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SUMMARY
The hazard ratio provides a natural target for assessing a treatment effect with survival data, with th
Cox proportional hazards model providing a widely used special case. In general, the hazard ratio is
function of time and provides a visual display of the temporal pattern of the treatment effect. A variety of
nonproportional hazards models have been proposed in the literature. However, available methods for flexz:
ibly estimating a possibly time-dependent hazard ratio are limited. Here, we investigate a semiparametric
model that allows a wide range of time-varying hazard ratio shapes. Point estimates as well as pointwise
confidence intervals and simultaneous confidence bands of the hazard ratio function are established undey
this model. The average hazard ratio function is also studied to assess the cumulative treatment effect. Wg
illustrate corresponding inference procedures using coronary heart disease data from the Women’s Healtﬁ
Initiative estrogen plus progestin clinical trial.
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1. INTRODUCTION
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Consider the comparison of failure times between a treated and control group under independent ceng
sorship. The hazard ratio provides a natural target of estimation in many applications since it permits a
focus on relative failure rates across the study follow-up period, without the need to model absolute fail-
ure rates, which may be sensitive to study eligibility criteria and other factors. The proportional hazards
special case of th€ox (1972 regression model is widely used for hazard ratio estimation. The maximum
partial likelihood proceduredox, 1975 provides a convenient and robust means of estimating a constant
hazard ratio and yields a log-rank procedure for testing equality of hazards between the 2 groups.
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In general, the hazard ratio may be a function of time, and estimation of the hazard ratio function may
provide useful insights into temporal aspects of treatment effects. For exadailplert and otherg2002
develop a nonparametric estimation procedure for the log-hazard ratio function with simultaneous confi-
dence bands, for use as an exploratory data analytic tool. Naturally, confidence bands may be wide with
such a nonparametric estimator, particularly at longer follow-up times where data may be sparse. See also
Gray (1992, Kooperbergand otherg1995, Cai and Sur{2003, Tian and otherg2005, Abrahamowicz
and Mackenzi€2007), andPeng and Huan(007), and references therein, for additional related work. 5

Parametric or semiparametric hazard ratio models have potential to contribute valuably to treatment
effect assessment. Hazard ratio models having parameters of useful interpretation, and that embraceza
range of hazard ratio shapes, may be particularly valuable. The Cox model allows time-varying covariate%
to be defined that can, for example, allow separate hazard ratios for the elements of a partition of the:
time axis or allow the hazard ratio to be a parametric function of follow-up time more generally. Various g
other semiparametric regression models have been proposed for failure time data analyses, including
accelerated failure time models, proportional odds models, and linear transformation models, many of'%
which are embraced by the broad class of models for wHighg and Lin(2007) develop maximum
likelihood estimation procedures. Some more semiparametric models can be fotmepriand others
(1979, Hsieh(1996, Chen and Wan@000, Tsodikov(2002, Yang and Prentic€005, andChen and
Cheng(2006. Many of these models induce a semiparametric class of models for the hazard ratio functlono
that includes proportional hazards as a special case. Hazard ratio estimators under such semmarametﬁc
models can avoid the instability that may attend nonparametric hazard ratio function estimators.

One of these, proposed iang and Prentic€2009, involves short-term and long-term hazard ratio
parameters, and a hazard ratio function that depends also on the control group survivor function. Assumg
absolutely continuous failure times and label the 2 groups control and treatment, with hazard function
Ac(t) andAt(t), respectively. Leh(t) = At(t)/Ac(t) be the hazard ratio function argd(t) the survivor
function of the control group. The model postulates that

“Olwapede//:

1solq/wo

1
h(t) = t 11
wheref; and g, are scalar parameters and
X
70 = suplx: / Act)dt < oo] . (1.2)
0

This model includes the proportional hazards model and the proportional odds model as special cases.
has a monotonk(t) with a variety of patterns, including proportional hazards, no initial effect, disappear-
ing effect, and crossing hazards, among others. Thus, the model presumably entails sufficient flexibilit
for many applications. It has also been studied for current status daagand otherg2007).

In comparison, for many commonly used special cases of the accelerated failure time model eithe
limgoh(t) = 1 or limq, h(t) € {0, 1, 0o} and the hazard ratio stays above or below one when
is increasing. This is less flexible than desired. For the class of linear transformation models, with the
logarithmic transformation, the hazard ratio also inherits some of these restrictions at many common
baseline distributions. Similar properties hold as well for many other semiparametric models.

Under model {.1), estimation procedures to date have focused on the finite-dimensional parameters,
as has mostly been the case also for estimation under other semiparametric models. Here, we extend the
estimation to pointwise and simultaneous inference on the hazard ratio function itself. First, consistency
and asymptotic normality of the estimate at a fixed time point are established. Then procedures for con-
structing pointwise confidence intervals and simultaneous confidence bands for the hazard ratio function
are developed, and some modifications are implemented to improve moderate sample size performance.
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For additional display of the treatment effect, simultaneous confidence bands are also obtained for the

average hazard ratio function over a time interval. The average hazard ratio gives a summary measure of
treatment comparison and provides a picture of the cumulative treatment effect to augment display of the

temporal pattern of the hazard ratio. These hazard ratio estimation procedures are applied to data from the
Women’s Health Initiative (WHI) estrogen plus progestin clinical tridriting Group For the Women'’s

Health Initiative Investigator2002 Mansonand others 2003, which yielded a hazard ratio function

for the primary coronary heart disease outcome that was decidedly nonproportional. Understanding the

hazard ratio function shape in this setting was important to integrating the clinical trial data with a large g
body of preceding observational literature that had failed to identify an early hazard ratio increase (e.g.
Mansonand others2003 Prenticeand others20095.

We organize the article as follows: In Secti@nthe short-term and long-term hazard ratio model
and the hazard ratio estimate are described. Pointwise confidence intervals of the hazard ratio are estal
lished. Simultaneous confidence bands for the hazard ratio and the average hazard ratio are provided i
Section3. Simulation results are presented in SecdoApplication to data from the WHI trial is given in
Section5. Some concluding remarks are given in SecBoRroofs of the asymptotic results are contained
in the Supplementary Material availableBibstatisticsonline.
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2. HAZARD RATIO FUNCTION ESTIMATION

Let Ty, ..., Ty be the pooled lifetimes of the 2 groups, wikly . .., Ty,, N1 < n, constituting the control
group having the survivor functiofc. Let Cy, ..., C, be the censoring variables, ag = | (i >
ni),i = 1,...,n, wherel () is the indicator function. The available data consist of the independent

triplets (X, di, Zi), i = 1,...,n, whereX; = min(T;, Cj) anddg; = I (T; < Cj). We assume thaf;
andC; are independent giver. The censoring variable€(’s) need not be identically distributed, and
in particular, the 2 groups may have different censoring patternd. kotg with 7o defined in (.2), let
R(t) be the the odds function/&:(t) — 1 of the control group. The model dang and Prentic€2005
can be expressed as

1 dR(t)
e PZi L e FZiR(t) dt
wherel; (1) is the hazard function fof; given Z;. Under the model, the hazard ratio is

1+ R(t)
e bt ebR(t)

L) = i=1,...,n, t<r1o, 2.1)

h(t) =

To estimaten(t), we need to estimate the parameges= (81, 52)" and the baseline functioR(t), where
“T ” denotes transpose. Let us first introduce the estimators ¥amy and Prenticé2005.
Define
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KO =D 1(Xi >1), Hjt;b)=> ae™4I(X<t), j=12
i=1 i=1

whereb = (b, bp)T. Letr < 70 be such that
lim K (¢) > 0, 2.2)

with probability 1. Fort < 7, let

. AHy(s: b)] . 1 [YP_(s;b)
(t:) { K |’ ®:5) P(t;b)/o K(s) 1(ds; b)
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whereA Ha(s; b) denotes the jump dfiz(s; b) in s and P_(s; b) denotes the left continuous @@ version
of P(s; b), Define the martingale residuals

R(ds; b)

~ , 1<i<n,
enZi + e 2ZiR(s; b)

R t
M (t; b) = 6 | (X St)—/ [(Xj >s)
0

Yang and Prentic€009 proposed a pseudo maximum likelihood estimg&o& (ﬁl, ﬁz)T of B, which
is the zero ofQ(b), where

QB =3 [ fits by @b (2.3)
i=170

with f; = (fq;, f2)T, where

ZI e—blzi f (t b) Z| e_bzzi é(t, b)
= , 2ill; D) = A ’
eb1Zi 4 e=b2Zi R(t; b) ' ez + e~PZiR(t; b)

fii (t; b) =

Onceﬁ is obtained R(t) can be estimated bi(t; B), and the hazard ratio(t) can be estimated by

1+ R(t; B)
e b +e bRt B)

h(t) =

In Appendix A of the Supplementary Material availableBibstatisticsonline, we show thafi(t) is
strongly consistent fon(t) under modelZ2.1).
To study the distributional properties bt), let

Wa(t) = vn(h(t) — ht)), t<z.

For the asymptotic distribution (ﬂ define

AQ) — e h e P2R(t; B) !
\ebhpeb Rt B) ehr+ehREB) )

Kit)y= D 1(Xi 21, Ka®)=> 1(Xi >0,

i<np i>ng

w(t) z/tr A(S)h(S)Kl(S)KZ(S) (h(s)e_ﬂz B 1) /(\jR(S) .

(1+ RO+ R(s; B))K () P(s; )

From Theorem A2 offang and Prentic€005 and some algebra,

Q) = (an/o #1dM; + Z/O ﬂzdl\/li) +0p(D),

i>n1
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where
() = — A“”Ezé?h“) N Fl(t;ﬂ)uK FREA) o,
() = At) il((tt)) P8 )(e_ﬁ; z:)e_ﬂz READ ), (2.4)
Mi (t) = 6 1 (X; gt)—/otl(xi >9 7 ii(—szgzzi Ry =hoon

Now for R(t; [9), from Lemma A3 inYang and Prentic€2005 and some algebra,

Rt - = i il 2.
VN(R(t; B) — R(Y) = fP(t 5 (,;‘/ v1 dM; +.>an/ vzdl\/l) (2.9)
where A R
_ nP_(t; B) _P-GB) p pe
vl(t)_—K(t) A+ R(), vat)= KD (€1 + e 72R(1)).
Let

RGA) |, _ (_gaQw))—l

D(t; B) = B N op

e 1 _
(e7h1 + e F2R(1))2

e P2

B(t) =h®A®) + D(t; B),

e—ﬂl _e B2 1

CO= e iRO2 Bt )’

Fort < 7, define the process

.
Vi (t) = = (t)U (Z/ ﬂldM|+Z/ ﬂsz.>

i<ng 1>m
C(t)
vy dM; + vodM; | . (2.6)
(Lo )

With the representations f@(8) and/n(R(t; B)— R(t)), in Appendix B of the Supplementary Material

available atBiostatisticsonline, we show thaWV, is asymptotically equivalent t@V,, which converges
weakly to a zero-mean Gaussian proceéés The weak convergence &Y, thus follows. The limiting
covariance functiom (s, t) of W* involves the derivativ® (t; #) and the derivative matrix i . Although
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analytic forms of these derivatives are available, they are quite complicated and cumbersome. Here, we

approximate them by numerical derivatives. For the functid(ty, C(t), p1(t), w2(t), va(t), andva(t),
define correspondm@(t) C(t) , by replacingg with ﬁ R(t) with R(t; ﬂ) and D(t; B) with the

numerical derivatives. Similarly, Iejj be the numerical approximation &f. Simulation studies show
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that the results are fairly stable with respect to the choice of the jump size in the numerical derivatives,

and that the choice af~%/2 works well. With these approximations, we can estimatg t), s <t < ,
by

. _aTeni ) [F 1 - AT
5(s.t) = BT(9)U | /0 Ry @K)

+ fi2(w) 2" (w)Ka(w)h(w)] R(dw, [9)] UTB(t)

- 2
+EECN / n(1+R(w S wK)

+ 1152(1) Ka(w)A(w)] R(duw, B)

+Ct)BT(s)U (1)1 (w)K1(w)

t
/o n(1+ R(w; B))
+ fi2(w)2(w) K2(w)A(w)] R(dw, B)

~ ~ ~ [S 1
)BT MU — [ ua iy K
+EEBTW) /O TR Ve K)
+ fia(w)V2(w)Ka(w)A(w)] R(dw, B). (2.7)

Now for a fixedty < 7, from the above results, confidence intervalsH¢g) can be obtained from the
asymptotic normality oh(tp) and the estimated varianédty, to). The usual logarithm transformation

results in the asymptotic 100— «)% confidence intervéfi(to) exp (:an /2 V\/”ﬁgc()ttg)) , Wherez,, /> is the
0

100(1 — «/2)% percentile of the standard normal distribution.

3. SMULTANEOUS CONFIDENCE BANDS
To make simultaneous inference lo¢t) over a time interval = [a, b] c [0, 7], consider
Wit = VAR (i) Inthio)

wheres(t) converges in probability, uniformly it over |, to a bounded functios*(t) > 0. From the
weak convergence M/, to W* and the functional delta method, we have the weak convergengetof
W*/s*. Thus, ifc, is the upperth percentile of sup, |W*/s*|, an asymptotic 100 —a)% simultaneous
confidence band fdn(t), t € I, can be obtained as

. CyS(t)
h ~ .
(t) exp($ Joh (t))

It is difficult to obtainc, analytically. One obvious alternative would be the bootstrapping method. How-
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ever, it is very time-consuming and results in lower than nominal coverage probabilities in some simula-

tion studiesLin and otherg(1993 used a normal resampling approximation to simulate the asymptotic
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distribution of sums of martingale residuals for checking the Cox regression model. The normal resam-
pling approach reduces computing time significantly and has become a standard method. It has been used
in many works, includind-in and others(1994), Chengand others(1997, Gilbert and others(2002,
Tianand otherg2005, andPeng and Huan007). We will modify this approach for our problem here.

Fort < 7, define the process

]
Wa(h) = 2 (t)u Z/ ﬂ1d(6uN)+Z/ ji2d (@ Ny)

i<ni i>ng

C(t) Z/ vid (e N.)+Z/ od (i Ni)

i<ng i>ng

BT (t)U
=~ D @o (X)) (X <)+ D €difia(X)! (Xi < 1)
i<ng i>ng
o0) . X

v PRCRCOUGEL RS ITLEIONCED] (3.1)

i<ny i>ny

whereej, i = 1,...,n, are independent variables that are also independent from the data. Furthermore,

these variables have mean zero and variance converging to one-asx. In the normal resampling
approach mentioned above, thes are the standard normal variables. However, the standard normal
variables often result in lower coverage probabilities in various simulation studies. Thus, with moderate
sized samples, we need to make some adjustment.

Conditional on(X;, ¢, Zj),i = 1,...,n, W is a sum ofn independent variables at each time point.

In Appendix B of the Supplementary Material availableBabstatisticsonline, we show that\, given

the data converges weakly W*. It follows that sup, IW/s| given the data converges in distribution
to supe, IW*/s*|. Thereforec, can be estimated empirically from a large number of realizations of the
conditional distribution of sy, |W/s| given the data.

Several choices of the weighktarise from recommendations in the literature for confidence bands
of the survivor function and the cumulative hazard function in the one sample case. The sthpiee
Vo (t,1) results in equal precision bandsdir, 1984, which differ from pointwise confidence intervals in
thatc, replaces, ». The choices(t) = 14 4 (t, t) results in the Hall-Wellner type bands recommended
by Bie and otherg1987), which often have narrower widths in the middle of data range and wider widths
near the extremes of data rangén(and others1994. One could also choos#t) = h(t). This choice
does not involves (t, t) and hence is easier to implement. It may be adequate Wwikign) only varies
mildly over time.

Leta € (0, r) and define the average hazard ratio, oget],
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1 t
h(t) = t_ h(s)yds, a<t<r.

Note that the average hazard ratio involves an integral of the hazard ratio rather than a ratio of integrated
hazards. It provides a measure for the cumulative treatment effect over a time interval to augment the
temporal effect display from the hazard ratio estimates. It can be estimated by

o~

1 t
ht)y=——/ h .
® t—a/a (s)ds, a<t<rz
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To obtain simultaneous confidence bands for the average hazard ratio, let

Wh(t) = /A(h(t) — h(t)), a<t <.

In Appendix B of the Supplementary Material availableBatstatisticsonline, we show thaVi, () con-
verges weakly to the zero-mean Gaussian prog}ﬁﬁ*(s)ds/(t — a). Also, h(t) behaves more stably

thanh(t) and its covariance function is comparatively insensitive to the choice of weight function. Hence,
for simplicity, we consider only the process

Va(t) = vA(n(h(t)) — In(A))).

From the functional delta method, it follows thé(t) converges weakly tq; W*(s)ds/((t — a)h(t)).
Thus, ifc, is the uppenth percentile of sup, | f; W*(s)ds/((t—a)ﬁ(t))|, an asymptotic 100—a)%
simultaneous confidence band fut), t € |, can be obtained as

« Cu
h(t) ex — ).
®) p($ ﬁ)
To approximate the critical valug,, again we use a resampling apprOX|mat|on In Appendix B of the

Supplementary Material available Biostatisticsonline, the procesfa Wi (s)ds/(t — a) given the data

is shown to converge weakly tﬁc1 W*(s)ds/(t — a). From this and strong consmtencyh{t) €, can be
approximated empirically from a large number of realizations of the conditional distribution of

SUR¢[a) | 3 Wa(s)ds/((t — a)h(t))| given the data.

4. SIMULATION STUDIES

Without any finite-sample modifications, it was found that the empirical coverage probabilities of the pro-
posed confidence bands for the hazard ratio were often lower than the nominal levels for small samplesy
especially with substantial censoring. In a series of simulation studies, we have gone through an extensiv@
trial and error process to evaluate various modifications. In the end, we recommend that the left contlnu—
ous versions of the mtegrands i2.9 be used. Also, instead d¥(t; b), we will use the asymptotically
equivalent form expé fo %‘gt’i). In addition, it is best to restrict to the time range [insupx], where

x is the set of observations at which the weight funct¢ is less than or equal to the 90%th percentile
of s(tj),i = 1,...,n, with tj’s being the uncensored observations. This restriction is similar in spirit to
the recommendations ®fair (1984 andBie and otherg1987), except we measure the extremeness of
data bys(tj). For the hazard ratio and small to modenateve choose the;’s in (3.1) to be a multiple of

the standard normal variables. We will useaahhocmultiplier of 1+ 1/(2./n) based on various simu-
lations. Forn equal to 400 or larger, the standard normal variables can be used. For the average hazar@
ratio, no such multiplier adjustment is necessary.

Next, we report the results from some representative simulation studies. Here and for the real data
application in Sectiord later, z was set to exclude the last-order statistic. All numerical computations
were done in “Matlab.” First, under the model6ing and Prentic€2005), lifetime variables were gen-
erated withR(t) chosen to yield the standard exponential distribution for the control group. The values
of g were (log(0.9), log(1.2)) and(log(1.2), 1og(0.8)), representing A3 increase or decrease over time
from the initial hazard ratio, respectively. The censoring variables were independent and identically dis-
tributed with the log-normal distribution, where the normal distribution had meeml standard deviation
0.5, withc chosen to achieve various censoring rates. The empirical coverage probabilities were obtained
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from 1000 repetitions, and for each repetition, the critical valyeandc, were calculated empirically

from 1000 realizations of relevant conditional distributions. The results of these simulations are sum-
marized in Tablel, where the equal precision bands, Hall-Wellner type bands and unweighted bands
for the hazard ratio are denoted by EP, HW, and UW, respectively. Results for simultaneous confidence
bands of the average hazard ratio are also included with the column Healeiem Tablel, the em-

pirical coverage probabilities for the hazard ratio were mostly close to the nominal level. The empirical
coverage probabilities for the average hazard ratio were mostly conservative. The conservative resultsU
were partially due to the finite-sample modifications intended for the hazard ratio. Those modifications 2
improved the performance of the hazard ratio estimation procedure under some scenarios, while yield
ing conservatism in others, particularly for the more stable average hazard ratio estimator. The coverag%
probabilities for the equal precision bands overall were closer to the nominal level than other types of
bands. S
To check the robustness of the proposed procedures, we carried out various simulation studies withe
monotone hazard ratio not satisfying the modelvahg and Prenticé2005. For Table2, the control
group lifetime variables were standard exponential. The hazard ratio was linear from 0 to the 99th per-2
centile of the standard exponential and continuous and constant afterward. The initial and end hazarg

=

o
—
o

//:sdy

ratios again werg0.9, 1.2) and (1.2 0.8), respectively, and the censoring variables were the same as g
before. From Tabl, the results are similar to those in Taldlewith slight undercoverage under some e
scenarios. hse
S
S
Table 1. Empirical coverage probabilities of the simultaneous confidence bands, for the hazard ratio (EP, %
HW, and UW) and the average hazard ratio)(under the model of Yang and Prent{@05) based on 74
1000repetitions %
p=1
Hazard ratio Censoring rate (%) ny =np EP HW uw h %
091712 10 40 0.954 0.946 0.963 0.973 §
30 0.952 0.946 0.961 0.970 X
50 0.971 0.960 0.976 0.977 g
75 0.967 0.966 0.977 0.964 »
10 80 0.955 0.957 0.959 0.963 §
30 0.947 0.940 0.955 0.962 g
50 0.955 0.943 0.956 0.965 N
75 0.967 0.979 0.979 0.976 &
10 160 0.960 0.966 0.966 0.977 g'
30 0.954 0.950 0.951 0.969 N
50 0.941 0.937 0.940 0.964 ;
75 0.960 0.970 0.971 0.967 5
1.2, 0.8 10 40 0.966 0.980 0.983 0.976 7}
30 0.936 0.948 0.967 0.980 §
50 0.943 0.948 0.954 0.967 ™

75 0.956 0.959 0.964 0.966

10 80 0.959 0.974 0.975 0.971

30 0.926 0.946 0.945 0.964

50 0.930 0.946 0.939 0.953

75 0.959 0.966 0.968 0.965

10 160 0.957 0.973 0.963 0.967

30 0.949 0.965 0.945 0.968

50 0.944 0.962 0.947 0.970

75 0.951 0.957 0.954 0.961
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Table 2. Empirical coverage probabilities of the simultaneous confidence bands, for the hazard ratio (EP,
HW, and UW) and the average hazard ratfg(under a monotone hazard ratio model not satisfying the
model of Yang and Prentid2005) based orlL000repetitions

Hazard ratio Censoring rate (%) Ny =np EP HW uw h

09171.2 10 40 0.955 0.957 0.954 0.973
30 0.965 0.952 0.964 0.976

50 0.945 0.941 0.960 0.962 g

75 0.971 0.972 0.9754 0.970 S

10 80 0.959 0.963 0.958 0.983 g

30 0.935 0.943 0.940 0.968 §

50 0.938 0.943 0.937 0.956 3

75 0.956 0.958 0.965 0.955 3

10 160 0.963 0.964 0.950 0.974 %

30 0.952 0.949 0.937 0.966 @

50 0.940 0.935 0.920 0.960 §

75 0.957 0.969 0.976 0.971 g

1.21 0.8 10 40 0.976 0.969 0.975 0.982 %

30 0.952 0.956 0.967 0.970 e

50 0.955 0.963 0.966 0.961 hse

75 0.966 0.970 0.975 0.967 g

10 80 0.965 0.967 0.969 0.975 g

30 0.954 0.967 0.969 0.972 2

50 0.941 0.948 0.960 0.968 &

75 0.965 0.965 0.971 0.973 s

10 160 0.969 0.977 0.960 0.976 g

30 0.963 0.967 0.969 0.967 %

50 0.937 0.943 0.941 0.963 5

75 0.955 0.963 0.970 0.970 N

§

g

3

5. APPLICATION a

o

Let us illustrate the proposed methods with data from the WHI randomized controlled trial of combined 5

(estrogen plus progestin) postmenopausal hormone therapy, which reported an elevated coronary heart d‘f@—
ease risk and overall unfavorable health benefits versus risks over a 5.6-year studyWetiod Group o
For the Women’s Health Initiative Investigatp)02 Mansonand others2003. Few research reports N
have stimulated as much public response, since preceding observational research literature suggeste¢-a
40-50% reduction in coronary heart disease incidence among women taking postmenopausal hormoﬁ;le
therapy. Analysis of the WHI observational study shows a similar discrepancy with the WHI clinical trial <
for each of coronary heart disease, stroke, and venous thromboembolism. The discrepancy is partiall%
explained by confounding in the observational study. A remaining source of discrepancy between the
clinical trial and the observational study is elucidated by recognizing a dependence of the hazard ratio on
the therapy duration (e.@renticeand others2005. Here, we look at the time to coronary heart disease

in the WHI clinical trial, which included 16 608 postmenopausal women initially in the age range of 50—

79 with uterus iy = 8102). There were 188 and 147 events observed in the treatment and control group,
respectively, implying about 98% censoring, primarily by the trial stopping time. Fitting madglt6

this data set, we gq& = (0.65 —3.63". Due to heavy censoring, the value 0.03 of@(p cannot be
interpreted as the estimated long-term hazard ratio in the range of study follow-up times. The estimated
hazard ratio function is needed for a more complete and accurate assessment of the treatment effect.

Z uo
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To examine model adequacy, we can use a residual plot that is similar to the method for the Cox regres-
sion model Cox and Snell1968. Let Ac and At be the cumulative hazard functions of the 2 groups,
respectively. Them\¢c(T;), i < n1, A7 (Ty), i > ni are i.i.d. from the standard exponential distribu-
tion. Let Ac and At be the model-based estimator & and AT, respectively, and define the residuals
Ac(Xi), i <n1, AT(Xi), i > n1. If model (2.1) is correct, the residuals should behave like a censored
sample from the standard exponential distribution. Thus, the Aalen—Nelson cumulative hazard estimator
based on them should be close to the identity function. If there is noticeable deviation, then2abdsl (
questionable. Similarly, the residual plot can be obtained for the piecewise constant hazards ratio mod
used inPrenticeand otherq2009. Both residual plots, not shown here, suggest that the 2 models fit the
data adequately, with similar residual behaviors.

The 95% pointwise confidence intervals and simultaneous confidence bands for the hazard ratio func<
tion are given in Figurd. For comparison, the 95% confidence intervals for 0—2, 2-5>8ny@ars from
Prenticeand otherq2005 are included, over the median of uncensored data in each time interval. Com-
pared with the piecewise constant hazards ratio model, the confidence bands do not depend on partitioni@
of the data range and provide more continuously changing display of the treatment effect. The confidences
bands are generally in agreement with the results froemticeand otherg20095. The UW band is wider f%’
than the other 2 bands most of the time. The HW band is the narrowest in the middle section but is quiteg.
wide at the beginning. Both the EP band and the HW band give narrower intervals for the middle portion 2
of the data range than the piecewise Cox model. Near the end of the data range, all 3 bands have abogt
the same width as the confidence interval frBnenticeand otherg2005. Overall the EP band matches
most closely with the results for the piecewise constant hazards ratio model. The width of the EP band iss:

papeo|u

ny wouy

Confidence intervals and bands of the hazard ratio for the WHI data
5 T T T T T T

hazard ratio
n
(4]
Zz0oz 1snbny Lz uo isenb Aq 8SAO8Z/V9€/Z/ZL/GIO!UB/SO!JSHEJSéf’qwo

0 500 1000 1500 2000 2500 3000 3500
days

Fig. 1. The 95% pointwise confidence intervals and simultaneous confidence bands of the hazard ratio function for the
WHI data: Solid lines—equal precision confidence band; dashed lines— Hall-Wellner type confidence band; dash
dotted lines— unweighted confidence band; outside dotted lines—pointwise confidence limits; and central dotted
line—the estimated hazard ratio function; vertical segments—95% confidence intervals for the hazard ratios in 0-2,
2-5, andb years intervals from Prentiead otherg2005), over the median of uncensored data in each time interval,
with “+” indicating the point estimates.
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less than or equal to the piecewise model-based confidence intervals for most of the data range, except at
the beginning. Note that the constant function 1 is not excluded in the HW and UW bands. In comparison,
the EP band stays above 1 for about the first 600 days. Pr@mticeand otherg2005, the confidence
interval for 0— 2yr excludes 1, indicating an elevation in coronary heart disease risk for the treatment
early on. For this data set, the standard error of the estimated hazard ratio begins at 0.43, quickly comes
down to below 0.20 at 600 days and stays below 0.20 for the rest of data range. Since the UW band
does not take the variance into account and the HW band emphasizes the middle range, the elevated stan-
. . . . . O
dard error at early follow-up times likely explains the discrepancy among the results. Compared with theg
original analysis that showed an overall difference between the 2 groups, the results here and those from
Prenticeand otherq2005 give more detailed analysis on the dependence of the hazard ratio on time and §
help explaining the discrepancy between the results of the WHI clinical trial and preceding observationalZ;
research, much of which involved cohorts where women could be enrolled some years after |n|t|at|n93
hormone therapy.

For the average hazard ratio function, the estimator and the 95% simultaneous confidence band al
given in Figure2. The standard error of the estimated average hazard ratio varies more mildly over time
and both the estimated average hazard ratio and the confidence band are changing much more smoot
compared with the results for the hazard ratio in Figurdote that the confidence band stays above 1 for
t < 700 days. This is in agreement with the result®oénticeand otherg2005.

To compare with the nonparametric approach, Figdigives the estimated hazard ratio, the 95%
pointwise confidence intervals and simultaneous confidence baBdbafrt and otherg2002), based on
the R programs from the author’s site. The same scale as that in Rigsiresed for comparison and re-
sults in truncation of some portion of the plot. The estimated hazard ratio suggests that the hazard ratio i
reasonably monotonic. The nonparametric hazard ratio estimate is somewhat lower than the hazard rat
estimates in Figuré under either model(1) or the piecewise constant hazards ratio model. The confi-
dence band is wider than those in Figdréor the beginning and later parts of the data range, reflecting

<

o6 95% confidence band of the average hazard ratio for the WHI data

241+

221

220z 1snbny |z uo jsenb Aq 89[082/1798/3/2L/GIO!UE/SfJ@'WlSO!Q/LUOO'dno'o!w@OQ//Edll

average hazard ratio
»

0 500 1000 1500 2000 2500 3000 3500
days

Fig. 2. The 95% simultaneous confidence band of the average hazard ratio function for the WHI data: dotted line—
estimated average hazard ratio; and solid lines—95% simultaneous confidence band.
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Nonparametric confidence intervals and confidence
band of the hazard ratio for the WHI data

hazard ratio
N
[¢;]
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0 1 = = = = = = ' !
0 500 1000 1500 2000 2500 3000 3500
days
Fig. 3. Nonparametric 95% pointwise confidence intervals and simultaneous confidence band of the hazard ratios

dashed lines—pointwise confidence intervals.

the difficulty in making nonparametric inference on the hazard functions, especially with heavy censoring
and in the tail region.

From the results here and additional numerical studies and real data applications, we find that for thes
hazard ratio, the EP bands are preferable if the interest is in the largest possible data range; if the interest
is in part of the middle portion, then the HW bands are usually better. For the average hazard ratio, the%‘0
simple confidence band proposed here works adequately, although could possibly be improved if mores
elaborate weights are used. 3

/2/ZL/910114Ee/SOisieIsol

6. DISCUSSION

ny Lz uo jsenb A

We have focused on the model Wang and Prentic€2009 in deriving inference procedures for the
hazard ratio function. Under this model, the hazard ratio involves the baseline survivor function, but notg
the baseline density function, a property shared by some other semiparametric models. Thus, inferencg
on the hazard ratio may be easier and more reliable than approaches involving densities, such as thofé
under the accelerated failure time model or the nonparametric approaches.

To assess the cumulative treatment effect, we have worked with the average hazard ratio function
here, partly due to its close connection with the hazard ratio and its corresponding ready interpretation.
Alternatively, the ratiosSr(t)/Sc(t) and(1 — Sr(t))/(1 — S (1)) or the differencesr(t) — S (t), could
be considered.

We expect that the model &fang and Prenticé2005 can provide an adequate approximation for a
wide range of applications. More rigorous model checking procedures would be useful to address model
fit and robustness issues. Note that the form of this model is not closed under a relabeling of treatment and
control groups, so its use may be more natural if there is a “no treatment ” or “standard treatment” control
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group. It would be possible to study hazard ratio function estimation for larger classes of semiparametric
models to incorporate an even wider range of time dependence of the hazard ratio, though there is a trade
off between the model fit and increasing variance, as well as analysis cost. Also, while we have focused
on the 2-sample comparison here, adjustment for covariates may be considered. These and other problems
are worthy of further exploration.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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