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The deformation of an aluminum alloy sheet is affected by its underlying crystallographic texture and has been extensively studied using

the crystal plasticity finite element method (CPFEM). Numerical material test based on the CPFEM enables the quantitative estimation of the

stress-strain curve and Lankford value (r-value), which depend upon the texture of aluminum alloy sheets. However, the application of CPFEM-

based numerical material test to the optimization of aluminum alloy texture is computationally expensive. In this paper, we propose a method for

rapidly estimating the stress-strain curves and r-values of aluminum alloy sheets using deep learning with a neural network. We train the neural

network with the synthetic crystallographic texture and stress-strain curves calculated through the numerical material tests. To capture the

features of synthetic texture from a {111} pole-figure image, the neural network incorporates a convolution neural network. Using the trained

neural network, we estimate the uniaxial stress-strain curve and in-plane anisotropy of the r-value for various textures that contain Cube and S

components. The results indicate that the application of a neural network trained with the results of numerical material test is a promising method

for rapidly estimating the deformation of aluminum alloy sheets. [doi:10.2320/matertrans.P-M2020853]
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1. Introduction

The basic information needed to understand and predict

the deformation behavior of aluminum-alloy sheets during

plastic forming is the stress-strain curve and Lankford value

(r-value), which strongly depend upon the crystallographic

texture formed during the manufacturing process.1) There-

fore, a method to estimate the texture-dependent stress-strain

curves and r-values of aluminum alloy sheets is required

for their design and development. However, as the texture of

aluminum alloy sheets involves various types of preferred

crystal orientations, time-consuming material testing is

required to experimentally clarify the relationship between

the texture and stress-strain curve.

Numerical simulation based on the crystal plasticity finite

element method (CPFEM) is effective for estimating the

texture-dependent stress-strain curves of aluminum alloys.2,3)

The results of a benchmark test held at NUMISHEET 20184)

demonstrated the potential of CPFEM in predicting the

stress-strain curves and the in-plane anisotropy of r-value

of the 5000-series aluminum-alloy sheets. These results

indicated the potential of CPFEM-based numerical simu-

lation as a numerical biaxial tensile test5) for estimating the

stress-strain curves of aluminum alloys as an alternative to

experimental material testing. In addition to the experimental

material testing, an effective method to obtain the stress-

strain curves, r-values, and other mechanical responses from

the texture of aluminum alloy sheets would be ideal.

For several years, researchers have explored machine

learning techniques efficiently to estimate the physical

responses of a material. Although there are several

approaches using machine learning, the neural network

approach was extensively applied in the field of material

engineering in the latter half of the 1990s.6­8) Yoshitake et al.

proposed the use of neural networks as an effective method

to estimate the fatigue crack growth rate from information

on the chemical composition and crystal grain-size of

nickel-base superalloy.6) Bhadeshia summarized the methods

through which neural networks have been applied in

materials science and concluded that these were very

effective tools for recognizing the material features and

predicting the material properties based on their features.8)

However, it was difficult to handle large quantities of

complex data because the techniques related to machine

leaning were immature and the computational performance

was poor.

Recently, the drastic improvements in computational

performance and the development of new machine learning

algorithms such as deep learning have facilitated the

application of neural networks to complex classification

and nonlinear regression problems involving multidimen-

sional information such as digital images.9­11) In the field

of materials engineering, Adachi et al.12) proposed a method

for estimating the stress-strain curves using microstructural

information such as the grain-size of steels and constructed

an integrated software.13) As an example of the application

of machine learning for aluminum alloys, Sheikh et al.14)

developed a method to accurately estimate the flow stress

depending on the strain rate and temperature, in the cold

plastic forming of A5083 aluminum alloy. Yuan et al.15)

demonstrated that the random forest method16) can predict the

texture-dependent stress-strain curve and post-deformation

texture of the material using the stress-strain curve of copper

calculated through the viscoplastic self-consistent (VPSC)

method as training data. Onoshima et al.17) showed that the

stress-strain curve of A1145 aluminum alloy can be
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accurately reproduced through deep learning to estimate the

parameters of crystal plasticity constitutive equations used for

numerical material test. However, to the best of the authors’

knowledge, the application of deep learning with a neural

network to estimate the stress-strain curves and r-values

directly from the texture of aluminum alloy sheets has not

been proposed.

In this study, we propose a method to rapidly estimate the

stress-strain curves and the in-plane anisotropy of r-value

from the texture of aluminum alloy sheets using deep

learning with a neural network. The proposed method is

equivalent to the use of deep learning for regression analysis

of the nonlinear relationship between the texture of aluminum

alloy sheets and their stress-strain curves or r-values. To

perform this nonlinear regression, vast quantity of training

data are required for training the neural network. The training

data in this study includes the textures of aluminum alloy

sheets along with their corresponding stress-strain curves

and r-values. It is difficult to acquire this training data within

a short period through experimental material testing.

Therefore, we generate numerous stress-strain curves and r-

values calculated in advance by numerical material test3) for

application as training data for the neural network.

Moreover, we describe the training of the neural network

to estimate the stress-strain curves and the in-plane

anisotropy of r-value using various types of texture. We

verify the proposed method by demonstrating that our

estimation results agree well with the numerical material test

results which are assumed as the true values.

2. Preparation of Training Data through Numerical

Material Test

To prepare the training data for deep learning, we

conducted several numerical material tests based on the

CPFEM. These tests require the initial crystal orientation

as the input data. In this section, we describe the applied

methodology for the numerical material tests and the

generation of the initial crystal orientation data including

the preferred texture orientation of the aluminum alloy sheets.

2.1 Numerical material test using the crystal plasticity

finite element method

The numerical material tests used for generating training

data were based on the CPFEM with the homogenization

method, which has been previously described.3) For details

on the numerical material tests, see Ref. 3). In this section,

we describe the work hardening model used in the numerical

material tests.

The resolved shear stress ¸(¡) in slip system ¡ is given by

the following equation:

¸ð¡Þ ¼ P
ð¡Þ
ij · ij; ð1Þ

where ·ij is the Cauchy stress tensor and P
ð¡Þ
ij is the Schmid

tensor for slip system ¡ (¡ = 1, 2,+ , 12). For the shear-

strain rate in slip system ¡, we use the following exponential

model proposed by Peirce et al.:18,19)
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where _£0 and m are the reference shear strain rate and strain

rate sensitivity index, respectively; g(¡) is the critical resolved

shear stress in slip system ¡, and its time evolution (i.e., work

hardening) is expressed by the following equations:

gð¡Þ ¼ ¸0 þ
Z

t

_gð¡Þdt; ð3Þ

_gð¡Þ ¼
X

¢

hð¡¢Þj _£ ð¢Þj; ð4Þ

where ¸0 is the initial critical resolved shear stress; h(¡¢) is

the hardening coefficient matrix which represents the

contribution of slip system ¡ to the hardening of slip system

¢, and is expressed by the following equation:20)

hð¡¢Þ ¼ qhð£Þ þ ð1� qÞhð£Þ¤¡¢; ð5Þ

where ¤ij is Kronecker’s delta, and q is a coefficient that

represents the level of latent hardening. The value of h(£)

is obtained from the following equation related to the

accumulated shear strain:

hð£Þ ¼ h0nCfCð£ int þ £Þgn�1; ð6Þ

where h0, n, C, and £ int are the initial work hardening

coefficient, hardening index, hardening coefficient, and initial

shear strain, respectively, and £ is the accumulated shear

strain.

To perform numerical material test, it is necessary to

determine the parameters in eqs. (2)­(6). Although this study

does not target specific materials, we use the parameters

determined based on the true stress-strain curves obtained

through the uniaxial tensile testing of A5182-O aluminum

alloy sheet which is the test material in Ref. 3). The sheet

includes Cube-texture components; the other physical

property values and parameter values are as indicated in

Ref. 3).

2.2 Generation of synthetic crystallographic textures

In order to generate training data for the neural network

used for deep learning, we created synthetic crystallographic

textures that include multiple preferred crystal orientations

and applied them as the basis for generating the initial crystal

orientation data used in the numerical material tests. The

synthetic textures, which are a type of “pseudo texture”

generated by numerical calculation, were created as described

below.

The crystallographic texture in aluminum-alloys includes

several preferred orientations such as the Cube, Goss, S,

and copper components.21) Although it would be desirable to

create a synthetic texture that contains the various preferred

orientations, instead of creating a synthetic texture that

includes all the preferred orientations, we created a texture

with only two preferred orientations: the Cube texture, which

is a typical recrystallization texture of aluminum alloys, and

the S texture, which is a rolling texture, as well as random

textures. The purpose of this study is to use deep learning

to rapidly estimate the stress-strain curves and r-values of

aluminum alloy sheets from the texture information, and

demonstrate that the estimated stress-strain curves agree with

the numerical material test results. Hence, we validate the

proposed method for a simple synthetic texture containing the

Cube and S textures.
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For generating the synthetic texture using the above-

mentioned procedure, it is assumed that the crystal-

orientation distribution follows the 3D Gaussian probability

density function f shown below, where the average value

is considered to be the ideal Cube and S orientations in

Bunge’s Euler angular space, i.e., (º1,º,º2) = (0, 0, 0) and

(59°, 37°, 63°).

fðº1; º; º2Þ ¼
1

ð
ffiffiffiffiffiffi

2³
p

Þ3²3i
exp �

º2
1 þ º2 þ º2

2

2²2i

� �

; ð7Þ

where ²2i (i = Cube or S) is the variance that indicates the

variation in crystal orientation with respect to the ideal Cube

or S texture component.

We generated various synthetic textures by varying the

volume fractions of the preferred orientations included in

the synthetic texture and the variance given by eq. (7). In this

study, the volume fractions of the Cube and S textures

(denoted by VCube and VS, respectively) were varied in

increments of 10% in the range of 10 and 90%. When the

sum of VCube and VS was less than 100%, the remaining

orientations were randomly created using uniform random

numbers. Based on Wu et al.,22) we changed the variances

of the Cube and S textures (denoted by ²2Cube and ²2S,

respectively) every 3 deg2 in the range of 2­11 deg2.

The initial crystal orientation data for the numerical

material tests were generated using eq. (7) according to the

following steps. Henceforth, we refer to this sequence of

steps as “sampling.”

Step 1 Generate three real numbers in the range of 0­1 using

uniform random numbers, and then convert them to real

numbers (a, b, c) that follow a normal distribution with a

mean = 0 and variance = 1 through the Box-Muller

method.23)

Step 2 Multiply the real numbers obtained in Step 1 by the

standard deviation ²i and 360° to obtain the random crystal

orientation (º1A,ºA,º2A). The results are in degrees (°) (unit).

Step 3 Compute the initial crystal orientation data (º1, º,º2)

by adding the Euler angle of the ideal orientation to the

crystal orientation (º1A,ºA,º2A) obtained in Step 2. For

example, for the S texture, we obtain a crystal orientation

of (º1,º,º2) = (º1A + 59°, ºA + 37°, º2A + 63°).

Step 4 Generate the initial crystal orientation data that obeys

the probability density function f expressed by eq. (7), by

repeating Steps 1­3 the same times as the desired number of

initial crystal orientations.

The initial crystal orientation data will differ slightly

depending on the random numbers used in Step 1 when using

the above procedure to generate the initial crystal orientation

data, even if we do not change the values of volume fraction

and variance used to generate the initial crystal orientation

data. Specifically, the greater is the variance ²2i in eq. (7), the

greater is the difference in the initial crystal orientations

generated by sampling, and the greater is the variation in the

results of the numerical material tests. Therefore, in this

study, the number of sampling is given by eq. (8), for a

probability density function f representing a given synthetic

texture,

Nsample ¼
VCube²

2
Cube þ VS²

2
S

2
: ð8Þ

For example, when a synthetic texture is VCube = 0.5,

²2Cube = 8 deg2, VS = 0.1, and ²2S = 5 deg2, the sampling

number is 4 according to eq. (8). Therefore, for this synthetic

texture, the numerical material test was performed four times,

and all the results were included in the training data. When

this procedure was applied to all the volume fractions and

variances, a total of 1,468 initial crystal orientations were

generated.

In order to obtain the in-plane anisotropy of r-values for

all the initial crystal orientations, three types of numerical

material tests were performed at tensile directions of 0°, 45°,

and 90°, relative to the rolling direction (RD) of the sheet.

Therefore, a total of 1,468 © 3 = 4,404 numerical material

tests were performed, and the results of all the calculations

were used as training data.

3. Deep Learning with Neural Network

This section describes the neural network used in this

study as well as the deep learning method using the training

data generated by the method described in Section 2.

3.1 Generation of {111} pole-figure image of synthetic

texture

In this study, we entered the texture information into the

neural network, and obtained the estimates of the stress-strain

curves and in-plane anisotropy of the r-values as the output.

The format for entering the texture information into the

neural network is an important factor that determines the

accuracy of the stress-strain curve and r-value estimates. The

method adopted in this study involved entering a {111} pole-

figure image into the neural network. Recent neural network-

based deep learning techniques for the image recognition

exhibit extremely powerful discrimination capabilities when

images are used as the input.24) This suggests that the usage

of image data representing textural features as input to the

neural network is a suitable method for estimating the stress-

strain curves with high accuracy.

The {111} pole-figure images of the synthetic textures,

which are the input to the neural network, were generated as

follows. First, for the initial crystal orientation data generated

using the method described in Section 2.2, the positions of

the poles on the {111} pole figures were determined. Further,

to form the pole-figure image, the pole figure was divided

into N © N subregions, where each subregion corresponds to

one image pixel. The luminance value of each pixel was then

set according to the number of poles included in the pixel. In

this study, each pixel luminance value L was set to 255n/a,

where n is the number of poles contained in the pixel and a

is a constant set to 10. In approximately 0.01% of the

synthetic texture images used as training data in this study,

there were pixels whose luminance values exceeded 255.

In these cases, the pixel luminance value was corrected to

255. Using the above-mentioned method, we represented the

degree of orientation of the texture in terms of the individual

pixel luminance, as depicted in Fig. 1(a).

The {111} pole-figure images were formatted to PNG for

the ease of compression. In order to reduce the memory

required for deep learning, the image resolution was always

set to 2n © 2n pixels, i.e., a power of two on each axis.
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Before the {111} pole-figure image was entered into the

neural network, it was converted into a black-and-white

inverted image, as shown in Fig. 1(b). This step was

performed to render the image data similar to the format of

the MNIST dataset,25) which includes a set of sample images

often used in deep-learning image recognition; it is noted that

even if the data were not converted into black-and-white

inverted images, the results of training the neural network

would not be affected.

3.2 Neural network applied for deep learning

Neural networks, which are mathematical models used

to implement deep learning, are inspired by the biological

mechanism of the system of neurons in the brain.26) Figure 2

displays the schematic of a simple neural network; the circles

in the figure indicate the modeled neurons. A neural network

comprises an input layer that receives input data, hidden

layers that extract the features of the data received by the

input layer, and an output layer that generates output data.

Aweight is assigned to each input value xi for each neuron,

and the weights are then are summed as shown in the

equation below. This equation depicts the output of a neuron

in the hidden layer shown in Fig. 2.

zj ¼
X

3

i¼1

w
ðjÞ
i xi; ð9Þ

where wi
( j) is the weight assigned to the input value xi to

the j th neuron. In neural network training, the weights wi
( j)

are determined such that the relationships between the

training data inputs and outputs are reproduced. To determine

the appropriate weight wi
( j) for multiple inputs, optimiza-

tion algorithms such as the gradient descent are used to

reduce the difference between the true output values

contained in the training data and the neural-network

estimated outputs.27,28) In this study, Adam29) was used as

the optimization algorithm. A layer in which all the neurons

are connected to the preceding and following layers, as

shown in Fig. 2, is called a fully connected layer. Various

types of neural-network connection methods have been

proposed, in addition to the fully connected layers used in

deep learning.14,30,31)

In this study, we supplemented the fully connected layers

with convolutional layers, pooling layers, and dropout

layers.30) A neural network that uses convolutional layers

is called a convolutional neural network (CNN). CNN

combines convolutional and pooling layers in succession to

compress the input image and capture the image features.30)

The dropout layers assist in optimizing the weights and

prevent overlearning by ignoring certain neurons during

neural-network training.31)

In this study, the above-described layers were used to

construct the neural network shown in Fig. 3. The role of

each layer in our network is as follows:

Layer 1 is a convolutional layer that receives a 2n © 2n

pixel {111} pole-figure image and converts it into 16 images

of 25 © 25 pixels that capture the features of the input pole-

figure image.

Fig. 1 (a) Example of {111} pole figure of a synthetic crystallographic

texture and (b) the corresponding image used for the input data to the

neural network.

Fig. 2 Schematic diagram of a neural network.

Fig. 3 Neural network constructed in this study. This neural network is composed of two pairs of convolutional and pooling layers and

two fully connected layers.
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Layer 2 is a sum pooling layer that calculates the sum of

the 2 © 2-pixel regions (kernels) in each of the 16 images

generated by Layer 1 in order to compress them into 16 © 16-

pixel images representing the luminance values. Layer 3 is

a convolutional layer that converts the image compressed

by Layer 2 into 32 images of 3 © 3 pixels to capture the

features of the pole-figure image. Layer 4 converts the {111}

pole-figure input into a 32-dimensional feature value by

calculating the maximum value of each 3 © 3-pixel region

(kernel) in each of the 32 images generated by the

convolution layer in Layer 3. Layer 5 improves the

regression accuracy for nonlinear training data using the

max pooling layer and a fully connected layer. Layer 6 is

a fully connected layer for outputting the stress-strain curve

or r-value corresponding to the feature value of the {111}

pole-figure in the input. The stress and strain are normalized

to values between zero (minimum) and unity (maximum).

The normalized stress values and their corresponding strain

values are then output along with the maximum and

minimum stress and strain values used for normalization.

To estimate the in-plane anisotropy of r-value, the value

indicating the angle of the tensile direction relative to the RD

is added to the 32-dimensional feature value generated by

the max pooling layer in Layer 4. This enables the estimation

of the r-value for any tensile direction.

Individual neural networks are trained separately to

estimate the stress-strain curves and the in-plane anisotropy

of r-value from the texture images.

The greater the resolution of the {111} pole figures, the

longer it takes to train and apply the neural network. In this

study, the estimation accuracy was verified by training neural

networks under three conditions, namely n = 6, 7, and 8.

It followed that no further improvement of the estimation

accuracy was observed when the neura network was trained

at resolutions more than n = 7. Therefore, we set the

resolution of the {111} pole-figure images to n = 7, i.e.,

128 © 128 pixels.

3.3 Validation of the trained neural network

We used the trained neural network to estimate the stress-

strain curves and the in-plane anisotropy of r-values from

the texture information, and then verified its accuracy by

comparing the results with the numerical material test results.

As explained in Section 2.2, the initial crystal orientation

data generated during sampling can vary depending on the

random numbers, even if we do not change the values of

volume fraction and variance used to generate the synthetic

texture. Therefore, when performing numerical material tests

to generate verification data, we used five initial crystal

orientation data obtained by sampling five times, using the

probability density function f representing a given synthetic

texture. When estimating using the trained neural network,

we used the same probability density function f to generate

the fifty {111} pole-figure images used as inputs for

estimating the stress-strain curves.

4. Estimation Results Using Neural Network

4.1 Estimation of the stress-strain curves

Figure 4 depicts the {111} pole figures representing the

three types of initial crystal orientation generated using VCube

set to 10%, 50%, and 90%, respectively. Here, ²2Cube, VS, and

²2S were set to 5 deg2, 10%, and 5 deg2, respectively.

Figure 5(a) displays the true stress-logarithmic plastic

strain curves calculated by numerical material tests and

estimated by the trained neural network in the tensile

direction of RD using the initial crystal orientation shown

in Fig. 4; the error bars in the figure indicate the variance

of the estimated value depending on the {111} pole figure-

images input to the neural network. The flow stress calculated

by numerical material test decreases as VCube increases. In

the numerical material tests, even the volume fraction and

variance in the Cube texture were identical to those in the S

texture, the flow stress varied due to minor differences in the

initial crystal orientation. Similar to the numerical material

test results, in the stress-strain curves estimated by the trained

neural network, the flow stress decreased with the increase

in VCube. At VCube values of 10% and 50%, the values

estimated by the neural network agreed well with those

calculated by numerical material tests. On the other hand,

Fig. 4 {111} pole figure of the synthetic crystallographic texture used as

the input data for the numerical material test and the trained neural

network. The volume fraction of the Cube texture, VCube, for each texture

is (a) 10%, (b) 50%, and (c) 90%, respectively. The volume fraction of the

S texture, and variances of the Cube and S textures are fixed at VS = 10%,

²2S = 5 deg2, and ²2Cube = 5 deg2, respectively.

Fig. 5 True stress-logarithmic plastic strain curves for the tensile direction

of (a) RD and (b) TD calculated by numerical tensile tests and estimated

by the trained neural network using the different textures shown in Fig. 4.
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when VCube = 90%, the neural network overestimates the

flow stress compared to that calculated by the numerical

material test.

Figure 5(b) depicts the estimated results of the true stress-

logarithmic plastic strain curves, when the transverse

direction (TD) is the tensile direction. Using the trained

neural network, it was possible to estimate the decrease in

flow stress associated with the increase in VCube, similar to

the results in Fig. 5(a). However, the estimation accuracy

when VCube = 10% was less than that shown in Fig. 5(a).

Figure 6 shows the {111} pole figures representing the

three types of initial crystal orientation generated when the

variance of the Cube texture (²2Cube) for each texture is 2 deg2,

5 deg2, and 8 deg2, respectively. Here, VCube, VS, and ²2S were

set to 90%, 10% and 5 deg2, respectively.

Figure 7(a) displays the true stress-logarithmic plastic

strain curves calculated by numerical material tests and

estimated using the trained neural network in the tensile

direction of RD with the initial crystal orientation shown in

Fig. 6. The flow stress calculated by numerical material test

decreases as ²2Cube increases. On the other hand, the stress-

strain curves estimated by the trained neural network exhibits

an opposite trend. However, when ²2Cube is 2 deg
2 and 5 deg2,

the results agree well with the numerical material test results.

When ²2Cube is 8 deg2, the stress-strain curves estimated by

the neural network are greater than those obtained from the

numerical material tests.

Figure 7(b) shows the estimated results of the true stress-

logarithmic plastic strain curves when the tensile direction is

TD. The flow stress calculated by numerical material test

decreases as ²2Cube increases, similar to the results shown in

Fig. 7(a). When ²2Cube is 8 deg2, the estimates by the neural

network are greater than the numerical material test results.

4.2 Estimation of in-plane r-value

This section presents the results of using the trained neural

network to estimate the in-plane anisotropy of the r-value

from the texture information. Table 1 lists the volume

fraction and variance of the Cube and S texture components

of the synthetic textures used for estimating the r-value.

Figure 8 depicts the changes in the r-value associated with

the increase in the logarithmic plastic strain calculated by

numerical material test and estimated by the trained neural

network. The values of r90 and r45 obtained by numerical

material test decrease with the increase in the logarithmic

plastic strain. On the other hand, r0 increases with the

increase in the logarithmic plastic strain. For all the synthetic

textures, when the logarithmic plastic strain is 0.05, the

greatest value is at r0, followed by r90 and r45. Comparing

the results of Cases 3, 4, and 5, as VCube increases, r45
gradually approaches zero. Moreover, the higher the volume

fraction of the S orientation relative to the volume fraction

of the Cube orientation, the greater is the difference between

r0 and r90.

The above figures indicate that the estimates by the trained

neural network can grasp the tendency of results of the

numerical material tests. Furthermore, as the results of the

numerical materials tests are within the range of the r-value

variation estimated by the trained neural network, it is

established that the proposed method can be applied for

estimating the anisotropy of r-values with the same accuracy

as that of the numerical material tests.

Fig. 6 {111} pole figure of the synthetic crystallographic texture used as

the input data for the numerical material test and the trained neural

network. The variance of the Cube texture ²2Cube for each texture is (a)

2 deg2, (b) 5 deg2, and (c) 8 deg2. The volume fraction of the S texture and

variances of the Cube and S textures are fixed at VCube = 90%, VS = 10%,

and ²2S = 5 deg2, respectively.

Fig. 7 True stress-logarithmic plastic strain curves for the tensile direction

of (a) RD and (b) TD calculated by numerical tensile tests and estimated

by the trained neural network using the different textures shown in Fig. 6.

Table 1 Volume fraction and variance of Cube and S textures used for

generating synthetic crystallographic textures.
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5. Discussion

5.1 Improvement of the stress-strain curve estimation

accuracy

We used the trained neural network to estimate the stress-

strain curves based on the volume fraction and variance of

the Cube texture. The results demonstrated that the stress-

strain curves calculated through numerical material tests were

accurately estimated. As mentioned in Section 1, performing

numerous numerical material tests and accumulating training

data is time consuming. However, if the neural network

training data can be accumulated faster, for example, by

using parallel computation to increase the speed of numerical

material test, it should be possible to estimate the texture-

dependent stress-strain curve within a short period. On the

other hand, the estimation accuracy of the stress-strain curves

is clearly reduced with increasing VCube and ²2Cube. Hereafter,

we discuss methods to improve this decrease in estimation

accuracy.

In this study, we expressed textural differences by

increasing the pixel luminance value with a high degree of

integration in the {111} pole-figure image. On the other

hand, because the luminance value in each pixel is expressed

as a value between 0­255, the variance is relatively small,

and differences in the texture cannot be clearly recognized.

This may be the cause for the decrease in the estimation

accuracy of the neural network when the Cube texture

component is more than 80%. Therefore, the estimation

accuracy can be improved by modifying the method

described in section 3.1 for calculating the pixel luminance

value in the {111} pole-figure image, using a pole figure

other than the {111} pole figure as the input data to the

neural network, or a texture representation other than pole

figures. In addition, when the variance of the texture is

increased, the estimation accuracy may be improved by

generating more training data.

5.2 Improvement of estimation accuracy of in-plane

anisotropy of r-value

We used a trained neural network to estimate the in-plane

anisotropy of r-value for six types of synthetic texture. The

results showed that for most textures, it was possible to

estimate the r-values calculated by numerical material test.

However, there were errors in the r-value estimated by the

neural network. The causes for these errors and the solutions

are discussed below.

Variations in the estimates of the r-values by the neural

network were caused because only few r-values were

calculated by numerical material tests, rendering these values

strongly dependent on minor differences in the initial crystal

orientation. As noted in Section 4.2, even if we do not

change the values of volume fraction and variance of the

ideal orientations constituting the synthetic texture, the initial

crystal orientation used as input information for the

numerical material tests will differ slightly depending on

the random numbers. Therefore, the numerical material test

results will vary depending on the difference. To solve this

problem, it is necessary to increase the initial number of

crystal orientations, in the numerical material test.

As mentioned above, issues remain to be solved in future

research. From the results of this study, however, it is

demonstrated that the use of {111} pole figures as input data

to a CNN-based neural network for capturing the textural

features of aluminum alloy sheets is highly promising, and

that the stress-strain curves and the in-plane anisotropy of

r-value can be estimated with high accuracy. Although

regression estimation by deep learning with a neural network

is essentially an interpolated estimate of the training data,

it is advantageous from an engineering perspective, for

example, in reducing the number of material tests that would

otherwise be required.

6. Conclusion

In this study, we proposed the new method using deep

learning with the neural network to rapidly estimate the

texture-dependent stress-strain curves and r-values of

aluminum alloy sheets. The neural-network training data

were obtained through numerical material tests based on

CPFEM, with synthetically generated texture data as the

input information. We stored the results of the numerical

material tests and used them as input for training the neural

network, which could estimate with high accuracy the stress-

strain curves and the in-plane anisotropy of r-value from the

{111} pole figures of the textures.

The challenge for future research is to improve the

estimation accuracy of the neural network by improving the

training data, for example, by supplementing the training

data with actual experimental data or numerical material

test results based on a greater number of initial crystal

orientations than those applied in this study.

Fig. 8 Variation of r-value with logarithmic plastic strain calculated by the

numerical material tests and estimated by the trained neural network for

cases 1­6 shown in Table 1. The error bars show the error included in the

estimation by the trained neural network.
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