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Journal of Educational Statistics 
Spring 1976, Volume 1> Number 1, Pp. 69-82 

ESTIMATION OF THE BOX CORRECTION FOR DEGREES OF FREEDOM FROM 
SAMPLE DATA IN RANDOMIZED BLOCK AND SPLIT-PLOT DESIGNS 

Huynh Huynh Leonard S. Feldt 

Boston College University of Iowa 
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ABSTRACT 

It has been suggested that when the variance assump
tions of a repeated measures ANOVA are not met, the df of 
the mean square ratio should be adjusted by the sample 
estimate of the Box correction factor, e. This procedure 
works well when e is low, but the estimate is seriously 
biased when this is not the case. An alternate estimate is 
proposed which is shown by Monte Carlo methods to be less 
biased for moderately large e. 

INTRODUCTION 

In the randomized block ANOVA design with k treatments 
and n blocks, the population covariance matrix must satisfy 
certain conditions if the mean square ratio is to be distri
buted as F with Vj_ = k - 1, v2 = (k - 1) (n - 1) . Assuming 
blocks are randomly drawn and interaction effects are nor
mally distributed, the matrix requirement will be met if, 
for all pairs of treatments, the variances of differences 
are homogeneous. Symbolically, the last requirement demands 
that a£ + a£ - 2ax x = a2 _ must be constant for 

i j i j xi xj 

i, j = 1, •• •, k(i ^ j). (Huynh and Feldt, 1970). In 
applied work, this requirement is generally interpreted to 
demand that the variances within the treatments must be 
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equal, and the correlations between the measures under all 
pairs of treatments must be equal. 

Data from the Iowa Tests of Basic Skills (1974) may be 
used to illustrate these conditions. The five principal 
scores—Vocabulary, Reading, Language, Work Study Skills, 
and Mathematics—are reported to have the following vari
ances and correlations in grade 6 of the national norming 
sample. (Variances are presented in parentheses.) 

V R L W M 
V (261.1) .81 .74 .72 .69 
R (230.4) .75 .78 .73 
L (264.7) .78 .74 
W (182.2) .82 
M (165.9) 

In this sample (n = 2548) the correlations are 
reasonably homogeneous, but the variances exhibit a moderate 
degree of heterogeneity. When an analysis of variance was 
considered to identify the areas in which boys and girls 
differed significantly in average achievement, this matrix 
indicated that the ANOVA assumptions were almost certainly 
violated. 

Research on ethnic group differences may pose the same 
problem. For example, Lesser, Fifer, and Clark (1965) com
pared the profiles of average scores of four ethnic groups 
on a battery of four ability tests. The correlation matrices 
strongly suggest that the data for these populations failed 
to satisfy the assumptions of the ANOVA model. 

The effect of such violation of assumptions was clearly 
shown by Box (1954). For any arbitrary covariance matrix 
which deviates from the required form, the mean square ratio 
is approximately distributed as F with reduced degrees of 
freedom. The amount of the reduction is dictated by a 
multiplicative factor, £, which depends on the population 
covariance matrix. When the matrix fulfills the condition 
noted above, e = 1.0; otherwise, e < 1.0, with a minumum 

of 1 . This result was extended to the split—plot 
k - 1 

design by Geisser and Greenhouse (1958). Application to the 
problem of comparing the test profiles of several groups was 
presented by the same authors (1959). 
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Since e depends on the population matrix and is almost 
always unknown, Greenhouse and Geisser (1959) suggest a 
three-step approach to testing significance. The mean 
square ratio is first compared to the critical value of F 
with k - 1 and (k - 1) (n - 1) degrees of freedom. If th,e 
ratio does not exceed this value, the analysis ends, since 
adjustment of the df would result in a larger critical 
value. If the ratio surpasses this critical value, it is 
compared to the critical value for F with 1 and n - 1 
degrees of freedom. A ratio larger than this second 
critical value may be unequivocally declared significant, 
since the df have been maximally reduced. When the mean 
square ratio exceeds the first critical point but not the 
second, the issue is in doubt. In this situation Greenhouse 
and Geisser suggest two alternatives: use the exact test 
procedures (Hotelling, 1931; Winer, 1971) or adjust the df 
with £ estimated from the sample matrix. Analogous steps 
are suggested for the interaction test in the split-plot 
design. 

The second suggestion, adjusting the df, may be more 
appealing than the first under some circumstances. 
Imhof (1962) has shown that when n is close to k, the power 
of the T2 test compares very unfavorably even to the con
servative F test. Also, the statistic T2 is difficult to 
compute by hand. Prompted by these considerations, Collier 
et al. (1967) and Stoloff (1970) investigated the effect on 
Type I error of adjusting df on the basis of £ computed from 
the sample matrix. Their data suggest that when n is less 
than twice the number of treatments, e may be seriously 
biased if £ is near or a little above .75. (As noted later, 
such values of £ are fairly common in the case of standard
ized test batteries.) The estimate then tends to over-
correct the degrees of freedom and produces a more stringent 
significance level than the nominal level being employed. 

The basic idea of using a sample estimate seems sound. 
But it would be desirable to find an estimate of £ which is 
less biased and less dependent on large sample size when the 
covariance matrix deviates only moderately from the classical 
model. The derivation of such an estimate and its validation 
by Monte Carlo methods was the subject of this study. 

DERIVATION OF THE STATISTIC £_ 

Let t be the covariance matrix of a randomized block 
design. The matrix includes diagonal elements O^ 

(i=l, •••, k), the population variances within treatments, 
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and off-diagonal elements G ^ (i^j; i, j=l, •••, k), the 
population covariances between treatments. In the split-
plot design it is assumed that each of the independent 
populations under the second treatment dimension has the 
same covariance matrix $• The correction factor e is 
defined by the formula 

€ = k2(^ii " a..) 2 /< k " l)(ZZa£. - 2kla2 + k2a 2) . (1) 

In this expression o±± is the mean of the variances, a. the 
mean of the ith row or column, and a the mean of all 
elements in the population covariance matrix. The quantity k 
represents the order of the matrix, that is, the number of 
levels of the treatment which gives rise to repeated measures 
on the blocks or the subjects. 

An alternate expression for e is as follows: 

e - • (2) 
(k - 1)ZA* 

In this expression X^ (i=l, ,,#, k-1) are the positive 
eigenvalues of the matrix A$, where A = {6^ - 1/k}. The 
quantity &^. is Kronecker's delta; that is, 6^. = 1 if i = j 

and zero otherwise. 

The estimator e is obtained by substitution of sample 
values for parameters in (1). (These are pooled estimates 
in the case of the split-plot design.) Thus, the formula 
for e becomes 

t = k2(^ii " S ) 2 / ( k " 1>f E E S?. " 2 ^ S ? + k2S 2]. (3) 
ij 13 1# 

If the parent population is multivariate normal, e is the 
maximum likelihood estimator for e (Anderson, 1958). 

It is probably intuitively obvious that e is biased 
when the population matrix is, in fact, homogeneous. For 
any covariance matrix, be it a sample or population matrix, 
the numerical maximum of e is 1.0. If there are any de
viations from the condition that o* __ is a constant, 

xi " xj 
that is, if any pair of treatments has a variance of diff
erences not equal to the variance of differences for any 
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other pair, £ will be less than 1.0. A sample matrix can 
always be expected to evidence some heterogeneity of this 
kind, even though the population matrix does not. Thus, 
when e is applied to the df, some reduction will occur even 
though none is truly called for. 

It would be desirable to have an unbiased estimator for 
e. Such an estimator, unfortunately, is not known. When the 
numerator and denominator of a fraction involve statistics 
that are not independent, derivation of the expected value 
of the fraction may prove extremely difficult. With unknown 
expected value, correction for bias is impossible. Even if 
the expected value were known, correction of bias when 
e = 1 would probably be impossible unless one is prepared to 
accept estimates greater than 1. 

The expected values of the numerator and the denominator 
of a ratio are often considerably less difficult to derive 
than the expected value of the ratio itself. Thus, statis
ticians sometimes use the ratio of unbiased estimators in 
situations involving intractable ratios. Hajek (1962), for 
example, used this method in estimating the effective 
degrees of freedom for the t-test in a Behrens-Fisher 
problem. This approach was used in the present study. It 
was not obvious without Monte Carlo study, however, that a 
ratio of unbiased estimators would prove less biased than 
the maximum likelihood estimator, e. 

For the sake of simplicity the randomized block design 
is considered first. A generalization is made later to the 
split-plot design with common covariance matrix. Let A be 
the numerator of the right side of the equation (3), and 
B the denominator, deprived of k-1. Thus 

A = k 2 ( S i i - S..)
2 

B - ZZS?4 - 2kZS? + k2S2 . 

ij 

It may be shown that 

A = (k - 1)2(S.. - l±i)
2 , 

in which S^^ denotes the average variance and S.. the average 

covariance in the sample matrix. Since the treatments by 
blocks or error mean square equals (S^ - ^±A) > 
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°°error A = (k - 1)2MS2 

7 error 

Box (1954) showed that under normality 

k-1 
SS = £ X.Y? error . , iAi 

i=l 

where the k - 1 chi-square variates, each with n - 1 degrees 
of freedom are independent. Thus, the expected value of A is 

E[A3=
7TTTTr

E
M] (n - 1) 

Using Etxf]2 = 2(n - 1) + (n - l)2 and E[(X?)(xj)J = (n - l)
2, 

one may ultimately derive 

E[A] = \+ (ZX±)
2 . (4) 

n - 1 Jm 

To find the expected value for B in terms of A^, it is 
sufficient to consider the expectations of S2., S? and 
2 2 2 2 1J !•*• 

k S^# . The expectation of k S ^ can be obtained by noting 
that* 

k
2
sf# = [ ? i ± + (k - D ^ i j ]

2
 . 

The expression within the brackets is the block mean square 
which is distributed as ka X( n - l)/(n - IV

 T n u s 

E[k2S2J = E[ka_X(n _ 1}/(n - l)]
2 > 

and hence 

E[k2S2J = k2a2
# + 2k

2a2y(n - 1). 

The expectations of S?j and s|^ can be obtained by noting that 

the matrix S = (Sii) has the Wishart (—-— * n - 1) distribu-J n - 1 
tion. From Anderson (1966, p. 161), the following expression 
can be obtained: 

E<sij) = aij + (aij + o^a^/in - 1) 
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and 

E(S?.) = of. + (a£. +aiia..)/(n- 1). 

Summation of these two expected values over the appropriate 
indices and grouping the terms leads to the following 
expression: 

E(B) = [n£A? + (EAi)
2]/(n - 1). (5) 

i i 

From (4) and (5) it may be shown that 

" V ' • fa !"»("- 2)
 ElnA

 -
 2B1 

£>
'i • („ + W - 2)

 E
"° -

 1)B
 -

 A1 

Thus, an alternative estimator for e, as defined in (2), is 

~ = nA - 2B  
[k - l][(n - 1)B - A] 

In terms of £, the estimator is 

P = n(k - l)g - 2 

[k - l][n - 1 - (k - l)g] 

It may be verified that for any value of n and k, 
e _> e with the equality holding when e = 1/ (k - 1). Since 
it would not be reasonable to estimate e by a quantity 
larger than 1.0, whenever e exceeds this upper bound the 
estimator is equated to 1.0. It may also be noted that the 
difference between £ and e decreases with increasing n. 

The foregoing development may be generalized to the 
split-plot design. This ANOVA model is appropriate when 
the researcher is interested in evaluating the similarity 
of profiles of average scores for several populations. For 
example, studies of the differences between boys and girls 
in their achievement, aptitude, or interest profiles would 
employ this design. On the assumption that the g indepen
dent populations have identical variance-covariance matrices, 
each element is estimated by pooling the corresponding sums 
of squared deviations or cross-products from the several 
groups. The statistic e is then computed as before. With 

 at University of Victoria on March 5, 2011http://jebs.aera.netDownloaded from 

http://jebs.aera.net


76 Huyrih and Feldt 

g groups and a total of N subjects, the statistic £ is obtained 
by the formula 

? - N(k - 1)£ - 2 

(k - 1)[N - g - (k - l)e] 

The same convention holds for the upper limit. 

MONTE CARLO STUDY OF £ AND £ 

Review of a number of test manuals suggests that the con
dition e > .750 generally holds for the test batteries used in 
educational research. For example, the intercorrelation 
matrix for the original Primary Mental Abilities Tests (1938) 
has a value of £ equal to .764. In their later factor studies 
of intelligence, the Thurstones (1941) reported a matrix for 
which £ equals .852. For a five-variable matrix derived from 
tlie Wechsler Adult Intelligence Scale (1958) the value of £ 
equals .752. Grade 6 of the Iowa Tests of Basic Skills (1974) 
has a dispersion matrix with £ equal to .913. The manual for 
t n e Differential Aptitude Tests (1966) includes a variance-
covariance matrix with £ equal to .722 when the abilities 
are measured in stanine scores. The twelve subtests of the 
WISC-R (1974) have a matrix for which £ equals .853. 

On the basis of these well known test batteries and a 
sampling of research studies involving repeated measurements, 
five representative population matrices were devised with 
£ £ 1.0. For two matrices £ < .750, for two others £ > .750, 
and for the last £ = 1.0. For convenience, all variables 
were assigned a population mean of zero and variance of 1.00. 
These matrices are presented in Table 1. 

A computer program was devised to generate sample vec
tors of k scores, each vector simulating the score profile 
or repeated measurements of an experimental subject. These 
scores were generated from a k-variate normal distribution 
with one or another of the five population matrices in 
Table I. Each sample set of n profiles was analyzed via the 
randomized block model, the mean square ratio obtained, the 
estimators £ and £ computed, and the approximate test carried 
out. The reference F distribution for each test was dictated 
by the product of £ or £ times the conventional degrees of 
freedom. Eighteen thousand sets of sample data, leading to 
eighteen thousand significance tests by each approach, were 
generated for each combination of covariance matrix and block 
size (n = 10, 15, 20). Summary data for the estimators are 
presented in Table II, and empirical estimates of the inci
dence of Type I error are presented in Table III. 
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TABLE I 

Covariance Matrices of Populations from which Samples Were 
Drawn in Monte Carlo Study of Statistics £ and £ 

In general, £ appears to be a better estimator than £ 
(in terms of bias) when the parameter £ is in the neighborhood 
of .5 or lower. However, when £ is moderately large, say 
£ > .75, £ is the less biased estimator. Increasing the 
block size results in a reduction of the bias for the two 
statistics. Whenever the bias is small, the improvement due 
to large block size is also small. In summary, it would 
appear that £ is superior to £ in the range of £ commonly 
found for batteries of standardized tests. 

Value of e Elements 

1.0000 
.8595 1.0000 

e = .363 .9602 .8575 1.0000 
.6417 .8794 .6621 1.0000 
.4368 .7705 .5952 .9107 1.0000 

1.0000 
.8000 1.0000 

e = .522 .6000 .8000 1.0000 
.4000 .6000 .8000 1.0000 
.3000 .4000 .6000 .8000 1.0000 

1.0000 
.8100 1.0000 

e = .752 .7400 .7000 1.0000 
.5300 .5800 .5200 1.0000 
.4300 .4500 .3900 .6100 1.0000 

1.0000 
.6200 1.0000 

e = .831 .6200 .6700 1.0000 
.5400 .5300 .6200 1.0000 
.2900 .3800 .4800 .6200 1.0000 

1.0000 
.5000 1.0000 

e = 1.000 .5000 .5000 1.0000 
.5000 .5000 .5000 1.0000 
.5000 .5000 .5000 .5000 1.0000 
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TABLE II 

Estimated Means and Standard Deviations 
of the Sample Correction Factors (k = 5) 

£ n £ 

Mean S.D. Mean S.D. 

.363 10 .363 .064 .418 .104 
15 .364 .055 .396 .074 
20 .361 .052 .384 .064 

.522 10 .495 .097 .639 .170 
15 .515 .091 .609 .133 
20 .523 .091 .592 .120 

.752 10 .596 .106 .809 .166 
15 .644 .101 .798 .146 
20 .666 .107 .766 .141 

.831 10 .632 .105 .861 .150 
15 .689 .101 .858 .136 
20 .718 .107 .853 .136 

1.000 10 .690 .093 .937 .102 
15 .770 .084 .953 .085 
20 .814 .091 .959 .097 

What sort of power advantage accrues from the use of e 
rather than e when 1.0 >_ £ >L «75? The answer to this 
question depends upon the degree of falsity in the null 
hypothesis, the value of e, the significance level and the 
sample size. The advantage of £ is greatest when £ is close 
to 1.0 and n is small. For purposes of illustration, we may 
take £ = 1.0, n = 10, a = .05, and k = 5 (a five-treatment 
experiment). In this situation, the means of £ and £ in the 
Monte Carlo portion of this study were .690 and .937, 
respectively. If these values are assumed representative, 
the use of t typically leads to the use of a central F model 
with approximately (.690)(4) = 2.8 and (.690)(4)(9) =24.8 
degrees of freedom. The use of £ leads to an F with 3.7 and 
33.7 degrees of freedom. 

The power of tests based on the two procedures depends 
on cj)2, the non-centrality parameter of F. If cj)2 = 2.8, the 
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TABLE III 

Empirical Percents of Type I Error Associated with the 
Approximate Tests with Estimated Degrees of Freedom 

in Randomized Block Designs (k = 5) 

Correction Fact or e Correction Factor e 

Level o f Significance (%) Level of Significance 

e n 10 5 2.5 1 10 5 2.5 1 

.363 10 9.6 5.2 2.7 1.2 10.5 6.0 3.6 1.8 
15 9.6 5.1 2.9 1.2 10.1 5.4 3.1 1.4 
20 9.8 5.4 2.9 1.2 10.1 5.5 3.2 1.5 

.522 10 8.6 4.4 2.3 1.1 10.2 5.7 3.5 1.8 
15 9.1 4.5 2.3 1.0 10.2 5.6 3.0 1.4 
20 9.5 5.1 2.4 1.2 10.3 5.5 3.1 1.5 

.752 10 8.0 3.4 1.7 0.7 10.2 5.5 3.0 1.3 
15 8.2 3.8 1.9 0.8 9.6 5.1 2.7 1.3 
20 9.4 4.4 2.3 1.1 10.2 5.1 2.9 1.4 

.831 10 7.8 3.6 1.7 0.6 10.1 5.3 2.9 1.3 
15 8.5 4.0 2.0 0.9 10.1 5.3 2.8 1.4 
20 9.1 4.6 2.1 0.8 10.3 5.4 2.8 1.2 

1.000 10 7.1 2.9 1.2 0.3 9.5 4.6 2.3 0.9 
15 8.1 3.4 1.4 0.5 9.8 4.7 2.3 0.9 
20 9.3 4.2 1.8 0.6 10.5 5.0 2.5 1.0 

power values associated with £ and £ are approximately .74 
and .81, respectively. The difference is not large, but it 
is achieved at practically no expense, and £ better controls 
Type I error. It is of interest to note that with this 
same degree of falsity and n = 11, Hotellingfs T2 has a 
power of .57 (Huynh, 1969). When £ = .831 and the observed 
average values of £ and £ are used, the power differential 
is .71 vs .78. With smaller values of n, the differences in 
power would be larger; with smaller values of £ the differ
ences would be smaller. If one preferred to summarize the 
results of an experiment in terms of confidence intervals 
for the contrasts of interest or with Bayesian credibility 
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intervals, the use of e rather than e would result in 

analogous reductions in the length of the intervals when 

e > .75. 

The characteristics and merits of the statistics e and 

£ manifest themselves again clearly in the estimated Type I 

error probabilities of the approximate tests based on each. 

From the data in Table III, it can be seen that the test 

based on £ is more satisfactory when the parameter £ is 

relatively low or when the number of blocks or subjects is 

fairly large. The test based on e, on the other hand, 

behaves very well at the nominal 10 or 5 percent level in all 

of the situations considered. At the nominal 2.5 and 1 

percent levels it gives somewhat more relaxed, but reasonably 

adequate, control over Type I error whenever the covariance 

matrix is not extremely heterogeneous. This test is less 

dependent on the number of blocks, and is fairly good even 

with a block size as small as twice the number of treatment 

levels. Of course, if n > 20 and powerful computer facili

ties are available, the Hotelling T
2
 gives comparable power 

to this approximate test and more precise control of Type I 

error. 

UPPER PERCENTILE OF THE F DISTRIBUTION WITH 

FRACTIONAL DEGREES OF FREEDOM 

To carry out the approximate tests discussed above, it is 

necessary to determine the 100 (1 - a) percentile of the F 

distribution with h and mh degrees of freedom. Since li and 

mh are determined by multiplying the traditional degrees of 

freedom by £ or e, both li and mh may be fractional. 

(Actually, the quantity li, which equals the product of £ or 

£ times k - 1, is potentially fractional while m, which equals 

n - 1 or N - g, is integral.) When li and mh are small, inter

polation between integral values of h is rather untrustworthy. 

It is then mandatory to determine these values more directly 

and precisely. Imhof (1962) computed these values for 

a = .05 and .01 and for m = 2(1), 8 and h = 1(.05), 1.5; 

1.5(.10) and 3.0; and 3.0(.2), 5.8. For the present study his 

tables were extended to two additional levels of the nominal 

probability, namely, a = .10 and .025. Researchers who may 

have use for these tables may obtain copies from the second 

author. 
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