In this case,

the voxels with constraint violations are distributed more widely in the brain parenchyma,

although their most consistent location is the corpus callosum. Table 3 shows the RMSE

values for the maps obtained using the fast protocol. As with the standard protocol, the

RMSE values of the unconstrained methods are comparable. However, with the fast

protocol, the whole-brain RMSE gain due to the CLLS-QP method is larger than with the

standard protocol. For the voxels with constraint violations, the RMSE improvement due to

the constrained methods exceeds 40% for the MK, 10% for the MD, and 19% for the FA.

Figure 9 shows the directional diffusivities and kurtoses for two Dataset 1 voxels with

constraint violations. In the corpus callosum voxel, the UNLS solution violates 5 out of 90

constraints, and the ULLS solution violates 11 constraints. The CLLS-H solution reduces

the total number of violations from 11 to 5, and the estimate based on CLLS-QP satisfies all

constraints as expected. In the prefrontal white matter voxel, the unconstrained algorithms

both violate one constraint, whereas both constrained algorithms satisfy all constraints.

Finally, Figure 10 shows the maps estimated using the new expressions for the MK and K⊥,

along with the map for K║.

Discussion

The voxels in Figure 1 and Figure 5 where CLLS-H and CLLS-QP produce improved MK

estimates are those for which ULLS yields an NPD or a nearly NPD estimate of D and/or

the constraints on the minimum and maximum kurtoses are violated. In these voxels, which

most consistently occur in highly anisotropic regions such as the corpus callosum, λ1 is large

and λ3 is small. This situation increases the sensitivity of unconstrained methods to noise.

One effect of noise is to create the appearance of non-decreasing diffusion signal intensity

with increasing b. This typically occurs along gradient directions with high diffusivity, but

can also happen along directions with very low diffusivity. At high b-values, a small

disturbance due to noise can artificially increase the signal intensity with increasing b-value,

yielding falsely large estimates of directional kurtoses. A prominent instance of this effect

can be observed in the CSF voxels in Figure 4 and Figure 8.

The other effect of noise is to create the appearance of the diffusion signal being a concave

function of b along low-diffusivity directions, yielding negative estimates of directional

kurtoses. In this case, the measured diffusion-weighted signal intensity may even exceed the

signal intensity at b = 0, in which case a negative estimate of diffusivity, that is, an NPD DT,

arises.

It is well-known that imaging noise causes λ1 to be overestimated and λ3 to be

underestimated (26). The constraints in Eqs. [4] and [5] force a smaller λ1 and larger λ3,

yielding more reasonable estimates of D and W. The top right plot of Figure 9(a) shows an

instance of this, where the CLLS-QP estimates of directional diffusivities along directions

with high diffusivity are slightly lower than those obtained with ULLS, whereas the opposite

is the case along low-diffusivity directions.
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Table 2 and Table 3 provide further confirmation of the improvement offered by the

constrained algorithms. Note that the whole-brain RMSE improvement is actually due to

only 10–20% of voxels for which there are constraint violations, hence the RMSE

improvement within the set of voxels with constraint violations is quite larger than the

improvement over the whole brain. The constrained algorithms achieve comparable RMSE,

and both outperform the unconstrained algorithms consistently across all subjects, measures

and protocols. However, the RMSE improvement is more evident with the fast protocol.

Note also that the average whole-brain RMSE in estimating the MK and MD with the fast

protocol and the constrained methods is smaller than or is comparable to the whole-brain

RMSE with the standard protocol and unconstrained methods. This means that the

constrained methods can achieve a savings of more than 20% in acquisition time. (Note that

a total of 56 b = 0 images and DWI’s were utilized in the fast protocol, whereas in the

standard protocol 71 images were used.) The RMSE improvement offered by the

constrained methods is less pronounced in estimating the FA. A possible explanation for this

may be that the FA is more heavily influenced by the Rician noise corrupting the DWI’s

than the MD, consistent with previous reports in the literature (27). Therefore, to obtain

more reliable FA estimates, constrained methods may need to be combined with schemes to

compensate for the Rician noise bias.

The CLLS-H algorithm strikes a balance between complexity and accuracy by correcting the

MK in most of the voxels that violate the constraints, doing so at a negligible 2.5% overhead

compared to the ULLS (cf. Table 1). Thus, the CLLS-H method can be beneficial in real-

time situations where run time is crucial. On the other hand, the CLLS-QP approach

removes all such voxels, but it has a much longer run time. It should be noted that while the

improvement offered by CLLS-QP comes at the expense of increased algorithm complexity

and consequently higher run time, it is straightforward to speed up the computations via

parallelization.

A limitation of the formulation in Eq. [7] is that it ensures that constraints in Eqs. [4] and [5]

are satisfied along all imaged gradient directions, rather than all possible directions.

Imposing the latter constraints is more challenging and requires a deeper understanding of

the kurtosis tensor. A practically viable alternative is to estimate the tensors using either of

the constrained algorithms and then check if the solution satisfies the constraints along other

directions. The directions of the eigenvectors of D are of the most interest as Eq. [25] and

Eq. [32] are explicit functions of the kurtosis tensor elements along these directions. If the

solution does not satisfy the constraints along these directions, then these constraints can be

added to the set of constraints in Eqs. [4] and [5] and the problem re-solved. This procedure

may be repeated until the solution satisfies the constraints.

Finally, as the expressions for K⊥ and MK used for estimating the maps in Figure 10

represent the exact values of these parameters, they more accurately quantify the diffusional

kurtosis characteristics of the tissue. The advantage of K⊥ as defined here and in (8,20) over

that of (15) is that ours gives all radial directions equal weight, rather than selecting out two

particular radial directions.

Conclusions

We presented two related advancements to the DKI estimation framework. The first

advancement significantly improves the fidelity of the tensors parameterizing the DKI

model by casting the estimation problem as CLLS. The CLLS formulation ensures that the

estimated diffusivities and kurtoses along the imaged gradient directions remain within a

physically and biologically plausible range. Two algorithms were provided for minimizing

the CLLS cost function: a convex quadratic programming (CLLS-QP) method and a
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heuristic (CLLS-H) algorithm. The CLLS-H algorithm imposes a negligible computational

overhead compared to the ULLS algorithm, making it suitable for real-time applications

with two b-values and equal numbers of gradients per b-value, whereas the computationally

more demanding CLLS-QP algorithm permits an arbitrary number of b-values and different

gradient sets per each b-value. In vivo image data demonstrated the significant improvement

offered by the proposed constrained tensor estimation methods over unconstrained

algorithms. The advantage of the constrained methods is particularly evident when fewer

DWI’s are available. The RMSE improvement due to constrained methods may be translated

into shorter scan times and/or increased spatial resolution for a given fidelity of the

parametric maps; our results indicate a potential time savings of more than 20%. The second

advancement allows for more accurate and efficient calculation of MK and K⊥ by utilizing

the exact closed-form formulae derived in this paper. The proposed tensor estimation

methods along with the exact expressions for the kurtosis measures improve the robustness

of the DKI metrics, thus facilitating the clinical application of DKI.
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Appendix

The MK may be calculated from the formula

[A1]

where

[A2]

and ni is the i-th element of unit direction vector n. MK may be obtained by numerically

evaluating the integral in Eq. [A2]. However, this can be computationally inefficient if a

high degree of accuracy is desired. Below we give an analytic formula for Aijkl that enables

fast computation of the MK.

In a reference frame that diagonalizes D (see Eq. [26]), we can write

[A3]

where Aijkl are given by

[A4]

and
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[A5]

It can be seen from Eq. [A4] that Aijkl is invariant with respect to permutations of its indices.

Thus, we need consider only the 15 components A1111, A1112, A1113, A1122, A1123, A1133,

A1222, A1223, A1233, A1333, A2222, A2223, A2233, A2333, and A3333. From symmetry of the

integrand in Eq. [A4], one may show

[A6]

This leaves only 6 nonzero components to consider. We can further reduce this number by

noting the symmetries

[A7]

and

[A8]

Hence we only need to find analytic expressions for A1111 and A2233. From these, and by

applying conventional integration techniques and also utilizing D ̅ = (λ1 + λ2 +λ3)/3, the MK

can be calculated as prescribed by Eq. [25], where F1(λ1, λ2, λ3) = A1111 (λ1, λ2, λ3) and

F2(λ1, λ2, λ3) = 6A2233(λ1, λ2, λ3).

When λ1 = λ2 or λ1 = λ3, Eq. [27] has a removable singularity, which can be resolved with

[A9]

When λ2 = λ3, Eq. [28] has a removable singularity. This can be resolved with

[A10]

where

[A11]

Finally, for the special case when λ1 = λ2 = λ3, we simply have

[A12]

The radial kurtosis K⊥ is the mean diffusional kurtosis perpendicular to the direction of the

highest diffusion. In a reference frame that diagonalizes D, it is given by

[A13]

where
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[A14]

and

[A15]

It can be seen from Eq. [A14] that Cijkl is invariant with respect to permutations of its

indices. Thus, we need consider only the 15 components C1111, C1112, C1113, C1122, C1123,

C1133, C1222, C1223, C1233, C1333, C2222, C2223, C2233, C2333, and C3333. From symmetry of

the integrand in Eq. [A14] and the fact that n1 (ϕ) = 0, one may show

[A16]

This leaves only 3 nonzero components to consider. We can further reduce this number by

noting the symmetry

[A17]

Hence we only need to find analytic expressions for C2222 and C2233. From these, K⊥ can be

obtained as prescribed by Eq. [32], where the integrals

[A18]

and

[A19]

are elementary forms which lead to Eqs. [33] and [34], and G1(λ1,λ2,λ3) = C2222(λ1,λ2,λ3)

and G2(λ1,λ2,λ3) = 6C2233(λ1,λ2,λ3).

For the special case of λ2 = λ3, Eq. [33] and Eq. [34] reduce to

[A20]

and

[A21]
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Figure 1.

MK maps obtained using the standard protocol and (a) UNLS; (b) ULLS; (c) CLLS-H; (d)

CLLS-QP; and (e) the reference protocol and ULLS.
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Figure 2.

MD maps obtained using the standard protocol and (a) UNLS; (b) ULLS; (c) CLLS-H; (d)

CLLS-QP; and (e) the reference protocol and ULLS.

Tabesh et al. Page 19

Magn Reson Med. Author manuscript; available in PMC 2012 March 20.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 3.

FA maps obtained using the standard protocol and (a) UNLS; (b) ULLS; (c) CLLS-H; (d)

CLLS-QP; and (e) the reference protocol and ULLS.
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Figure 4.

Voxels (indicated in red) for which the diffusion and kurtosis tensors estimated using

standard (rows 1, 3, and 5) and reference (rows 2, 4, and 6) protocols and ULLS violate the

constraints on (a) directional diffusivities; (b) minimum directional kurtoses; and (c)

maximum directional kurtoses. The shade of red for each voxel indicates the fraction of

constraints that are violated.
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Figure 5.

MK maps obtained using the fast protocol and (a) UNLS; (b) ULLS; (c) CLLS-QP; and (d)

the reference protocol and ULLS. Note that due to the different numbers of gradient

directions, the CLLS-H algorithm is not applicable.
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Figure 6.

MD maps obtained using the fast protocol and (a) UNLS; (b) ULLS; (c) CLLS-QP; and (d)

the reference protocol and ULLS.
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Figure 7.

FA maps obtained using the fast protocol and (a) UNLS; (b) ULLS; (c) CLLS-QP; and (d)

the reference protocol and ULLS.
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Figure 8.

Voxels (indicated in red) for which the diffusion and kurtosis tensors estimated using the

fast protocol and ULLS violate the constraints on (a) directional diffusivities; (b) minimum

directional kurtoses; and (c) maximum directional kurtoses. The shade of red for each voxel

indicates the fraction of constraints that are violated.

Tabesh et al. Page 25

Magn Reson Med. Author manuscript; available in PMC 2012 March 20.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 9.

Voxels in the (a) corpus callosum and (b) prefrontal white matter from Dataset 1 and their

corresponding directional diffusivities (top right), kurtoses (bottom left), and the product

bmaxD(n)K(n) (bottom right), estimated using different unconstrained and constrained

methods. Parameters controlling the minimum and maximum kurtoses were set to Kmin = 0

and C = 3. Note that the directional kurtoses must satisfy bmaxD(n)K(n) < C. Note that the

lines connecting the data points are intended to aid with visualizing the points that fall

outside of the plotted range, and do not imply any ordering among the gradient directions.
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Figure 10.

Kurtosis maps for Dataset 2 estimated using the standard protocol, utilizing the CLLS-QP

algorithm and the proposed exact expressions; (a) MK; (b) K║; and (c) K⊥. Note that the

maps are displayed with different scales.
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Table 1

Feature comparison between the UNLS, ULLS, CLLS-H, and CLLS-QP algorithms. Run times are for all

slices in Dataset 2 obtained with the standard protocol and include the input/output time.

UNLS ULLS CLLS-H CLLS-QP

Run time (seconds)a 594 158 162 531

Number of b-values Any Any 2 nonzero Any

Number of gradient
directions per b-value

Any Any Equal Any

a
Obtained on a Dell Precision workstation equipped with a 2.8 GHz Pentium Core 2 Duo processor.
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Table 2

RMSE between the parametric maps estimated using the standard protocol and different estimation methods,

and the maps obtained using the reference protocol and ULLS; (a) MK; (b) MD; and (c) FA. In each cell, two

RMSE values are reported: the first RMSE value was obtained for the whole brain, whereas the second value

was calculated for voxels for which the unconstrained methods violated at least one of the constraints on

directional diffusivities or kurtoses. The whole-brain MK and MD RMSE values were computed for voxels in

the brain parenchyma (MD < 2) for which the reference protocol and ULLS satisfied all the constraints on

directional diffusivities and kurtoses. The FA RMSE values were obtained for the subset of the above-

mentioned voxels that corresponded to the white matter (FA > 0.25). The RMSE values for MK and FA are

unitless, and for MD they are in units of µm2/ms.

(a)

Algorithm UNLS ULLS CLLS-H CLLS-QP

Dataset 1 0.101 / 0.239 0.102 / 0.239 0.092 / 0.137 0.093 / 0.137

Dataset 2 0.055 / 0.108 0.056 / 0.115 0.053 / 0.082 0.054 / 0.082

Dataset 3 0.086 / 0.198 0.086 / 0.196 0.078 / 0.128 0.079 / 0.132

Average 0.081 / 0.182 0.082 / 0.183 0.074 / 0.116 0.075 / 0.117

(b)

Algorithm UNLS ULLS CLLS-H CLLS-QP

Dataset 1 0.082 / 0.101 0.082 / 0.101 0.082 / 0.095 0.081 / 0.092

Dataset 2 0.055 / 0.082 0.055 / 0.083 0.055 / 0.078 0.055 / 0.077

Dataset 3 0.080 / 0.112 0.080 / 0.110 0.078 / 0.100 0.078 / 0.098

Average 0.073 / 0.098 0.072 / 0.098 0.072 / 0.091 0.072 / 0.089

(c)

Algorithm UNLS ULLS CLLS-H CLLS-QP

Dataset 1 0.045 / 0.056 0.045 / 0.058 0.043 / 0.050 0.043 / 0.046

Dataset 2 0.037 / 0.048 0.037 / 0.052 0.036 / 0.046 0.036 / 0.043

Dataset 3 0.045 / 0.064 0.045 / 0.067 0.044 / 0.058 0.044 / 0.053

Average 0.042 / 0.056 0.042 / 0.059 0.041 / 0.051 0.041 / 0.047
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Table 3

RMSE between the parametric maps estimated using the fast protocol and different estimation methods, and

the maps obtained using the reference protocol and ULLS; (a) MK; (b) MD; and (c) FA. In each cell, two

RMSE values are reported: the first RMSE value was obtained for the whole brain, whereas the second value

was calculated for voxels for which the unconstrained methods violated at least one of the constraints on

directional diffusivities or kurtoses. The whole-brain MK and MD RMSE values were computed for voxels in

the brain parenchyma (MD < 2) for which the reference protocol and ULLS satisfied all the constraints on

directional diffusivities and kurtoses. The FA RMSE values were obtained for the subset of the above-

mentioned voxels that corresponded to the white matter (FA > 0.25). The RMSE values for MK and FA are

unitless, and for MD they are in units of µm2/ms.

(a)

Algorithm UNLS ULLS CLLS-QP

Dataset 1 0.109 / 0.256 0.111 / 0.254 0.096 / 0.135

Dataset 2 0.060 / 0.114 0.062 / 0.122 0.058 / 0.084

Dataset 3 0.098 / 0.211 0.099 / 0.221 0.085 / 0.127

Average 0.089 / 0.194 0.091 / 0.199 0.080 / 0.115

(b)

Algorithm UNLS ULLS CLLS-QP

Dataset 1 0.084 / 0.096 0.084 / 0.096 0.083 / 0.086

Dataset 2 0.058 / 0.080 0.058 / 0.081 0.057 / 0.073

Dataset 3 0.082 / 0.105 0.082 / 0.104 0.080 / 0.092

Average 0.075 / 0.093 0.075 / 0.093 0.073 / 0.084

(c)

Algorithm UNLS ULLS CLLS-QP

Dataset 1 0.056 / 0.075 0.056 / 0.079 0.053 / 0.060

Dataset 2 0.048 / 0.068 0.048 / 0.073 0.047 / 0.060

Dataset 3 0.057 / 0.091 0.058 / 0.094 0.054 / 0.069

Average 0.053 / 0.078 0.054 / 0.082 0.051 / 0.063
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