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SUMMARY

The hazard ratio provides a natural target for assessing a treatment effect with survival data, with the
Cox proportional hazards model providing a widely used special case. In general, the hazard ratio is a
function of time and provides a visual display of the temporal pattern of the treatment effect. A variety of
nonproportional hazards models have been proposed in the literature. However, available methods for flex-
ibly estimating a possibly time-dependent hazard ratio are limited. Here, we investigate a semiparametric
model that allows a wide range of time-varying hazard ratio shapes. Point estimates as well as pointwise
confidence intervals and simultaneous confidence bands of the hazard ratio function are established under
this model. The average hazard ratio function is also studied to assess the cumulative treatment effect. We
illustrate corresponding inference procedures using coronary heart disease data from the Women’s Health
Initiative estrogen plus progestin clinical trial.

Keywords: Clinical trial; Empirical process; Gaussian process; Hazard ratio; Simultaneous inference; Survival analy-
sis; Treatment–time interaction.

1. INTRODUCTION

Consider the comparison of failure times between a treated and control group under independent cen-
sorship. The hazard ratio provides a natural target of estimation in many applications since it permits a
focus on relative failure rates across the study follow-up period, without the need to model absolute fail-
ure rates, which may be sensitive to study eligibility criteria and other factors. The proportional hazards
special case of theCox(1972) regression model is widely used for hazard ratio estimation. The maximum
partial likelihood procedure (Cox, 1975) provides a convenient and robust means of estimating a constant
hazard ratio and yields a log-rank procedure for testing equality of hazards between the 2 groups.
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In general, the hazard ratio may be a function of time, and estimation of the hazard ratio function may
provide useful insights into temporal aspects of treatment effects. For example,Gilbertand others(2002)
develop a nonparametric estimation procedure for the log-hazard ratio function with simultaneous confi-
dence bands, for use as an exploratory data analytic tool. Naturally, confidence bands may be wide with
such a nonparametric estimator, particularly at longer follow-up times where data may be sparse. See also
Gray(1992), Kooperbergand others(1995), Cai and Sun(2003), Tianand others(2005), Abrahamowicz
and Mackenzie(2007), andPeng and Huang(2007), and references therein, for additional related work.

Parametric or semiparametric hazard ratio models have potential to contribute valuably to treatment
effect assessment. Hazard ratio models having parameters of useful interpretation, and that embrace a
range of hazard ratio shapes, may be particularly valuable. The Cox model allows time-varying covariates
to be defined that can, for example, allow separate hazard ratios for the elements of a partition of the
time axis or allow the hazard ratio to be a parametric function of follow-up time more generally. Various
other semiparametric regression models have been proposed for failure time data analyses, including
accelerated failure time models, proportional odds models, and linear transformation models, many of
which are embraced by the broad class of models for whichZeng and Lin(2007) develop maximum
likelihood estimation procedures. Some more semiparametric models can be found inVaupeland others
(1979), Hsieh(1996), Chen and Wang(2000), Tsodikov(2002), Yang and Prentice(2005), andChen and
Cheng(2006). Many of these models induce a semiparametric class of models for the hazard ratio function
that includes proportional hazards as a special case. Hazard ratio estimators under such semiparametric
models can avoid the instability that may attend nonparametric hazard ratio function estimators.

One of these, proposed byYang and Prentice(2005), involves short-term and long-term hazard ratio
parameters, and a hazard ratio function that depends also on the control group survivor function. Assume
absolutely continuous failure times and label the 2 groups control and treatment, with hazard functions
λC(t) andλT(t), respectively. Leth(t) = λT(t)/λC(t) be the hazard ratio function andSC(t) the survivor
function of the control group. The model postulates that

h(t) =
1

e−β2 + (e−β1 − e−β2)SC(t)
, t < τ0, (1.1)

whereβ1 andβ2 are scalar parameters and

τ0 = sup

{
x:
∫ x

0
λC(t)dt < ∞

}
. (1.2)

This model includes the proportional hazards model and the proportional odds model as special cases. It
has a monotoneh(t) with a variety of patterns, including proportional hazards, no initial effect, disappear-
ing effect, and crossing hazards, among others. Thus, the model presumably entails sufficient flexibility
for many applications. It has also been studied for current status data inTongand others(2007).

In comparison, for many commonly used special cases of the accelerated failure time model either
limt↓0 h(t) = 1 or limt↑τ0 h(t) ∈ {0, 1, ∞} and the hazard ratio stays above or below one whenλC
is increasing. This is less flexible than desired. For the class of linear transformation models, with the
logarithmic transformation, the hazard ratio also inherits some of these restrictions at many common
baseline distributions. Similar properties hold as well for many other semiparametric models.

Under model (1.1), estimation procedures to date have focused on the finite-dimensional parameters,
as has mostly been the case also for estimation under other semiparametric models. Here, we extend the
estimation to pointwise and simultaneous inference on the hazard ratio function itself. First, consistency
and asymptotic normality of the estimate at a fixed time point are established. Then procedures for con-
structing pointwise confidence intervals and simultaneous confidence bands for the hazard ratio function
are developed, and some modifications are implemented to improve moderate sample size performance.
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356 S. YANG AND R. L. PRENTICE

For additional display of the treatment effect, simultaneous confidence bands are also obtained for the
average hazard ratio function over a time interval. The average hazard ratio gives a summary measure of
treatment comparison and provides a picture of the cumulative treatment effect to augment display of the
temporal pattern of the hazard ratio. These hazard ratio estimation procedures are applied to data from the
Women’s Health Initiative (WHI) estrogen plus progestin clinical trial (Writing Group For the Women’s
Health Initiative Investigators, 2002; Mansonand others, 2003), which yielded a hazard ratio function
for the primary coronary heart disease outcome that was decidedly nonproportional. Understanding the
hazard ratio function shape in this setting was important to integrating the clinical trial data with a large
body of preceding observational literature that had failed to identify an early hazard ratio increase (e.g.
Mansonand others, 2003; Prenticeand others, 2005).

We organize the article as follows: In Section2, the short-term and long-term hazard ratio model
and the hazard ratio estimate are described. Pointwise confidence intervals of the hazard ratio are estab-
lished. Simultaneous confidence bands for the hazard ratio and the average hazard ratio are provided in
Section3. Simulation results are presented in Section4. Application to data from the WHI trial is given in
Section5. Some concluding remarks are given in Section6. Proofs of the asymptotic results are contained
in the Supplementary Material available atBiostatisticsonline.

2. HAZARD RATIO FUNCTION ESTIMATION

Let T1, . . . , Tn be the pooled lifetimes of the 2 groups, withT1, . . . , Tn1, n1 < n, constituting the control
group having the survivor functionSC. Let C1, . . . , Cn be the censoring variables, andZi = I (i >
n1), i = 1, . . . , n, where I (∙) is the indicator function. The available data consist of the independent
triplets (Xi , δi , Zi ), i = 1, . . . , n, whereXi = min(Ti , Ci ) andδi = I (Ti 6 Ci ). We assume thatTi

andCi are independent givenZi . The censoring variables (Ci ’s) need not be identically distributed, and
in particular, the 2 groups may have different censoring patterns. Fort < τ0 with τ0 defined in (1.2), let
R(t) be the the odds function 1/SC(t) − 1 of the control group. The model ofYang and Prentice(2005)
can be expressed as

λi (t) =
1

e−β1Zi + e−β2Zi R(t)

dR(t)

dt
, i = 1, . . . , n, t < τ0, (2.1)

whereλi (t) is the hazard function forTi given Zi . Under the model, the hazard ratio is

h(t) =
1 + R(t)

e−β1 + e−β2 R(t)
.

To estimateh(t), we need to estimate the parameterβββ = (β1, β2)
T and the baseline functionR(t), where

“T ” denotes transpose. Let us first introduce the estimators fromYang and Prentice(2005).
Define

K (t) =
n∑

i =1

I (Xi > t), Hj (t; b) =
n∑

i =1

δi e
−bj Zi I (Xi 6 t), j = 1, 2,

whereb = (b1, b2)
T . Let τ < τ0 be such that

lim
n

K (τ ) > 0, (2.2)

with probability 1. Fort 6 τ , let

P̂(t; b) =
∏

s6t

{
1 −

1H2(s; b)

K (s)

}
, R̂(t; b) =

1

P̂(t; b)

∫ t

0

P̂−(s; b)

K (s)
H1(ds; b),
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where1H2(s; b) denotes the jump ofH2(s; b) in s andP̂−(s; b) denotes the left continuous (ins) version
of P̂(s; b), Define the martingale residuals

M̂i (t; b) = δi I (Xi 6 t) −
∫ t

0
I (Xi > s)

R̂(ds; b)

e−b1Zi + e−b2Zi R̂(s; b)
, 16 i 6 n.

Yang and Prentice(2005) proposed a pseudo maximum likelihood estimatorβ̂ββ = (β̂1, β̂2)
T of βββ, which

is the zero ofQ(b), where

Q(b) =
n∑

i =1

∫ τ

0
fi (t; b)M̂i (dt; b), (2.3)

with fi = ( f1i , f2i )
T , where

f1i (t; b) =
Zi e−b1Zi

e−b1Zi + e−b2Zi R̂(t; b)
, f2i (t; b) =

Zi e−b2Zi R̂(t; b)

e−b1Zi + e−b2Zi R̂(t; b)
.

Onceβ̂ββ is obtained,R(t) can be estimated bŷR(t; β̂ββ), and the hazard ratioh(t) can be estimated by

ĥ(t) =
1 + R̂(t; β̂ββ)

e−β1 + e−β2 R̂(t; β̂ββ)
.

In Appendix A of the Supplementary Material available atBiostatisticsonline, we show that̂h(t) is
strongly consistent forh(t) under model (2.1).

To study the distributional properties ofĥ(t), let

Wn(t) =
√

n(ĥ(t) − h(t)), t 6 τ .

For the asymptotic distribution of̂βββ, define

A(t) =

(
e−β1

e−β1 + e−β2 R̂(t; βββ)
,

e−β2 R̂(t; βββ)

e−β1 + e−β2 R̂(t; βββ)

)T

,

K1(t) =
∑

i6n1

I (Xi > t), K2(t) =
∑

i >n1

I (Xi > t),

ω(t) =
∫ τ

t

A(s)h(s)K1(s)K2(s)

(1 + R(s))(1 + R̂(s; βββ))K (s)
(h(s)e−β2 − 1)

dR(s)

P̂(s; βββ)
.

From Theorem A2 ofYang and Prentice(2005) and some algebra,

Q(βββ) =




∑

i6n1

∫ τ

0
μ1 dMi +

∑

i >n1

∫ τ

0
μ2 dMi



+ op(1),
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358 S. YANG AND R. L. PRENTICE

where

μ1(t) = −
A(t)K2(t)h(t)

K (t)
+

P̂−(t; βββ)(1 + R̂(t; β))

K
ω(t),

μ2(t) = A(t)
K1(t)

K (t)
+

P̂−(t; βββ)(e−β1 + e−β2 R̂(t; βββ))

K (t)
ω(t), (2.4)

Mi (t) = δi I (Xi 6 t) −
∫ t

0
I (Xi > s)

dR(s)

e−β1Zi + e−β2Zi R(s)
, i = 1, . . . , n.

Now for R̂(t; β̂ββ), from Lemma A3 inYang and Prentice(2005) and some algebra,

√
n(R̂(t; βββ) − R(t)) =

1
√

nP̂(t; βββ)




∑

i6n1

∫ t

0
ν1 dMi +

∑

i >n1

∫ t

0
ν2 dMi



 , (2.5)

where

ν1(t) =
nP̂−(t; βββ)

K (t)
(1 + R(t)) , ν2(t) =

nP̂−(t; βββ)

K (t)
(e−β1 + e−β2 R(t)).

Let

D(t; βββ) =
∂ R̂(t; βββ)

∂βββ
, U =

(
−

1

n

∂Q(βββ)

∂βββ

)−1

,

B(t) = h(t)A(t) +
e−β1 − e−β2

(e−β1 + e−β2 R(t))2
D(t; βββ),

C(t) =
e−β1 − e−β2

(e−β1 + e−β2 R(t))2

1

P̂(t; βββ)
.

For t 6 τ , define the process

W̃n(t) =
BT (t)U

√
n




∑

i6n1

∫ τ

0
μ1 dMi +

∑

i >n1

∫ τ

0
μ2 dMi





+
C(t)
√

n




∑

i6n1

∫ t

0
ν1 dMi +

∑

i >n1

∫ t

0
ν2 dMi



 . (2.6)

With the representations forQ(βββ) and
√

n(R̂(t; βββ)− R(t)), in Appendix B of the Supplementary Material
available atBiostatisticsonline, we show thatWn is asymptotically equivalent tõWn which converges
weakly to a zero-mean Gaussian processW∗. The weak convergence ofWn thus follows. The limiting
covariance functionσ(s, t) of W∗ involves the derivativeD(t; βββ) and the derivative matrix inU . Although
analytic forms of these derivatives are available, they are quite complicated and cumbersome. Here, we
approximate them by numerical derivatives. For the functionsB(t), C(t), μ1(t), μ2(t), ν1(t), andν2(t),
define correspondinĝB(t), Ĉ(t),. . . , by replacingβββ with β̂ββ, R(t) with R̂(t; β̂ββ) and D(t; βββ) with the
numerical derivatives. Similarly, let̂U be the numerical approximation ofU . Simulation studies show
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that the results are fairly stable with respect to the choice of the jump size in the numerical derivatives,
and that the choice ofn−1/2 works well. With these approximations, we can estimateσ(s, t), s 6 t 6 τ ,
by

σ̂ (s, t) = B̂T (s)Û

{∫ τ

0

1

n(1 + R̂(w; β̂ββ))
[μ̂1(w)μ̂1

T (w)K1(w)

+ μ̂2(w)μ̂2
T (w)K2(w)ĥ(w)] R̂(dw, β̂ββ)

}

Û T B̂(t)

+ Ĉ(s)Ĉ(t)
∫ s

0

1

n(1 + R̂(w; β̂ββ))
[ν̂1

2(w)K1(w)

+ ν̂2
2(w)K2(w)ĥ(w)] R̂(dw, β̂ββ)

+ Ĉ(t)B̂T (s)Û
∫ t

0

1

n(1 + R̂(w; β̂ββ))
[μ̂1(w)ν̂1(w)K1(w)

+ μ̂2(w)ν̂2(w)K2(w)ĥ(w)] R̂(dw, β̂ββ)

+ Ĉ(s)B̂T (t)Û
∫ s

0

1

n(1 + R̂(w; β̂ββ))
[μ̂1(w)ν̂1(w)K1(w)

+ μ̂2(w)ν̂2(w)K2(w)ĥ(w)] R̂(dw, β̂ββ). (2.7)

Now for a fixedt0 6 τ , from the above results, confidence intervals forh(t0) can be obtained from the
asymptotic normality of̂h(t0) and the estimated varianceσ̂ (t0, t0). The usual logarithm transformation

results in the asymptotic 100(1− α)% confidence interval̂h(t0) exp

(
∓zα/2

√
σ̂ (t0,t0)√
nĥ(t0)

)
, wherezα/2 is the

100(1 − α/2)% percentile of the standard normal distribution.

3. SIMULTANEOUS CONFIDENCE BANDS

To make simultaneous inference onh(t) over a time intervalI = [a, b] ⊂ [0, τ ], consider

Vn(t) =
√

n
ĥ(t)

s(t)
(ln(ĥ(t)) − ln(h(t))),

wheres(t) converges in probability, uniformly int over I , to a bounded functions∗(t) > 0. From the
weak convergence ofWn to W∗ and the functional delta method, we have the weak convergence ofVn to
W∗/s∗. Thus, ifcα is the upperαth percentile of supt∈I |W∗/s∗|, an asymptotic 100(1−α)% simultaneous
confidence band forh(t), t ∈ I , can be obtained as

ĥ(t) exp

(

∓
cαs(t)
√

nĥ(t)

)

.

It is difficult to obtaincα analytically. One obvious alternative would be the bootstrapping method. How-
ever, it is very time-consuming and results in lower than nominal coverage probabilities in some simula-
tion studies.Lin and others(1993) used a normal resampling approximation to simulate the asymptotic
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distribution of sums of martingale residuals for checking the Cox regression model. The normal resam-
pling approach reduces computing time significantly and has become a standard method. It has been used
in many works, includingLin and others(1994), Chengand others(1997), Gilbert and others(2002),
Tianand others(2005), andPeng and Huang(2007). We will modify this approach for our problem here.

For t 6 τ , define the process

Ŵn(t) =
B̂T (t)Û

√
n




∑

i6n1

∫ τ

0
μ̂1d(εi Ni ) +

∑

i >n1

∫ τ

0
μ̂2d(εi Ni )





+
Ĉ(t)
√

n




∑

i6n1

∫ t

0
ν̂1d(εi Ni ) +

∑

i >n1

∫ t

0
ν̂2d(εi Ni )





=
B̂T (t)Û

√
n




∑

i6n1

εi δi μ̂1(Xi )I (Xi 6 τ) +
∑

i >n1

εi δi μ̂2(Xi )I (Xi 6 τ)





+
Ĉ(t)
√

n




∑

i6n1

εi δi ν̂1(Xi )I (Xi 6 t) +
∑

i >n1

εi δi ν̂2(Xi )I (Xi 6 t)



 , (3.1)

whereεi , i = 1, . . . , n, are independent variables that are also independent from the data. Furthermore,
these variables have mean zero and variance converging to one asn → ∞. In the normal resampling
approach mentioned above, theεi ’s are the standard normal variables. However, the standard normal
variables often result in lower coverage probabilities in various simulation studies. Thus, with moderate
sized samples, we need to make some adjustment.

Conditional on(Xi , δi , Zi ), i = 1, . . . , n, Ŵn is a sum ofn independent variables at each time point.
In Appendix B of the Supplementary Material available atBiostatisticsonline, we show thatŴn given
the data converges weakly toW∗. It follows that supt∈I |Ŵ/s| given the data converges in distribution
to supt∈I |W∗/s∗|. Therefore,cα can be estimated empirically from a large number of realizations of the
conditional distribution of supt∈I |Ŵ/s| given the data.

Several choices of the weights arise from recommendations in the literature for confidence bands
of the survivor function and the cumulative hazard function in the one sample case. The choices(t) =√

σ̂ (t, t) results in equal precision bands (Nair, 1984), which differ from pointwise confidence intervals in
thatcα replaceszα/2. The choices(t) = 1 + σ̂ (t, t) results in the Hall–Wellner type bands recommended
by Bie and others(1987), which often have narrower widths in the middle of data range and wider widths
near the extremes of data range (Lin and others, 1994). One could also chooses(t) = ĥ(t). This choice
does not involvêσ(t, t) and hence is easier to implement. It may be adequate whenσ̂ (t, t) only varies
mildly over time.

Let a ∈ (0, τ ) and define the average hazard ratio, over [a, t ],

h̄(t) =
1

t − a

∫ t

a
h(s)ds, a < t < τ .

Note that the average hazard ratio involves an integral of the hazard ratio rather than a ratio of integrated
hazards. It provides a measure for the cumulative treatment effect over a time interval to augment the
temporal effect display from the hazard ratio estimates. It can be estimated by

̂̄h(t) =
1

t − a

∫ t

a
ĥ(s)ds, a < t < τ .
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To obtain simultaneous confidence bands for the average hazard ratio, let

W̄n(t) =
√

n(̂h̄(t) − h̄(t)), a < t < τ .

In Appendix B of the Supplementary Material available atBiostatisticsonline, we show that̄Wn(t) con-
verges weakly to the zero-mean Gaussian process

∫ t
a W∗(s)ds/(t − a). Also, ̂̄h(t) behaves more stably

thanĥ(t) and its covariance function is comparatively insensitive to the choice of weight function. Hence,
for simplicity, we consider only the process

V̄n(t) =
√

n(ln(̂h̄(t)) − ln(h̄(t))).

From the functional delta method, it follows thatV̄n(t) converges weakly to
∫ t

a W∗(s)ds/((t − a)h̄(t)).
Thus, ifc̄α is the upperαth percentile of supt∈[a,b]

∣
∣ ∫ t

a W∗(s)ds/((t−a)h̄(t))
∣
∣, an asymptotic 100(1−α)%

simultaneous confidence band forh̄(t), t ∈ I , can be obtained as

ĥ(t) exp

(
∓

c̄α√
n

)
.

To approximate the critical valuēcα, again we use a resampling approximation. In Appendix B of the
Supplementary Material available atBiostatisticsonline, the process

∫ t
a Ŵn(s)ds/(t − a) given the data

is shown to converge weakly to
∫ t

a W∗(s)ds/(t − a). From this and strong consistency of̂̄h(t), c̄α can be
approximated empirically from a large number of realizations of the conditional distribution of
supt∈[a,b]

∣
∣ ∫ t

a Ŵn(s)ds/((t − a)̂h̄(t))
∣
∣ given the data.

4. SIMULATION STUDIES

Without any finite-sample modifications, it was found that the empirical coverage probabilities of the pro-
posed confidence bands for the hazard ratio were often lower than the nominal levels for small samples,
especially with substantial censoring. In a series of simulation studies, we have gone through an extensive
trial and error process to evaluate various modifications. In the end, we recommend that the left continu-
ous versions of the integrands in (2.3) be used. Also, instead of̂P(t; b), we will use the asymptotically
equivalent form exp

(
−
∫ t

0
H2(ds;b)

K (s)

)
. In addition, it is best to restrict to the time range [infκ, supκ], where

κ is the set of observations at which the weight functions(t) is less than or equal to the 90%th percentile
of s(ti ), i = 1, . . . , n, with ti ’s being the uncensored observations. This restriction is similar in spirit to
the recommendations ofNair (1984) andBie and others(1987), except we measure the extremeness of
data bys(ti ). For the hazard ratio and small to moderaten, we choose theεi ’s in (3.1) to be a multiple of
the standard normal variables. We will use anad hocmultiplier of 1+ 1/(2

√
n) based on various simu-

lations. Forn equal to 400 or larger, the standard normal variables can be used. For the average hazard
ratio, no such multiplier adjustment is necessary.

Next, we report the results from some representative simulation studies. Here and for the real data
application in Section5 later, τ was set to exclude the last-order statistic. All numerical computations
were done in “Matlab.” First, under the model ofYang and Prentice(2005), lifetime variables were gen-
erated withR(t) chosen to yield the standard exponential distribution for the control group. The values
of β were(log(0.9), log(1.2)) and(log(1.2), log(0.8)), representing 1/3 increase or decrease over time
from the initial hazard ratio, respectively. The censoring variables were independent and identically dis-
tributed with the log-normal distribution, where the normal distribution had meanc and standard deviation
0.5, withc chosen to achieve various censoring rates. The empirical coverage probabilities were obtained
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from 1000 repetitions, and for each repetition, the critical valuescα and c̄α were calculated empirically
from 1000 realizations of relevant conditional distributions. The results of these simulations are sum-
marized in Table1, where the equal precision bands, Hall–Wellner type bands and unweighted bands
for the hazard ratio are denoted by EP, HW, and UW, respectively. Results for simultaneous confidence
bands of the average hazard ratio are also included with the column headerh̄. From Table1, the em-
pirical coverage probabilities for the hazard ratio were mostly close to the nominal level. The empirical
coverage probabilities for the average hazard ratio were mostly conservative. The conservative results
were partially due to the finite-sample modifications intended for the hazard ratio. Those modifications
improved the performance of the hazard ratio estimation procedure under some scenarios, while yield-
ing conservatism in others, particularly for the more stable average hazard ratio estimator. The coverage
probabilities for the equal precision bands overall were closer to the nominal level than other types of
bands.

To check the robustness of the proposed procedures, we carried out various simulation studies with
monotone hazard ratio not satisfying the model ofYang and Prentice(2005). For Table2, the control
group lifetime variables were standard exponential. The hazard ratio was linear from 0 to the 99th per-
centile of the standard exponential and continuous and constant afterward. The initial and end hazard
ratios again were(0.9, 1.2) and (1.2, 0.8), respectively, and the censoring variables were the same as
before. From Table2, the results are similar to those in Table1, with slight undercoverage under some
scenarios.

Table 1. Empirical coverage probabilities of the simultaneous confidence bands, for the hazard ratio (EP,
HW, and UW) and the average hazard ratio (h̄), under the model of Yang and Prentice(2005), based on

1000repetitions

Hazard ratio Censoring rate (%) n1 = n2 EP HW UW h̄

0.9↑ 1.2 10 40 0.954 0.946 0.963 0.973
30 0.952 0.946 0.961 0.970
50 0.971 0.960 0.976 0.977
75 0.967 0.966 0.977 0.964
10 80 0.955 0.957 0.959 0.963
30 0.947 0.940 0.955 0.962
50 0.955 0.943 0.956 0.965
75 0.967 0.979 0.979 0.976
10 160 0.960 0.966 0.966 0.977
30 0.954 0.950 0.951 0.969
50 0.941 0.937 0.940 0.964
75 0.960 0.970 0.971 0.967

1.2↓ 0.8 10 40 0.966 0.980 0.983 0.976
30 0.936 0.948 0.967 0.980
50 0.943 0.948 0.954 0.967
75 0.956 0.959 0.964 0.966
10 80 0.959 0.974 0.975 0.971
30 0.926 0.946 0.945 0.964
50 0.930 0.946 0.939 0.953
75 0.959 0.966 0.968 0.965
10 160 0.957 0.973 0.963 0.967
30 0.949 0.965 0.945 0.968
50 0.944 0.962 0.947 0.970
75 0.951 0.957 0.954 0.961

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/12/2/354/280758 by guest on 21 August 2022



Estimation of the 2-sample hazard ratio function using a semiparametric model 363

Table 2. Empirical coverage probabilities of the simultaneous confidence bands, for the hazard ratio (EP,
HW, and UW) and the average hazard ratio (h̄), under a monotone hazard ratio model not satisfying the

model of Yang and Prentice(2005), based on1000repetitions

Hazard ratio Censoring rate (%) n1 = n2 EP HW UW h̄

0.9↑ 1.2 10 40 0.955 0.957 0.954 0.973
30 0.965 0.952 0.964 0.976
50 0.945 0.941 0.960 0.962
75 0.971 0.972 0.9754 0.970
10 80 0.959 0.963 0.958 0.983
30 0.935 0.943 0.940 0.968
50 0.938 0.943 0.937 0.956
75 0.956 0.958 0.965 0.955
10 160 0.963 0.964 0.950 0.974
30 0.952 0.949 0.937 0.966
50 0.940 0.935 0.920 0.960
75 0.957 0.969 0.976 0.971

1.2↓ 0.8 10 40 0.976 0.969 0.975 0.982
30 0.952 0.956 0.967 0.970
50 0.955 0.963 0.966 0.961
75 0.966 0.970 0.975 0.967
10 80 0.965 0.967 0.969 0.975
30 0.954 0.967 0.969 0.972
50 0.941 0.948 0.960 0.968
75 0.965 0.965 0.971 0.973
10 160 0.969 0.977 0.960 0.976
30 0.963 0.967 0.969 0.967
50 0.937 0.943 0.941 0.963
75 0.955 0.963 0.970 0.970

5. APPLICATION

Let us illustrate the proposed methods with data from the WHI randomized controlled trial of combined
(estrogen plus progestin) postmenopausal hormone therapy, which reported an elevated coronary heart dis-
ease risk and overall unfavorable health benefits versus risks over a 5.6-year study period (Writing Group
For the Women’s Health Initiative Investigators, 2002; Mansonand others, 2003). Few research reports
have stimulated as much public response, since preceding observational research literature suggested a
40–50% reduction in coronary heart disease incidence among women taking postmenopausal hormone
therapy. Analysis of the WHI observational study shows a similar discrepancy with the WHI clinical trial
for each of coronary heart disease, stroke, and venous thromboembolism. The discrepancy is partially
explained by confounding in the observational study. A remaining source of discrepancy between the
clinical trial and the observational study is elucidated by recognizing a dependence of the hazard ratio on
the therapy duration (e.g.Prenticeand others, 2005). Here, we look at the time to coronary heart disease
in the WHI clinical trial, which included 16 608 postmenopausal women initially in the age range of 50–
79 with uterus (n1 = 8102). There were 188 and 147 events observed in the treatment and control group,
respectively, implying about 98% censoring, primarily by the trial stopping time. Fitting model (2.1) to
this data set, we get̂βββ = (0.65, −3.63)T . Due to heavy censoring, the value 0.03 of exp(β̂ββ2) cannot be
interpreted as the estimated long-term hazard ratio in the range of study follow-up times. The estimated
hazard ratio function is needed for a more complete and accurate assessment of the treatment effect.
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To examine model adequacy, we can use a residual plot that is similar to the method for the Cox regres-
sion model (Cox and Snell, 1968). Let 3C and3T be the cumulative hazard functions of the 2 groups,
respectively. Then3C(Ti ), i 6 n1, 3T (Ti ), i > n1 are i.i.d. from the standard exponential distribu-
tion. Let 3̂C and3̂T be the model-based estimator of3C and3T, respectively, and define the residuals
3̂C(Xi ), i 6 n1, 3̂T(Xi ), i > n1. If model (2.1) is correct, the residuals should behave like a censored
sample from the standard exponential distribution. Thus, the Aalen–Nelson cumulative hazard estimator
based on them should be close to the identity function. If there is noticeable deviation, then model (2.1) is
questionable. Similarly, the residual plot can be obtained for the piecewise constant hazards ratio model
used inPrenticeand others(2005). Both residual plots, not shown here, suggest that the 2 models fit the
data adequately, with similar residual behaviors.

The 95% pointwise confidence intervals and simultaneous confidence bands for the hazard ratio func-
tion are given in Figure1. For comparison, the 95% confidence intervals for 0–2, 2–5, and>5 years from
Prenticeand others(2005) are included, over the median of uncensored data in each time interval. Com-
pared with the piecewise constant hazards ratio model, the confidence bands do not depend on partitioning
of the data range and provide more continuously changing display of the treatment effect. The confidence
bands are generally in agreement with the results fromPrenticeand others(2005). The UW band is wider
than the other 2 bands most of the time. The HW band is the narrowest in the middle section but is quite
wide at the beginning. Both the EP band and the HW band give narrower intervals for the middle portion
of the data range than the piecewise Cox model. Near the end of the data range, all 3 bands have about
the same width as the confidence interval fromPrenticeand others(2005). Overall the EP band matches
most closely with the results for the piecewise constant hazards ratio model. The width of the EP band is

Fig. 1. The 95% pointwise confidence intervals and simultaneous confidence bands of the hazard ratio function for the
WHI data: Solid lines—equal precision confidence band; dashed lines— Hall–Wellner type confidence band; dash
dotted lines— unweighted confidence band; outside dotted lines—pointwise confidence limits; and central dotted
line—the estimated hazard ratio function; vertical segments—95% confidence intervals for the hazard ratios in 0–2,
2–5, and>5 years intervals from Prenticeand others(2005), over the median of uncensored data in each time interval,
with “∗” indicating the point estimates.

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/12/2/354/280758 by guest on 21 August 2022



Estimation of the 2-sample hazard ratio function using a semiparametric model 365

less than or equal to the piecewise model–based confidence intervals for most of the data range, except at
the beginning. Note that the constant function 1 is not excluded in the HW and UW bands. In comparison,
the EP band stays above 1 for about the first 600 days. FromPrenticeand others(2005), the confidence
interval for 0− 2yr excludes 1, indicating an elevation in coronary heart disease risk for the treatment
early on. For this data set, the standard error of the estimated hazard ratio begins at 0.43, quickly comes
down to below 0.20 at 600 days and stays below 0.20 for the rest of data range. Since the UW band
does not take the variance into account and the HW band emphasizes the middle range, the elevated stan-
dard error at early follow-up times likely explains the discrepancy among the results. Compared with the
original analysis that showed an overall difference between the 2 groups, the results here and those from
Prenticeand others(2005) give more detailed analysis on the dependence of the hazard ratio on time and
help explaining the discrepancy between the results of the WHI clinical trial and preceding observational
research, much of which involved cohorts where women could be enrolled some years after initiating
hormone therapy.

For the average hazard ratio function, the estimator and the 95% simultaneous confidence band are
given in Figure2. The standard error of the estimated average hazard ratio varies more mildly over time,
and both the estimated average hazard ratio and the confidence band are changing much more smoothly
compared with the results for the hazard ratio in Figure1. Note that the confidence band stays above 1 for
t < 700 days. This is in agreement with the results ofPrenticeand others(2005).

To compare with the nonparametric approach, Figure3 gives the estimated hazard ratio, the 95%
pointwise confidence intervals and simultaneous confidence band ofGilbert and others(2002), based on
the R programs from the author’s site. The same scale as that in Figure1 is used for comparison and re-
sults in truncation of some portion of the plot. The estimated hazard ratio suggests that the hazard ratio is
reasonably monotonic. The nonparametric hazard ratio estimate is somewhat lower than the hazard ratio
estimates in Figure1 under either model (2.1) or the piecewise constant hazards ratio model. The confi-
dence band is wider than those in Figure1 for the beginning and later parts of the data range, reflecting

Fig. 2. The 95% simultaneous confidence band of the average hazard ratio function for the WHI data: dotted line—
estimated average hazard ratio; and solid lines—95% simultaneous confidence band.
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Fig. 3. Nonparametric 95% pointwise confidence intervals and simultaneous confidence band of the hazard ratio
function for the WHI data: dotted line—estimated hazard ratio; solid lines—simultaneous confidence band; and
dashed lines—pointwise confidence intervals.

the difficulty in making nonparametric inference on the hazard functions, especially with heavy censoring
and in the tail region.

From the results here and additional numerical studies and real data applications, we find that for the
hazard ratio, the EP bands are preferable if the interest is in the largest possible data range; if the interest
is in part of the middle portion, then the HW bands are usually better. For the average hazard ratio, the
simple confidence band proposed here works adequately, although could possibly be improved if more
elaborate weights are used.

6. DISCUSSION

We have focused on the model ofYang and Prentice(2005) in deriving inference procedures for the
hazard ratio function. Under this model, the hazard ratio involves the baseline survivor function, but not
the baseline density function, a property shared by some other semiparametric models. Thus, inference
on the hazard ratio may be easier and more reliable than approaches involving densities, such as those
under the accelerated failure time model or the nonparametric approaches.

To assess the cumulative treatment effect, we have worked with the average hazard ratio function
here, partly due to its close connection with the hazard ratio and its corresponding ready interpretation.
Alternatively, the ratiosST(t)/SC(t) and(1 − ST(t))/(1 − SC(t)) or the differenceST(t) − SC(t), could
be considered.

We expect that the model ofYang and Prentice(2005) can provide an adequate approximation for a
wide range of applications. More rigorous model checking procedures would be useful to address model
fit and robustness issues. Note that the form of this model is not closed under a relabeling of treatment and
control groups, so its use may be more natural if there is a “no treatment ” or “standard treatment” control
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group. It would be possible to study hazard ratio function estimation for larger classes of semiparametric
models to incorporate an even wider range of time dependence of the hazard ratio, though there is a trade
off between the model fit and increasing variance, as well as analysis cost. Also, while we have focused
on the 2-sample comparison here, adjustment for covariates may be considered. These and other problems
are worthy of further exploration.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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