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Abstract

Background: The virtual screening of large compound databases is an important application of structural-activity

relationship models. Due to the high structural diversity of these data sets, it is impossible for machine learning

based QSAR models, which rely on a specific training set, to give reliable results for all compounds. Thus, it is

important to consider the subset of the chemical space in which the model is applicable. The approaches to this

problem that have been published so far mostly use vectorial descriptor representations to define this domain of

applicability of the model. Unfortunately, these cannot be extended easily to structured kernel-based machine

learning models. For this reason, we propose three approaches to estimate the domain of applicability of a kernel-

based QSAR model.

Results: We evaluated three kernel-based applicability domain estimations using three different structured kernels

on three virtual screening tasks. Each experiment consisted of the training of a kernel-based QSAR model using

support vector regression and the ranking of a disjoint screening data set according to the predicted activity. For

each prediction, the applicability of the model for the respective compound is quantitatively described using a

score obtained by an applicability domain formulation. The suitability of the applicability domain estimation is

evaluated by comparing the model performance on the subsets of the screening data sets obtained by different

thresholds for the applicability scores. This comparison indicates that it is possible to separate the part of the

chemspace, in which the model gives reliable predictions, from the part consisting of structures too dissimilar to

the training set to apply the model successfully. A closer inspection reveals that the virtual screening performance

of the model is considerably improved if half of the molecules, those with the lowest applicability scores, are

omitted from the screening.

Conclusion: The proposed applicability domain formulations for kernel-based QSAR models can successfully

identify compounds for which no reliable predictions can be expected from the model. The resulting reduction of

the search space and the elimination of some of the active compounds should not be considered as a drawback,

because the results indicate that, in most cases, these omitted ligands would not be found by the model anyway.

1 Background
An important task of cheminformatics and computa-

tional chemistry in drug research is to provide methods

for the selection of a subset of molecules with certain

properties from a large compound database. Often, the

desired property is a high affinity to a certain pharma-

ceutical target protein, and in the selected subset, the

likelihood of a compound to be active against that target

should be considerably higher than the average in the

database. A common approach to this task is virtual

screening (VS) [1,2]. The idea is to predict a kind of

activity likelihood score, to rank a compound database

according to this score and to choose the top ranked

molecules as the subset.

A variety of approaches has been published for the

assignment of the desired score to a molecule. They can be

roughly divided into three classes: Docking-based scoring

functions, scores depending on similarity to known active

compounds and machine learning-based score predictions.

* Correspondence: nikolas.fechner@uni-tuebingen.de

Center for Bioinformatics Tübingen (ZBIT), University of Tübingen, Sand 1,

72076 Tübingen, Germany

Fechner et al. Journal of Cheminformatics 2010, 2:2

http://www.jcheminf.com/content/2/1/2

© 2010 Fechner et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:nikolas.fechner@uni-tuebingen.de
http://creativecommons.org/licenses/by/2.0


Docking-based approaches [3-8] rank the compounds

according to the score obtained by a docking of the

compound into the binding pocket of the respective tar-

get protein. Therefore, these approaches use not only

the information about the small molecule but also the

structure of the target to estimate the activity; however,

this additional information comes at the expense of an

increased prediction time and the need for a 3D struc-

ture of the protein.

The computationally fastest approach to rank the

compound database, according to the estimated activity,

is to sort the molecules by their similarity to one or

more known binders. This approach gives good results

in many cases [9-12], but depends strongly on the cho-

sen query molecule and may be unable to discover

ligands of a different chemotype than the query mole-

cule [13].

The application of a machine learning model can be

considered as a trade-off between a fast prediction time

and the integration of additional information. In con-

trast to the similarity-based ranking, not only informa-

tion about known active compounds can be used, but

also known inactive compounds [14-17]. However, the

prediction is based on the prior assumption that the

structure-activity relationship is implicitly contained in

the training set. Therefore, it is important to be able to

decide whether the learned model’s prediction of the

activity of a molecule should be considered as reliable.

In a similarity-based ranking, this decision is not as

important, because the similarity score is directly related

to the similarity of the activity model represented by the

query molecule and the predicted compound. Unfortu-

nately, this direct relation is not present in a learned

model that predicts a complex property, like the quanti-

tative activity given as pKi or pIC50, and ranks the com-

pounds according to that property.

In order to address this reliability estimation problem,

the concept of the applicability domain (AD) of a

machine-learning model has been introduced [18-23].

Usually, it is applied in the context of a quantitative

structure-activity relationship (QSAR) application. Here,

the task is to predict the activity of a compound, where

the AD is used to estimate the relative quantitative pre-

diction error. Nevertheless, it should also be valuable for

virtual screening, because due to the large size of the

screening data set, it is to be expected that the struc-

tural diversity, and thus the impact of an inapplicable

model assumption, is greater than that for the structu-

rally more focused QSAR experiments.

Many approaches to estimate the applicability domain

of a QSAR model either define the geometric subset of

the descriptor space that is spanned by the training set,

or infer the multivariate probability distribution of the

respective descriptor vectors [20-24]. An alternative

approach, similar to the concepts proposed in this work,

is to relate the applicability of a model to predict the

property of a molecule to the similarity of this com-

pound to the training set structures [18,19]. However, in

most cases the models have been trained using a vector-

ial representation of the molecules, so the vectorial

model and the similarity-based applicability domain are

defined in different spaces. Nevertheless, these

approaches often give convincing results. Recently, Hor-

vath et al. [21] published a meta-model approach to

applicability domain estimation and proposed an evalua-

tion procedure for QSAR applicability domains. Unfor-

tunately, these ideas cannot be easily extended to the

performance measures for virtual screening used in this

work, because they are largely based on the quantitative

differences between predictions and observations.

Another concept related to the applicability domain

estimation is the estimation of the predictive variance

using Gaussian processes [25]. This concept has been

successfully applied in QSAR/QSPR [26-28] as well as in

virtual screening [29], but has the disadvantage that the

error estimation is computationally very demanding.

The definition of the domain of applicability of the

training set using the vectorial representation of the

training samples by molecular descriptors prevents a

direct application to models trained by structured ker-

nel-based machine learning approaches. These machine

learning techniques have gained increased attention in

recent years in QSAR [30-34] as well as in virtual

screening [29,35,36]. Kernel-based learning algorithms,

like support vector machines (SVMs) [37,38], infer the

model for the relationship between the samples and the

respective properties in a high dimensional feature

space, which is only implicitly defined by the kernel. A

kernel can be considered as a special case of similarity

measure fulfilling these additional kernel properties.

Many kernels have been published, which cover differ-

ent aspects of molecular similarity but avoid the loss of

information caused by the encoding of the molecule as

a descriptor vector. However, the lack of a vectorial

representation prevents the direct application of many

of the applicability domain formulations.

In this work, we propose three formulations of the

applicability domains of kernel-based QSAR models,

which rely only on the kernel similarity of the struc-

tures, and thus can be applied to assess the reliability of

these models. The proposed AD definitions are evalu-

ated quantitatively on three different support vector

machine based VS experiments, consisting of screening

test data sets based on the DUD repository [39,40] and

respective training data sets taken from different sources

[41-45]. Furthermore, to avoid a kernel bias, we evalu-

ated three different types of structured molecule kernels:

the Optimal Assignment kernel (OAK)[46], the Flexible
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Optimal Assignment Kernel (FlexOAK)[47] and the

Marginalized Graph Kernel (MARG)[48].

We show that, in most cases, the reliability of the

ranking produced by the virtual screening is improved

and present guidelines for the application of this techni-

que in other experiments.

2 Methods
2.1 Metrics for Virtual Screening Evaluation

Many performance measures for the evaluation of a pre-

diction model, such as Matthew’s correlation coefficient,

accuracy, or precision, are unsuitable metrics for the

evaluation of virtual screening experiments. The reason

for this unsuitability is that these metrics do not address

the early recognition problem. The early recognition

problem is motivated by real-world VS experiments,

where only the top ranked compounds of the complete

data set are evaluated in biological assays. To address

this problem, several virtual screening metrics were sug-

gested and applied to compare different VS techniques.

One of those metrics is the Enrichment Factor, which is

defined for a predefined subset of the data set. This

measure indicates the ratio of the probabilities of finding

an active compound in the first X% of the data set and

that of sampling one at random from the complete data

set. Despite its early recognition sensitivity, the Enrich-

ment Factor has the drawback of being insensitive to

the relative ranking of the compounds in the top X%

and ignoring the complete ranking of the remaining

data set [49]. To address this problem, Truchon and

Bayly [50] developed a ranking sensitive metric with a

modifiable focus on the early recognition problem, the

BEDROC score. This metric uses an exponential decay

function to reduce the influence of lower ranked com-

pounds on the final score. The score has a parameter a

that allows the user to adjust the definition of the early

recognition problem. In this work, four different a

values were used to define different weightings of the

top ranked structures. Table 1 shows the a values

applied, together with the section of the data set that is

responsible for 80% of the final BEDROC score.

According to Table 1, an a value of 100.0 parame-

terizes the BEDROC score such that the ranking in the

first 1.6% of the data set contributes 80% of the final

BEDROC score.

2.2 Kernel-based Machine Learning

Kernel-based machine learning techniques, like support

vector machines, have become a common approach to

learning quantitative structure-activity relationships. In

contrast to other machine learning algorithms, like partial

least squares or neural networks, kernel-based models do

not need an explicit feature encoding j (x) (i.e., a descrip-

tor representation) for an object x (e.g., a molecule) from

the data space c. Instead, the data objects only occur in

terms of dot products 〈j (x), j (x’)〉 between pairs of

descriptor representations, which allow the so-called ker-

nel trick to be applied. Here, the idea is to replace both,

the feature encoding j and the dot product by one func-

tion k: c × c ® ℜ, which directly maps a pair of objects to

a real number. The function k can be any kernel function

for which there exists a (not necessary explicit) descriptor

encoding function j: c ® ℜ
n, such that the kernel of two

objects x, x’ corresponds to the dot product of their

respective descriptor representations j (x), j (x’):

k x x( , ’)   (x), (x’) (1)

This condition is fulfilled by any kernel function that

is symmetric and positive semi-definite. Thus, the fea-

ture encoding j (x) does not have to be stated explicitly

and the kernel can be formulated directly on the data

object (e.g., the molecule). Therefore, the necessity to

encode a chemical structure as a numerical vector using

a set of explicitly calculated molecular descriptors could

be avoided by using a structured kernel (i.e., a kernel

that takes non-numerical objects). In this case, the ker-

nel method still operates in a vectorial space, but the

numerical representations of the data objects in that

space never have to be computed explicitly.

This article can only give a short introduction to the

idea of kernel-based machine learning. An excellent

overview as well as detailed descriptions of various ker-

nel-based techniques can be found in Schölkopf and

Smola [51] for further reading.

2.3 Structured Kernels for Molecules

Structured kernels for complex objects usually resemble

sensible similarity measures for these types of objects. In

recent years, several such kernels have been published

that directly operate on molecular graphs and thus

avoid an explicit descriptor representation of the mole-

cules. The structured kernels that are used in this work

are the Marginalized Graph kernel (MARG) [48], the

Optimal Assignment kernel (OAK) [46], and its exten-

sion FlexOAK [47], which regards the molecular flexibil-

ity. Other examples are the iterative Optimal

Assignment approach [33], the Pharmocophore kernel

[35] and several other variants of molecular fingerprint-

like formulations [32,34,36].

Table 1 Relation between a and the fraction of the

screening set contributing 80% of the BEDROC score

Data set percentage a-value

1.6% 100.0

3.0% 53.6

3.2% 50.0

5.0% 32.2
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The kernels that are used in this work describe the

similarity between two molecules by considering pair-

wise atomic similarities and combining these in different

ways to compare the molecular structure. The atoms

are encoded by a set of atom descriptors consisting of

both nominal (e.g., part of ring, part of HB-donor, ...)

and numeric (e.g., Gasteiger-Marsili partial charges [52],

graph potentials [53], ...) features. The complete list of

the applied atom descriptors (as well of the bond

descriptors) is given in the additional file 1. The result-

ing feature representation of the atoms is used to define

the atomic similarity between two atoms. All kernels use

the same atomic similarity measure, but integrate the

single pairwise atomic similarities in different ways. The

atom and bond descriptors applied in this work were

computed using the open-source Java cheminformatics

library JOELib2 [54]. To conduct QSAR experiments

and to generate the QSAR models used for the virtual

screening in this work, the structured kernels presented

are used as kernels in a support vector regression.

Hence, the molecular representation, on which the

QSAR is computed, is solely given as the implicit feature

encoding hidden in the structured kernel. Thus, in con-

trast to most other QSAR related works, there is no

need for a set of molecular descriptors, beside the atom

and bond descriptors used by the kernels, to encode the

molecules as numerical vectors.

The Marginalized Graph kernel (MARG) was pub-

lished by Kashima et al. [48] in 2003. Its idea is to

define the similarity of two molecules as the sum of

similarities of atom sequences present in the molecules.

This concept is similar to various hashed fingerprint for-

mulations (e.g., Daylight) but has some differences. The

Marginalized Graph kernel considers every atom

sequence of arbitrary length in the molecule. Atoms are

allowed to occur multiple times in the sequences, thus

rings may lead to infinitely long sequences. The similar-

ity of two atom sequences is given as the sum of the

atom similarities of the pairs of atoms in corresponding

positions if the sequences have the same length, and is

set to zero otherwise. The final kernel is obtained by

summing the similarities of the atom sequences of the

molecules, whereas each sequence similarity is addition-

ally weighted by the probability that the respective

sequence is randomly drawn from the set of possible

sequences in the molecule. The multiplication by the

probability reduces the contribution of longer sequences

because they have an obviously lower probability of

being drawn randomly. This decreased contribution of

long sequences has the effect that the weighted sum

converges to a limit. This limit can be computed with-

out explicitly extracting the atom sequences from the

molecules by exploiting the product graph of the mole-

cular graphs. Therefore, the Marginalized Graph kernel

is able to consider an infinite number of possible atom

sequences by computing the limit of the weighted sum

of the similarities directly. The obtained limit is the

expectation of the sequence set similarity and is taken

as the kernel value. The details of the algorithm are

beyond the scope of this article and are therefore

omitted.

The Optimal Assignment kernel published by Fröhlich

et al [46] computes the kernel similarity of two mole-

cules by calculating the optimal bipartite graph match-

ing of the atoms of the two molecules. Each molecule is

regarded as a set of atoms augmented by their local

intramolecular neighborhoods. The kernel is obtained

by computing the optimal pairwise assignment of the

atoms (including their intramolecular neighboring

atoms) of the first molecule to the atoms of the second

molecule. The final kernel value is obtained as the sum

of the similarities of the assigned atoms normalized by

the self-similarities (i.e., the kernel similarities) of the

respective molecules. The normalization ensures that

the kernel values are always in the interval [0,1]. A ker-

nel value of one is only obtained for identical (by means

of the kernel) molecules.

The FlexOAK [47] has been published recently as an

extension of the OAK capable of regarding the intramo-

lecular flexibility of the molecules. Its idea is to intro-

duce a further measure for atom similarity that takes

the flexibility of the local intramolecular neighborhood

of the compared atoms into account. This extended

local similarity computation is realized by comparing

the spatial coordinates, on which the neighboring atoms

(up to neighbors of degree three, i.e., connected by

sequences of up to three bonds) can be placed by rotat-

ing some of the connecting bonds. The spatial coordi-

nates are encoded by a set of translation and scale

invariant parameters related to internal coordinates. The

comparison is then conducted by computing a numeri-

cal similarity of the parameter sets of the two compared

atoms. Thus, the similarity of the local flexibilities of the

two atoms is obtained as the similarity of the parameters

of the spatial positions and incorporated into the opti-

mal assignment computation. All other similarity aspects

(i.e., structural similarity and atomic descriptors) are

identical to the original OAK.

It has been shown [55] that kernels that are based on

an optimal assignment are not in general positive semi-

definite (i.e., their pairwise kernel-similarity matrix may

have negative eigenvalues). Nevertheless, the negative

eigenvalues typically observed in in-house experiments,

are so close to zero (usually > -0.0001) that it should

not have an effect on the practical application. This con-

clusion can be drawn because, due to numerical inac-

curacies, kernels that have been proven to be positive

semi-definite, sometimes yield similar small eigenvalues.
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The source code of the Optimal Assignment and the

Marginalized Graph kernel implementations can be

obtained from our department’s homepage [56]. A

working JOELib2 [54] environment is necessary for their

application.

2.4 Applicability Domain Estimation for Kernel Machines

The applicability domain of a statistical model is defined

as the subset of the underlying pattern space (e.g., the

ChemSpace) on which the model is expected to give

reliable predictions [19,20,22-24]. This formulation

makes the adaptation of this concept for kernel-based

learning methods difficult. In contrast to non-kernel

techniques, like most neural networks or decision trees,

the kernel model performs its estimations based on the

structure of the training set in the feature space impli-

citly defined by the kernel. Therefore, the applicability

domain has also to be defined by means of the kernel.

Because some kernels, like the RBF kernel, rely on a

descriptor vector, and the applicability domain of the

training set could be approximated in these cases by

geometrical approaches, in this work the selection of the

kernels was restricted to structured kernels, which work

directly on the molecular graph.

A possible kernel-based approach would be the appli-

cation of a Gaussian process to learn the model and

exploit its possibility to augment a prediction with its

estimated standard deviation. However, despite its simi-

larity to the above methods, this approach has to be

regarded more as a confidence estimation than as an

applicability domain estimation. Moreover, a Gaussian

process has the drawback that it requires a full matrix

inversion of the covariance matrix for each confidence

estimation (it can be approximated, but the complexity

is still larger than quadratic, see [57] for details), which

is computationally more demanding than the actual

prediction.

In this work, three pure kernel-based descriptions of

the applicability domain are introduced: the calculation

of the subspace of the implicit feature space that con-

tains most of the training patterns, which can be learned

with a one-class support vector machine and two

approaches to defining the domain boundary by a

threshold for the (weighted) average kernel similarity. In

contrast to the Gaussian process confidence estimation,

the proposed AD estimations can be calculated with

almost no computational overhead for the prediction.

2.4.1 Kernel Density Estimation

The Kernel Density Estimation (KDE) is a non-para-

metric approach to estimate the probability density of a

distribution given a set of n samples drawn from this

distribution and a kernel function k. The Gaussian ker-

nel density of a pattern set X at x is given by:

d x
hn

k
x xi

h hn
e

x xi

h
h

x X x Xi i

( ) ( )
( )   

 
 1 1 1

2

2

2 2
(2)

The smoothing parameter h could be fitted to the

application, but is neglected in our formulation to

ensure compatibility to an arbitrary kernel.

This concept can be adapted to other kernels by repla-

cing the Gaussian part by the kernel

score d x
n

k x xKDE i

i

n

: ( ) ( , )  1
(3)

This density is identical to the average kernel similar-

ity of x to the patterns xi from the training set X. There-

fore, this approach is closely related to the similarity-

based AD formulations [18,19], with the difference that

the formulation in this case ensures that the AD and

the model are both defined in the same kernel-induced

feature space. Thus, it should be a good estimate of the

information that a kernel-based model has about that

part of the feature space or, by probabilistic means, how

likely it is that the sample x was drawn from the same

distribution as the training set.

2.4.2 Weighted Kernel Density Estimation

The kernel density estimate can be further augmented

with the knowledge that the model (in this case a sup-

port vector machine) was obtained during its training by

applying an approach motivated by a Gaussian mixture

model. A Gaussian mixture model is a model of a com-

plex probability distribution described as a weighted

sum of Gaussian distributions with means xi and var-

iances  i
2 . In the one-dimensional case, this model is

expressed by:

p x N x xi

i

n

i i( ) ( | , )   2 (4)

The model parameters that are adapted to the obser-

vation are the mixing coefficients ai and the means and

standard deviations of the Gaussians. This concept

serves as the starting point to define a model-dependent

kernel-based applicability domain estimation. The key

idea is to integrate the knowledge encoded in a kernel

model into a Gaussian mixture scheme. This integration

is achieved by regarding the support vectors of the SVM

model as the centers of Gaussian distributions whose

(co)variances are represented by the applied kernel. The

mixing coefficients of the Gaussian mixture model are

replaced by the weights of the support vectors (i.e., the

signed Lagrange coefficients) that represent the learned

knowledge of the trained model. To obtain a probability

density for the distribution related to a support vector,
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the Gaussian density is expressed by means of the ker-

nel. To achieve this expression, several simplifications

are introduced. First, only 1-dimensional probability

densities are considered because the density is always

only evaluated for a single test sample, which allows a

1-dimensional embedding of the feature space defined

by the kernel and two data points (the support vector

and the test sample). Second, the Lagrange coefficients

that replaced the mixing coefficients are in general not

valid probabilities. Therefore, the modified mixture

model cannot be considered as a probability density.

However, this apparent drawback allows us to neglect

the normalization term of the kernel-based 1D Gaussian

probability density. Thus, the latter can be obtained

using the identity of the kernel value for an object pair

(x, y) Î X × X and the inner product of the respective

feature space projection j (x) for x Î X:

k x y x yT( , ) ( ) ( )   (5)

Using this identity, the Gaussian distributions with

means μi and variances  i
2 can be expressed by means

of the kernel:

N x e

x

e

x x

( ( ) | ( ), ) ~

( ( ) ( ))

( ( ) ( ) ( ) ( )

   

  



     

2

2

2 2

2 2 2









  ))

( , ) ( , ) ( , )

( , )

, ( , )

2 2

2

2 2

1
2

1



  









 





  



e

k x x k x k

e

k x

if k x x x XX

(6)

Note that the kernel is assumed to be normalized (i.e.,

returns 1 if the two objects are identical). This assump-

tion is always met by the kernels used in this work, and

can be easily ensured for a general kernel by the follow-

ing normalization:

k x y
k x y

k x x k y y
( , )

( , )

( , ) ( , )
 (7)

Thus, the final confidence estimation can be comple-

tely expressed by means of the kernel:

p x e

k x xi

i

i

( )

( , )





  

1
2 (8)

The variance of the single Gaussian terms can be

adapted to the problem, but is kept fixed to one in the

implementation used in this work. One drawback of this

formulation is that the score does depend on the

number of support vectors as well as on the absolute

value of the Lagrange coefficients. To address this pro-

blem the score obtained by Eq. (7) is normalized:

score
p x

i
i

wKDE :
( )

  (9)

2.4.3 One Class SVM

The One-Class SVM, published by Schölkopf et al. [58],

is an approach to compute the domain of a set of n

training samples in the kernel induced feature space.

The result is a decision function, which returns a posi-

tive value for a data instance inside the domain and a

negative for those outside of it. Like standard SVMs it is

formulated as a quadratic program in which the data

from an arbitrary space c only appears in an inner pro-

duct in the dual formulation and thus can be replaced

by any Mercer kernel k: c × c ® ℜ. The optimization

problem is given by:

MIN k x x

s t
n

i

i j i j

i j

i

i

i

  






1

2

0
1

1

( , )

. . ,

,




  



(10)

The regularization can be adapted by the parameter ν,

which can be regarded as an upper bound on the frac-

tion of training set outliers [38]. The One-Class SVM

can be applied in the applicability domain estimation by

training a One-Class model on the training data set and

using the value of the decision function as an applicabil-

ity score.

score k x xONE i

i

i: ( , ) (11)

Note that the model selection is more difficult than

that in regression or classification because no quantita-

tive quality measure can be optimized with a cross-vali-

dation on the training data. Therefore, the regularization

parameter has to be chosen solely by the user. It this

work, this parameter has been kept constant using the

LibSVM 2.83 [59] default settings.

3 Experimental
3.1 Data Sets

The evaluation of the proposed methods for the applic-

ability domain estimation has requirements that restrict

the number of freely available data sets. An established

resource of data sets for VS experiments is the DUD
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collection published by Huang et al. [39]. Originally

designed for docking studies, these data sets have

recently been prepared for ligand-based virtual screening

experiments by Jahn et al. [10,40] according to the pre-

paration protocol proposed by Cheeseright et al. [60]

and Good and Oprea [61]. A subset of the data sets pre-

pared by Jahn et al [10,40] was chosen to provide as

external screening test sets for the quantitative evalua-

tion of the applicability domain estimation. The subset

was selected according to two criteria. First, there has to

be another data set containing enough molecules with

known quantitative activities to the respective target to

serve as a training set for a QSAR model. Second, no

molecule from the training set may be part of the

screening set. The use of a procedure for a removal of

duplicates was rejected because the active/decoy ratio is

constant for all DUD data sets and the removal of the

duplicates from the training set would result in a huge

loss of training samples. This loss is, because in many

observed cases (e.g. the Sutherland compilation [45]) a

large portion or even the complete potential QSAR

training set was incorporated in the DUD data set.

These requirements were met for Thrombin, Factor

Xa and Platelet-derived growth factor receptor b

(PDGFRb) (Table 2). The screening sets were taken

from Jahn et al. [10,40] and consisted of 24 actives and

1148 decoys for Thrombin, 64 actives and 2092 decoys

for Factor Xa and 124 actives and 5603 decoys for

PDGFRb. The respective training sets were taken from

Sutherland et al. [45] (88 molecules annotated with pKi

Thrombin inhibition, originally published by Böhm et al.

[41]), Fontaine [42] (290 molecules annotated with pKi

Factor Xa inhibition) and Guha [43] (79 molecules

annotated with pIC50 PDGFR-b inhibition, originally

published by Pandey et al. [44]).

The disjunction of the training and the screening sets

was checked by comparing the unique SMILES repre-

sentations of the molecules. Because the kernels used in

this work are not able to differentiate between stereoi-

somers, the stereochemical information in the SMILES

was neglected. Thus, stereoisomers would have been

considered as identical if there would have had been any

in the data sets.

All datasets used in this work are publicly available.

The exact SD files [62] used for training can be obtained

from our department’s website [63]. The screening data-

sets can be obtained from the DUD site listed as DUD

LIB VS 1.0 [64].

3.2 QSAR learning and virtual screening

A single experimental setup is determined by the target

protein to be modeled, the structured kernel, which is

used for SVM and applicability calculation, and the for-

mulation of the applicability domain. Each experiment

was conducted in the same fashion. A standard QSAR

model was learned on the training data set using ε-sup-

port vector regression and the respective kernel. The

only parameter that was optimized was the soft margin

SVM parameter C. The optimization was conducted by

searching for the value for C in the set {e-5, e-4,..., e4, e5}

that minimizes the average RMSE on a 5-fold cross-vali-

dation. The cross-validation estimates of the model per-

formance are shown in Table 3. The model selection

that yields these estimates is biased to the selection of

the cross-validation folds, so the results cannot be con-

sidered as reliable estimates of the true model perfor-

mance. However, they give a hint of the descriptive

power of the model for the training set, and the main

results of this work on the screening data sets are

obtained independently of this training set performance

estimation. The training of the SVM was conducted

using the Java implementation of LibSVM 2.83.

For the screening evaluation, the learned model is

used to rank the respective screening data set according

to the learned property (i.e. pKi or pIC50). The different

activity measures can be neglected because they are con-

sistent for each experiment (Thrombin, Factor Xa,

PDGFRb) and for the screening evaluation only the

ranking of the compound and not the exact activity is of

importance. For each screening data set, the rankings

are further filtered using one of the three applicability

score formulations. The complete range of scores on the

screening set is divided into 20 equidistant score thresh-

olds in Figures 1, 2, 3, 4, 5 and 6. In these figures, the

score threshold values, for which less than 50 com-

pounds are retained in the AD, are omitted, because the

performance measures are not robust for such small

data sets. Otherwise, the evaluation of these small data

sets would result in large changes in the performances

caused by small changes in the screening ranking (i.e.,

with less than 50 compounds retained a change of the

top ranked compound alone would affect 80% of the

BEDROC(100) score). In addition to the six example fig-

ures, a complete list of the figures for the different

experiments is presented in the additional file 2.

In addition, the thresholds are determined, which retain

50%, 33%, exactly 200, and exactly 100 compounds in

the AD to provide comparable performance measures

(Tables 4, 5 and 6). For each score threshold, the

Table 2 Statistics of the data sets for the different

targets

Target Training
Compounds

Screening
Compounds

Ligands Decoys

Thrombin 88 1172 24 1148

Factor Xa 290 2156 64 2092

PDGFRb 79 5727 124 5603
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screening data set is divided into a set of molecules that

possess an AD score lower than the threshold and thus

are considered as outliers, and a set of molecules for

which the prediction is regarded as reliable at the

respective applicability level.

4 Results and Discussion
The QSAR results for all kernels and data sets are pre-

sented in Table 3. The training data sets were not all

equally well learned as shown by the different cross-vali-

dation results. All kernels were capable of describing the

Factor Xa inhibitors in a manner that allows the learn-

ing of a QSAR model with a good cross-validation per-

formance. Thrombin and PDGFRb seem to be less

suited for learning the respective QSAR, but despite the

low correlation coefficients, the prediction error still was

small enough to apply the model in a VS experiment.

The second part of Table 3 shows the virtual screen-

ing performance of the QSAR models by means of the

Area-under-the-ROC-Curve (AUROC) and the BED-

ROC scores for four different choices of a (shown in

brackets). Except for the AUROC for the Factor Xa data

set using either the OAK or the FlexOAK, none of the

performance criteria were good enough to expect a suc-

cessful application of the models for virtual screening.

Generally, the molecules for which wrong predictions

are obtained from a model generated using a supervised

machine learning algorithm can be roughly divided into

two classes: first, molecules that are too dissimilar to the

compounds from the training set for us to expect to

Table 3 Results of the QSAR training and the virtual screening without consideration of the applicability domain

Thrombin Factor Xa PDGFRb

OAK FlexOAK MARG OAK FlexOAK MARG OAK FlexOAK MARG

QSAR Training

Q2 0.49 ± 0.17 0.52 ± 0.15 0.52 ± 0.11 0.82 ± 0.08 0.85 ± 0.06 0.78 ± 0.1 0.38 ± 0.24 0.37 ± 0.29 0.40 ± 0.22

RMSE 0.55 ± 0.22 0.51 ± 0.15 0.50 ± 0.17 0.63 ± 0.24 0.53 ± 0.17 0.77 ± 0.29 0.34 ± 0.25 0.38 ± 0.30 0.32 ± 0.22

Virtual Screening without Applicability Domain Estimation

AUC 0.45 0.51 0.54 0.74 0.68 0.54 0.58 0.54 0.25

BEDROC (100.0) 0.42 0.29 0.29 0.32 0.28 0.00 0.13 0.10 0.07

BEDROC (53.6) 0.37 0.29 0.27 0.31 0.25 0.01 0.12 0.09 0.06

BEDROC (32.2) 0.37 0.29 0.27 0.33 0.24 0.01 0.12 0.09 0.06

BEDROC (20.0) 0.35 0.30 0.28 0.37 0.26 0.02 0.13 0.11 0.05

Figure 1 Effect of the One-Class AD on the Thrombin VS performance of the OAK model. Virtual screening of the Thrombin data set

using the Optimal Assignment kernel and the One Class SVM AD Formulation (values for the threshold retaining less than 50 compounds in the

AD are omitted).
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draw conclusions about them considering only the train-

ing set, and second, those molecules that are similar to

the molecules from the training set but whose proper-

ties are not consistent with the QSAR similarity para-

digm [65] that states that similar molecules should have

similar properties. The first class should be recognizable

using an applicability domain estimation, and should

not properly be considered as errors, but rather as out-

liers, for which the model is not defined. The second

class can be considered as “real” errors of the model. A

possible cause for such errors may be that the respective

molecules come from a part of the ChemSpace that lies

inside the applicability domain of the training data set,

but has too few training samples to describe the

Figure 2 Effect of the One-Class AD on the Thrombin VS performance of the MARG model. Virtual screening of the Thrombin data set

using the Marginalized Graph kernel and the One Class SVM AD Formulation (values for the threshold retaining less than 50 compounds in the

AD are omitted).

Figure 3 Effect of the One-Class AD on the Factor Xa VS performance of the OAK model. Virtual screening of the Factor Xa data set using

the Optimal Assignment kernel and the One Class SVM AD Formulation (values for the threshold retaining less than 50 compounds in the AD

are omitted).
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curvature of the modeled property adequately. An alter-

native possibility is that the modeled property changes

rapidly in that part of the space, as would be the case

for a so-called activity cliff [66-68]. In both cases, an

applicability domain estimation cannot be expected to

detect and remove these molecules.

The modest performance of the QSAR models in the

virtual screening is the result of unreliable predictions

for molecules, for which the models are apparently not

specified (i.e., the first type of misprediction), as well as

wrong implications learned by the model (i.e., the sec-

ond type of misprediction). The applicability domain

estimation should be able to remove the first kind and

to improve the reliability of the predictions accordingly.

4.1 Effect on the prediction time

The applicability score using one of the two density-

based formulations can be calculated in the same

Figure 4 Effect of the One-Class AD on the Factor Xa VS performance of the FlexOAK model. Virtual screening of the Factor Xa data set

using the FlexOAK kernel and the One Class SVM AD Formulation (values for the threshold retaining less than 50 compounds in the AD are

omitted).

Figure 5 Effect of the wKDE AD on the PDGFRb VS performance of the FlexOAK model. Virtual screening of the PDGFRb data set using

the Flexible Optimal Assignment kernel weighted KDE AD Formulation (values for the threshold retaining less than 50 compounds in the AD

are omitted).
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iteration as the model prediction, leading to almost no

computation time overhead. In contrast to that, for the

One-Class AD estimation a second model has to be

generated in addition to the screening model to describe

its applicability domain. Thus, for each compound two

predictions have to be calculated (one for the screening

and one for the AD score) leading to an approximately

doubled computation time.

4. 2 Thrombin

Table 4 shows several results of the virtual screening

experiments for Thrombin. It can be seen that the

screening performance of a model is improved as the

applicability domain becomes more restrictive. If the

threshold is chosen such that exactly 100 compounds

remain in the domain, a very good and significant enrich-

ment can be achieved (OAK + One-Class ADE) yielding

an AUROC of 0.97 and BEDROC scores between 0.78

and 0.90. The number of ligands is reduced to about one

third, but simultaneously the number of decoys is

reduced to 3.7%, changing the prior probability of choos-

ing a ligand by chance from 1:36 to ~1:7. The higher ran-

dom probability of getting a good enrichment is

considered by a permutation significance test. The results

indicate that all three kernels, as well as all three applic-

ability domain formulations, are suitable to improve the

reliability of the virtual screening ranking of the respec-

tive QSAR models. The Optimal Assignment kernel is in

most cases the best choice (an example is presented in

Figure 1), because it shows comparably good results with

each AD formulation and leads to very reliable rankings

regardless of how the AD threshold is chosen. The Mar-

ginalized Graph kernel seems to be very sensitive to the

applicability domain. It is nearly as good as the OAK if

the threshold is very restrictive, but the virtual screening

performance decreases faster if a looser domain threshold

is chosen (Figure 2).

Note that the Figures 1, 2, 3, 4, 5 and 6 cannot be

compared with each other by comparing the scores

shown on the x-axis because the AD score depends on

the AD formulation, the kernel and the data set leading

to different score ranges and distributions for each

experiment. For comparison purposes, the respective

tables (Tables 4, 5, 6) should be taken into account.

However, the figures are presented to provide informa-

tion about the overall behavior of the performance

measures regarding all possible threshold choices, and

the x-axes share the property that they cover the whole

AD range. On the left side, all compounds are retained

in the domain, whereas on the right side less than 50

compounds remain. Thus, the general behavior over the

complete AD range of the different approaches can be

compared to each other using the figures, but not by

using a single quantitative threshold evaluation.

4.3 Factor Xa

In contrast to the Thrombin experiment, the kernels

perform differently in the Factor Xa VS (Table 5). The

Optimal Assignment kernel seems to be a good choice,

yielding reliable rankings for most of the thresholds

Figure 6 Effect of the wKDE AD on the PDGFRb VS performance of the MARG model. Virtual screening of the PDGFRb data set using the

Marginalized Graph kernel and weighted KDE AD Formulation (values for the threshold retaining less than 50 compounds in the AD are

omitted).
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(Figure 3). The performance decreases slightly around

the -10.0 One-Class threshold score, but recovers

rapidly if the threshold is further increased. This result

might be caused by the removal of some ligands, due to

their low applicability score, which actually had been

predicted correctly.

In contrast, the Marginalized Graph kernel does not

seem to be able to describe the activity to Factor Xa at

all, and the model shows poor generalization ability.

Thus, it can be concluded that the applicability domain

estimation cannot fix a model by outlier detection, if the

model seems not to have learned any relevant relation-

ship between the structures and their activity. This find-

ing also makes a case for the importance of a true

external validation of a QSAR model. However, the bad

results of the Marginalized Graph kernel, regardless of

the choice for the AD threshold, should not be inter-

preted as a weakness of the applicability domain estima-

tion. If the model itself fails, the AD estimation cannot

be expected to fix it.

The most interesting results in the Factor Xa experi-

ment are given by the Flexible OAK (Figure 4). In

Table 4 Virtual Screening results for Thrombin at five different applicability levels

Kernel ADE Threshold AUROC BEDROC (a) Ligands Decoys

100.00 53.6 32.2 20.0

OAK KDE 50% 0.64 0.88 0.61 0.60 0.60 0.61 11 575

33% 0.66 0.87 0.66 0.63 0.63 0.64 10 380

200 0.68 0.97 0.78 0.72 0.73 0.73 8 192

100 0.69 0.97 0.90 0.81 0.81 0.78 8 92

wKDE 50% 0.64 0.88 0.61 0.60 0.60 0.61 11 575

33% 0.66 0.87 0.66 0.63 0.63 0.64 10 380

200 0.68 0.97 0.78 0.73 0.73 0.74 8 192

100 0.69 0.97 0.90 0.81 0.81 0.78 8 92

ONE 50% -9.61 0.88 0.62 0.60 0.60 0.60 11 478

33% -9.11 0.87 0.66 0.63 0.63 0.64 10 380

200 -8.06 0.94 0.77 0.69 0.68 0.68 9 191

100 -7.08 0.97 0.90 0.81 0.81 0.78 8 92

FlexOAK KDE 50% 0.64 0.85 0.43 0.47 0.48 0.52 11 575

33% 0.65 0.91 0.49 0.53 0.53 0.59 9 381

200 0.67 0.91 0.59 0.58 0.58 0.63 8 192

100 0.68 0.91 0.74 0.67 0.67 0.69 8 92

wKDE 50% 0.64 0.78 0.41 0.45 0.46 0.49 12 574

33% 0.65 0.91 0.49 0.53 0.53 0.59 9 381

200 0.67 0.91 0.59 0.58 0.58 0.63 8 192

100 0.68 0.91 0.74 0.67 0.67 0.69 8 92

ONE 50% -9.80 0.91 0.49 0.54 0.54 0.59 10 576

33% -9.07 0.91 0.55 0.59 0.60 0.64 9 381

200 -8.10 0.92 0.62 0.63 0.64 0.68 8 192

100 -7.32 0.98 0.74 0.68 0.68 0.71 7 93

MARG KDE 50% 0.876 0.81 0.45 0.43 0.43 0.45 12 574

33% 0.885 0.96 0.56 0.58 0.58 0.62 8 382

200 0.893 0.94 0.62 0.58 0.58 0.59 8 192

100 0.899 0.93 0.90 0.80 0.79 0.74 8 92

wKDE 50% 0.882 0.81 0.46 0.44 0.44 0.47 12 574

33% 0.891 0.96 0.56 0.58 0.58 0.62 8 382

200 0.899 0.95 0.77 0.69 0.69 0.68 8 192

100 0.905 0.93 0.90 0.80 0.79 0.74 8 92

ONE 50% -2.631 0.80 0.42 0.42 0.43 0.46 11 531

33% -2.334 0.88 0.52 0.50 0.50 0.52 9 381

200 -1.932 0.93 0.61 0.54 0.54 0.54 8 192

100 -1.607 0.92 0.73 0.64 0.63 0.61 7 93

The threshold is adjusted such that either a certain fraction (50%, 33%) of the compounds or that exactly n compounds (n = 200, 100) remain in the domain.

Results, which differ significantly from random rankings (p-Value < 0.01) are shown in bold.
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general, the latter should behave similarly to the Opti-

mal Assignment kernel, but in this case, it shows differ-

ent results. In contrast to the OAK, the performance of

the Flexible OAK does not recover immediately, indicat-

ing a more severe cause of the decreased reliability.

Instead, this difference might not be caused by the dif-

ference in the AD estimation, as the numbers of ligands

and decoys above the respective thresholds are nearly

identical. Thus, the difference is more likely caused by

the different rankings obtained by the QSAR models of

OAK and FlexOAK. The OAK produces a good ranking

of the innermost 50 compounds (right x-axis boundary

in Figure 3) yielding an AUROC of nearly 0.8 for the

One-Class AD (Figure 3), whereas the FlexOAK leads to

an almost arbitrary ranking on the right AD score

boundary (Figure 4). A possible cause for this result

may be that there are some compounds that are similar

enough to the training set to be retained even in the

most restrictive applicability domain, but whose SAR is

not described correctly by the learned QSAR model.

These cases can be seen as example for the second type

of error introduced at the beginning of the results

Table 5 Virtual Screening results for Factor Xa at five different applicability levels

Kernel ADE Threshold AUROC BEDROC (a) Ligands Decoys

100.00 53.6 32.2 20.0

OAK KDE 50% 0.645 0.78 0.59 0.52 0.51 0.49 58 1020

33% 0.65 0.78 0.68 0.62 0.61 0.57 57 661

200 0.67 0.74 0.58 0.68 0.69 0.69 52 148

100 0.68 0.62 0.36 0.53 0.54 0.61 40 60

wKDE 50% 0.65 0.78 0.59 0.52 0.51 0.49 58 1020

33% 0.66 0.78 0.65 0.59 0.58 0.55 57 661

200 0.67 0.74 0.58 0.68 0.69 0.69 53 147

100 0.68 0.62 0.36 0.55 0.58 0.64 42 58

ONE 50% -15.09 0.78 0.60 0.53 0.53 0.50 58 966

33% -13.98 0.78 0.65 0.58 0.51 0.53 58 660

200 -10.84 0.73 0.58 0.68 0.69 0.69 56 144

100 -7.33 0.61 0.36 0.55 0.57 0.64 45 55

FlexOAK KDE 50% 0.64 0.76 0.42 0.38 0.38 0.37 59 1019

33% 0.64 0.75 0.43 0.41 0.41 0.39 58 660

200 0.66 0.62 0.11 0.18 0.18 0.22 47 153

100 0.67 0.48 0.00 0.03 0.04 0.07 43 57

wKDE 50% 0.64 0.76 0.40 0.37 0.37 0.36 59 1019

33% 0.65 0.74 0.40 0.39 0.38 0.37 57 661

200 0.66 0.63 0.11 0.18 0.18 0.22 48 153

100 0.67 0.48 0.00 0.03 0.03 0.07 43 57

ONE 50% -15.40 0.76 0.41 0.38 0.38 0.37 59 1016

33% -13.86 0.75 0.43 0.42 0.42 0.40 59 659

200 -10.92 0.64 0.13 0.23 0.24 0.29 51 149

100 -8.20 0.42 0.00 0.03 0.04 0.08 44 56

MARG KDE 50% 0.84 0.57 0.00 0.02 0.02 0.3 54 1024

33% 0.85 0.57 0.00 0.01 0.02 0.03 44 674

200 0.864 0.48 0.00 0.00 0.00 0.00 21 179

100 0.866 0.56 0.00 0.00 0.00 0.00 16 84

wKDE 50% 0.845 0.57 0.00 0.01 0.02 0.03 54 1024

33% 0.852 0.56 0.00 0.00 0.00 0.01 43 675

200 0.86 0.47 0.00 0.00 0.00 0.00 21 180

100 0.87 0.55 0.00 0.00 0.00 0.00 16 84

ONE 50% -11.30 0.56 0.01 0.02 0.02 0.03 55 1014

33% -9.95 0.55 0.04 0.01 0.01 0.02 43 675

200 -7.79 0.41 0.00 0.00 0.00 0.00 14 186

100 -7.09 0.47 0.00 0.00 0.00 0.00 8 92

The threshold is adjusted such that either a certain fraction (50%, 33%) of the compounds or that exactly n compounds (n = 200, 100) remain in the domain.

Results, which differ significantly from random rankings (p-Value < 0.01) are shown in bold.
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section. In this case, the FlexOAK seems to struggle

with an activity cliff, but the original Optimal Assign-

ment kernel does not. Therefore, it can be concluded

that the FlexOAK overestimates the similarity of mole-

cules regarding their Factor Xa activity (i.e., regards

molecules as more similar than they are and thus makes

the activity landscape rougher) and that the OAK

describes the respective SAR better.

4.4 Platelet Derived Growth Factor Receptor b

As in the other screening experiments, the Optimal

Assignment kernel shows the best ranking performance

regardless of which criterion and applicability threshold

are chosen. The Flexible OAK (Figure 5) is competitive

in most cases and seems to be able to retain a higher

fraction of the ligands in the more stringently defined

applicability domains.

The most interesting behavior on this screening data

set shows the Marginalized Graph kernel (Figure 6). In

the innermost domain presented in Table 6, consisting

of the 100 compounds with the highest applicability

scores, very few ligands are contained. Thus, regarding

this similarity measure, in this case the ligands from the

screening set are less similar to the training set than at

Table 6 Virtual Screening results for PDGFRb at five different applicability levels

Kernel ADE Threshold AUROC BEDROC (a) Ligands Decoys

100.00 53.6 32.2 20.0

OAK KDE 50% 0.62 0.68 0.22 0.19 0.19 0.19 74 2789

33% 0.63 0.67 0.28 0.22 0.22 0.21 55 1854

200 0.667 0.78 0.80 0.65 0.64 0.57 7 193

100 0.673 0.79 0.95 0.83 0.82 0.72 6 94

wKDE 50% 0.62 0.68 0.22 0.19 0.18 0.19 74 2790

33% 0.63 0.67 0.28 0.22 0.22 0.21 56 1853

200 0.665 0.76 0.79 0.63 0.61 0.53 8 192

100 0.672 0.87 0.95 0.83 0.82 0.73 6 94

ONE 50% -11.58 0.67 0.22 0.19 0.19 0.19 76 2781

33% -10.95 0.66 0.26 0.20 0.20 0.19 58 1851

200 -8.93 0.78 0.80 0.65 0.64 0.57 7 192

100 -8.64 0.78 0.95 0.83 0.82 0.72 6 94

FlexOAK KDE 50% 0.61 0.61 0.18 0.15 0.15 0.15 67 2796

33% 0.62 0.65 0.25 0.21 0.20 0.20 52 1857

200 0.647 0.84 0.79 0.61 0.60 0.53 9 191

100 0.653 0.87 0.95 0.82 0.80 0.70 7 93

wKDE 50% 0.61 0.61 0.18 0.15 0.15 0.15 61 2796

33% 0.62 0.65 0.25 0.20 0.20 0.20 52 1857

200 0.646 0.83 0.79 0.61 0.60 0.52 9 191

100 0.653 0.85 0.95 0.81 0.79 0.68 8 92

ONE 50% -12.67 0.61 0.18 0.15 0.15 0.15 67 2796

33% -12.04 0.65 0.25 0.20 0.20 0.20 50 1859

200 -10.33 0.82 0.79 0.61 0.59 0.52 9 191

100 -9.97 0.86 0.95 0.82 0.80 0.70 7 93

MARG KDE 50% 0.83 0.37 0.13 0.11 0.11 0.11 52 2812

33% 0.84 0.40 0.18 0.17 0.17 0.17 25 1884

200 0.87 0.54 0.65 0.49 0.48 0.43 8 192

100 0.88 0.76 0.88 0.75 0.73 0.66 4 96

wKDE 50% 0.81 0.35 0.13 0.12 0.11 0.11 49 2814

33% 0.82 0.38 0.17 0.17 0.17 0.17 29 1880

200 0.86 0.57 0.65 0.49 0.48 0.42 8 192

100 0.87 0.86 0.91 0.82 0.81 0.77 3 97

ONE 50% -5.05 0.39 0.13 0.11 0.11 0.11 51 2812

33% -4.58 0.42 0.19 0.18 0.18 0.18 26 1883

200 -3.09 0.54 0.65 0.49 0.48 0.43 8 192

100 -2.79 0.85 0.91 0.82 0.81 0.77 3 97

The threshold is adjusted such that either a certain fraction (50%, 33%) of the compounds or that exactly n compounds (n = 200, 100) remain in the domain.

Results, which differ significantly from random rankings (p-Value < 0.01) are shown in bold.
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least 96 (KDE formulation, Table 6) of the decoys. At

this point, it is important to keep in mind that the

applicability score depends not only on the similarity to

the active structures from the training set but also on

the inactive ones. This contribution of the inactive train-

ing samples may have a bigger impact in the PDGFRb

experiment than in the others, because all kernels regard

a much higher proportion of the ligands as outliers than

in the other screening experiments (i.e., the decoys

might be more similar to the training set (inactives)

than the ligands).

In conclusion, this result should not be interpreted as

a weakness of the kernel, because it shows good screen-

ing performance at the 200 and 100 compound thresh-

old levels. Instead, it should be regarded as the effect of

the feature spaces in which the different kernels work

and as a hint that the domain should not be defined too

strictly.

4.5 Significance Test

The application of the AD threshold filter to the screen-

ing data sets often has a large impact on the distribution

of ligands and decoys as well as on the number of com-

pounds evaluated, and thus changes the probability of

getting a certain result by chance. Thus, the improve-

ment of the screening performance in the applicability

domain could be a result of the higher probability of

getting a good ranking by chance, due to the smaller

size and the increased proportion of ligands. To ensure

that this situation does not apply and that the improved

performance measures are an effect of the removal of

outliers rather than the result of an easier task, the sta-

tistical significance of the AUROC and the BEDROC

scores is calculated using a permutation test.

The permutation test calculates the probability of

obtaining an AUROC at least as high as the observed

one by a random ranking of the same base distribution

(same number of ligands and decoys). The distribution

of the AUROC is approximated by generating 10.000

random rankings with the respective numbers of ligands

and decoys. The p-value of the observed AUROC is cal-

culated as the relative number of random rankings with

an AUROC at least as high as the observed one. Thus,

it is an estimate of the probability of producing at least

as high an AUROC by chance.

This setup considers the effect of the base distribution

on the performance measure of a ranking, and thus

allows us to distinguish meaningful rankings from ran-

dom ones. Note that this significance test does not com-

pare two screening experiments and cannot be

interpreted as one experiment being significantly better

than the other. It simply ensures that a screening result

is not random. The same evaluation was conducted for

each of the BEDROC scores.

4.6 Choice of the threshold

Unfortunately, our experiments indicate that there

seems to be no suitable default threshold for any of the

applicability domain estimations. Table 7 shows that the

ranges of the threshold, and thus the spatial representa-

tions of the applicability domains, strongly depend on

the kernel. This dependence alone would be no draw-

back, but the training data set also affects the possible

values of the applicability score. However, there are

some guidelines for choosing a threshold that should

give good results.

All applicability domain approaches presented in this

work tend to suffer from wrong QSAR model predic-

tions in the innermost applicability domain, which are

probably caused by wrong structure-activity relationship

assumptions. This impact of possibly wrong QSAR

assumptions gets especially apparent in the FlexOAK

screening of the Factor Xa data set discussed earlier.

Therefore, we propose that the threshold should not be

chosen too strictly, because otherwise single mispredic-

tions would have a large impact on the performance.

Our experiments indicate that approximately at least

100 compounds should be retained in the domain

according to the chosen threshold in order to get per-

formance estimates that are not dominated by a few

especially bad predictions. This is also because the BED-

ROC metric is not robust on data sets of such a small

size, because it is designed such that the top ranked

(dependent on the choice of a) compounds contribute

to 80% of the score. Thus, if only the innermost 100

compounds of the AD are considered, 80% of the BED-

ROC score for a = 100.0 is based on the first two com-

pounds. Therefore, the BEDROC score for high values

of a should not be interpreted too precisely for the

more restrictive AD thresholds. However, this effect

does not affect the reported statistical significance

because the latter considers the increased probability of

obtaining a high BEDROC score on a smaller data set.

Another problem that could arise from a too strict

threshold can be seen in the PDGFRb screening using

the Marginalized Graph kernel. In the innermost

domain, no ligands at all are retained and thus, despite

its good performance in less stringent domains, the

model is unable to enrich any ligands.

On the other hand, it is obvious that the threshold

should not be chosen too loose, in order to remove the

clear applicability domain outliers successfully from the

prediction.

Finally, the experimental results indicate that in most

cases (at least in all of the experiments conducted) the

reliability of the virtual screening is improved in the top

half and the top third of the screening set according to

any of the applicability domain formulations, compared

to an evaluation of the whole data set. Thus, instead of
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defining a default threshold for the AD estimation, the

consideration of the lower half of the respective domain

as the probable outlier set should be a good rule-of-

thumb in most applications. An additional positive effect

is that on the respective applicability level, a large pro-

portion of the ligands are usually retained in the domain

and the screening reliability is improved. However, the

removal of some of the ligands from the screening set

due to their low applicability score should not be con-

sidered as a drawback of the applicability domain esti-

mation and consideration because these molecules can

be expected to be badly predicted otherwise and thus to

be neglected because of their low rank regardless.

4.7 Comparison of the screening performance inside and

outside of the AD

As discussed earlier the performance of a model in the

innermost applicability domain is often not very reliable

because, due to the small number of compounds

remaining, the influence of single bad predictions is very

high. This error can be regarded mostly as the second

type of error introduced at the beginning of the results

section because a compound has to be very similar to

the training samples to be retained in the innermost

AD, but obviously has a structure-activity relationship

not covered by the model. Thus, to compare the perfor-

mance gain of restricting the prediction to the mole-

cules, which are regarded as part of the models

applicability domain, the threshold should not be chosen

too tightly. The comparison of different thresholds

showed that in most cases, as discussed in the last sec-

tion, the performance gain is most robust if half or at

least a third of the test samples are retained in the

domain. The validity of this choice can be confirmed by

comparing the model performance on the molecule sets

inside and outside the respective domain. Figures 7, 8

and 9 show the ROC curves inside (blue) and outside

(green) for the different screening experiments, kernels,

and AD formulations. In all cases, except the top right

parts of the OAK and FlexOAK screenings of Factor Xa,

the ROC curve inside the domain is better than outside.

Thus, even in scenarios in which a model does not give

convincing results, as is the case for the FlexOAK and

the Marginalized Graph kernel on the PDGFRb data set,

Table 7 Ranges of the applicability score for the different combinations of ADE formulation, kernel and experiment

ADE Kernel Target Training Set Screening Set

Min Max Avg. Min Max Avg.

KDE OAK Thrombin 0.70 0.87 0.82 ± 0.04 0.51 0.77 0.64 ± 0.08

Factor Xa 0.59 0.75 0.71 ± 0.02 0.47 0.72 0.60 ± 0.08

PDGFRb 0.81 0.88 0.85 ± 0.02 0.54 0.70 0.62 ± 0.05

FlexOAK Thrombin 0.69 0.86 0.81 ± 0.04 0.54 0.79 0.66 ± 0.08

Factor Xa 0.60 0.74 0.70 ± 0.02 0.53 0.69 0.61 ± 0.05

PDGFRb 0.80 0.88 0.85 ± 0.02 0.54 0.68 0.61 ± 0.04

MARG Thrombin 0.81 0.95 0.92 ± 0.03 0.57 0.91 0.74 ± 0.11

Factor Xa 0.74 0.94 0.91 ± 0.02 0.52 0.88 0.70 ± 0.11

PDGFRb 0.92 0.96 0.95 ± 0.01 0.74 0.91 0.82 ± 0.05

wKDE OAK Thrombin 0.70 0.87 0.82 ± 0.04 0.51 0.79 0.65 ± 0.09

Factor Xa 0.59 0.76 0.71 ± 0.02 0.47 0.71 0.59 ± 0.07

PDGFRb 0.81 0.88 0.85 ± 0.02 0.54 0.70 0.62 ± 0.05

FlexOAK Thrombin 0.69 0.87 0.82 ± 0.04 0.54 0.79 0.66 ± 0.08

Factor Xa 0.60 0.74 0.71 ± 0.02 0.53 0.70 0.62 ± 0.05

PDGFRb 0.80 0.89 0.85 ± 0.02 0.54 0.68 0.61 ± 0.04

MARG Thrombin 0.80 0.96 0.93 ± 0.04 0.56 0.93 0.75 ± 0.12

Factor Xa 0.74 0.94 0.91 ± 0.02 0.52 0.87 0.69 ± 0.11

PDGFRb 0.91 0.97 0.95 ± 0.01 0.72 0.91 0.82 ± 0.06

One-Class OAK Thrombin -6.52 1.61 -0.33 ± 1.51 -15.70 -0.79 -8.25 ± 4.65

Factor Xa -22.21 4.98 -0.90 ± 3.41 -55.36 -3.94 -29.65 ± 16.01

PDGFRb -1.14 0.92 0.0 ± 0.43 -17.08 -6.63 -11.86 ± 3.24

FlexOAK Thrombin -5.62 1.35 -0.37 ± 2.07 -16.87 -2.42 -9.65 ± 4.50

Factor Xa -20.2.0 3.52 -0.96 ± 2.96 -38.80 -3.68 -21.24 ± 10.94

PDGFRb -1.41 0.61 -0.12 ± 0.47 -17.01 -8.46 -12.74 ± 2.66

MARG Thrombin -5.22 1.04 -0.35 ± 1.21 -20.82 -0.03 -10.42 ± 6.45

Factor Xa -26.29 2.85 -0.77 ± 3.39 -27.55 0.00 -13.78 ± 8.55

PDGFRb -1.11 0.50 -0.01 ± 0.31 -9.56 -1.37 -5.47 ± 2.54
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the consideration of the applicability score increases the

reliability of the virtual screening.

At this point it should be mentioned that the last case,

the Marginalized Graph kernel screen for PDGFRb

ligands, seems to give an inverted ranking, and thus the

model does not behave randomly as one would expect

for a bad model, and the ROC plot indicates that the

performance gets closer to random performance using

the 50% threshold. However, the applicability estimation

can only consider the fact that for some compounds the

model cannot be expected to distinguish ligands from

decoys reliably, and not that the ranking outside the

domain is truly random. It this case, the model has

regarded some decoys as highly active and some ligands

Figure 7 Comparison of the ROC curves inside and outside the 50% applicability domain for Thrombin.

Figure 8 Comparison of the ROC curves inside and outside the 50% applicability domain for Factor Xa.

Figure 9 Comparison of the ROC curves inside and outside the 50% applicability domain for PDGFRb.
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as inactive, leading to an inverted ranking. Thus, the

random performance of the model inside the domain

must be considered as an improvement compared to the

inverted ranking outside.

The presented comparisons also indicate that the

elimination of some of the active compounds from the

screening set should not be regarded as a drawback

because the bad rankings obtained on the subset outside

the domain can only be the result of these ligands being

given low rankings. If only decoys were omitted no sen-

sible ROC curve would have been possible, thus at least

some of the ligands must also have been filtered out.

Moreover, the ROC curves for the screening of the out-

side of the applicability domain show that the ranking is

at most random. Thus, the ligands outside this 50%

domain are in general not predicted to be more active

than the decoys and consequently would not have been

identified by the model without considering the applic-

ability domain.

Finally, it is important to note that the 50% rule-of-

thumb may not always be the best choice. There may be

cases in which only the top 10% are predicted reliably,

and other cases in which a model is applicable for all

compounds. Nevertheless, the experiments show that

in general the performance of a model is more reliable

in the upper half of the applicability score range than in

the lower half, and that this behavior is independent of

the real performance of the model.

5 Conclusion
The results indicate that the reliability of a virtual

screening using structured kernel-based QSAR models

can be improved by the identification and removal of

compounds that lie outside the applicability domains of

the models. To estimate the domain of applicability of a

model three formulations were introduced, which can

describe the applicability domain of a kernel-based

model using only the molecule representation implicitly

contained in the kernel.

All formulations were evaluated using three different

structured kernels from the literature on three VS

experiments. The data sets have been composed from

QSAR data sets from the literature for the training of

the models and the DUD data sets for virtual screening

for the respective targets. Care has been taken that the

training and test data sets were completely disjoint.

The conducted experiments show that in general, the

performance of the model is considerably better inside

the domain than outside, and that this performance gain

is not caused by chance due to the changed ligand/

decoy ratio. Two of the three AD formulations (Kernel

Density Estimation and weighted KDE) can be applied

without imposing any computing time overhead because

the respective applicability scores can be calculated

simultaneously with the prediction using the same itera-

tion. This simultaneous calculation is a big advantage

compared to other approaches, which assess prediction

reliability and usually need additional iterations.

Unfortunately, the applicability scores computed by

the different formulations cannot be directly compared

on different experiments, and thus it is not possible to

present robust default thresholds to decide whether a

compound should be regarded as part of the models

domain or not. Despite this lack of a default parameteri-

zation, the experiments indicate that omitting the half

of the compounds with the lowest applicability score,

regardless of which AD formulation and kernel is cho-

sen, improves the reliability of a model considerably and

retains a large proportion of the ligands.

An open question, not considered in this work, is

whether the AD estimation and the respective partition-

ing of the screening set influence the chemotype enrich-

ment. This question is interesting and important, but

lies outside the scope of this work and will be the sub-

ject of further studies.

Additional file 1: List of atom and bond descriptors used by the

structured kernels. A complete enumeration of the atom and bond

descriptors including their respective references (if applicable) is given in

the file.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1758-2946-2-2-

S1.PDF ]

Additional file 2: Effect of the AD on the VS performance of all

combinations of AD, Kernel and Target. All figures for the AD

evaluation of the different experiments are presented in the file. The

values for the threshold retaining less than 50 compounds in the

respective AD are omitted.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1758-2946-2-2-

S2.PDF ]
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