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Abstract  
Classical gradient operators are generally defined for grey level images and are very useful 

for  image processing such as edge detection, image segmentation, data compression and 
object extraction. Some attempts have been made to extend these techniques to multi- 
component images. However, most o f  these solutions do not provide an optimal edge 
enhancement. 
In this paper we propose a general formulation of the gradient of  a multi-image. We first 
give the definition o f  the gradient operator, and then we extend it to multi-spectral images 
by using a metric and a tensorial formula. This definition is applied to the case o f  RGB 
images. Then we propose a perceptual color representation and we show that the gradient 
estimation may be improved by using this color representation space. Different examples 
are provided to illustrate the efficiency of  the method and its robusmess for  color image 
analysis. 

1 In troduc t ion  

This paper addresses the problem of detecting significant edges in color images. More 
specifically, given a scene including objects which are characterized by homogeneous 
colors, we want to detect and to extract their contours in the image. Our objective is 
to propose a solution which overcomes the problems of shades and reflections due to 
lighting conditions and objects surface state, in order to achieve an adequate image 
segmentation. 

The paper is divided into four parts. In the first part, we propose a general formula 
to define the gradient of a multi-spectral image. In the second part, we apply this 
definition to color images whose components are described in the RGB space. We 
present a brief overview of the classical approaches consisting of an evaluation of the 
gradient as a simple function of its three components. Thirdly, we show that it is 
possible to improve this gradient estimation by using an Euclidean metric in the 
RGB space. 

We then introduce the perceptual color space representation which separates the 
intensity and chromatic components. We improve the classical HSV model by 
introducing a new parameter, the "chromaticity degree" y, which allows the separation 
of chromatic and achromatic areas within the image. In the fourth part of the paper, 
we use the HVy representation to propose a gradient estimator which avoids 
enhancement of non significant edges created by object shades or reflections. Results 
obtained with true images illustrate the advantages of this approach. 
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2 Mult i - spectra l  image gradient  

2.1 Gradient definition 
2 

Let f(M) be a scalar potential field in R (for instance a monochrome image), with M 
= M(x,y). The gradient of  f is referred to as Vf : 

V f =  (1) 

In the image plane the gradient Vf may be represented by a 2D vector; its orientation 
corresponds to the direction along which f has the maximum rate of change and its 
magnitude is the absolute value of this maximum rate of change. Let .  denote the dot 
product in R 2 and : dM = (dx, dy) T. Then we can write: 

Vf. dM = df (2) 
Currently, different kinds of  methods are available to compute the gradients' 
components in a monochrome image. The earliest of them are based on simple 
discrete approximations of continuous derivatives [ 1,2]. More recent operators have 
been designed by taking into account a model of the edges to be detected and a 
quantitative definition of the performance of the edge detector [3,4,5]. 

2.2 Application to multi-images 
The previous gradient definition (1) cannot be applied to a multi-image such as a 

color image. Such an image being described by a set of  components cannot be 
modelled by a scalar potential field but by a 2D vector field [6]. Let C be the multi- 
spectral image and VC its gradient. Let K=(kl,k2,...kn) T be the image representation 
in a given space. The problem discussed in this section is the way to combine the 
elementary gradient components Vki i~ [1,n] in order to obtain the best gradient 
estimation VC : 

VC =F(Vkl,Vk 2 .... Vkn) (3) 
Several solutions have been proposed to deal with color images (n=3). The 

straightforward approaches make use of linear combinations of the Vki, the simplest 
method consisting in a vectorial sum of the Vk i. Another approach is to estimate the 
resultant gradient magnitude at point M(x,y) as an Euclidean distance between the 
color vectors K(M) and K(M'). More sophisticated methods make use of distance 
between averaged vector values. As explained in [7], in all of these approaches the 
image components ki do not cooperate with one another. To avoid this drawback, Di 
Zenzo proposes a solution based on the use of a tensor gradient of the multi-image 
which is defined as a vector field. This formula has been adopted by Chapron [8]. 

We propose here a general gradient definition which can be applied to a color 
image, or to any kind of multi-image. Given a point K=(kl,k2,...kn) in the image 

space, we define a metric dC 2 in this space such as: 
dC2-= dK T g dK (4) 

where g represents the metric tensor and dK an elementary displacement in the 
considered space. Notice that g is a non negative defined tensor, in order to define a 
positive metric. K being a function of the pixel position M, it may be considered as a 
vector field. Then: 
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3K "M dK = aM d (5) 

3K T 3K dC 2 = dM T (~--~) g (~--~) dM (6) 

We note ff the non negative defined tensor associated to this metric: 

= (3K~T OK 
"3M" g (3--M) (7) 

Let 0 be the direction of the maximum image change, i.e. the gradient direction. An 
elementary displacement along this direction can be noted: 

(cos(O) 1 
dM = dl t , ~ j  (8) 

Equation (6) can be reformulated as: 

dC 2 = d12(~ll cos2(0)+(~12 + ~21)cos(0)sin(0)+ ~22 sin2(0)) (9) 

The gradient direction corresponds to the value of 0 which maximizes the function 
F(0), such as: 

F(0) = gtl  cos2(0)+(gl2 + g2l)C°S(0)sin(0) + g22 sin2(0) (10) 

The gradient norm is obtained fi'om equation (2) and can be expressed as a function of 
F(0) [9]. 

3 Appl icat ion  to RGB Images  

3.1 Gradients combination 
In the (R,G,B) color space, the color image is noted: 

f(x,y) = (R(x,y), G(x,y), B(x,y)) (1 l) 
As seen in section 2.2, the simplest method to obtain the gradient of a color image 
consists in adding the elementary gradient components: 

VC=VR+VG+VB (12) 
Using equation (2), we obtain the color differential : 

dC = dR + dG + dB (13) 
This equation expresses the fact that points of the (R,G,B) space which belong to a 
plane parallel to the R+G+B=0 plane have the same color. In other words, the iso- 
chroma (r,g,b) is a plane whose equation is R+G+B=r+g+b. For instance, grey 
(1,1,1) and red (3,0,0) are identical colors! This is always true for all linear 
transtbrms. 

We have applied this gradient definition to the image of figure la. Figure lb 
presents the resultant gradient magnitude whose components have been obtained with 
a Sobel operator [1]. This result show that (18) can provide an over-segmentation. 
For instance internal edges appear in the front face of the upper orange cube. Due to 
shadows, the lower left purple cube has been separated in two regions. One of these 
regions has been merged with another one belonging to the green neighbor cube. 
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3 . 2  E u c l i d e a n  metr ic  
In [7] and [8], the gradient estimator is implicitly based on the use of an Euclidean 

metric in the RGB space. Here, the metric tensor is a unit tensor : g = I d. Then, g is 
a symmetric tensor such as: 

<( )2+(  ) 2 + (  )2 OR OR OGOG 0BOB 

= ----+0ROR 0GOG 0BOB ( ~ ) 2  . , 0 G , 2 + , 0 B , 2  | (14) 

Computing the maxima of the function F(0) requires the estimation of the partial 
derivatives of each component of f(x,y). These derivatives are obtained using a 
classical operator [1,2,3,4,5]. 

Results of the algorithm using this Euclidean metric are illustrated in [9]. 
Compared with the previous results, it provides a best edge enhancement; however, 
there are always over-segmentations. The drawbacks of this solution are partly due to 
the used color space representation. It cannot represent color information like it is 
perceived by a human. Moreover, this space is not adapted to direct color comparison, 
because equal geometric distances in the RGB frame does not correspond to equal 
perceptual changes in color [10]. 

4 Perceptual Color Space Representation 

In [11], Nevatia noticed that most of the edge information was in the intensity 
component of the image. The RGB model being enable to separate the chromatic and 
luminance information in a color image, Nevatia proposed an edge detector in a new 
space defined by the intensity. Later, other perceptual spaces have been defined 
[10,12]. The classical HSV representation [12] makes use of three attributes to 
describe a color: the hue H, the saturation S and the value (or intensity) V. 

4 .1  The HSV frame 
All the perceptual frames are defined by a non-linear diffeomorphism. Our HSV frame 
is obtained by the following equations: 

V = sup(R,G,B) 

V - inf(R,G,B) 
S = 256 

V 

G - B  

V - inf(R, G, B) 
B - R  

H = 2 +  

< R - G  1 
4 + V -  inf(R, G, B) 

i f V = R  

i f V = G  

ifV =B 

(15) 

In these equations we suppose the dynamic range of the image signal to be 256. 
This coordinate transform requires few operations and is simpler than most of the 
other perceptual representations. For instance, the Luv transform [13] is five time 
more consuming. 
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4 . 2  Some difficulties with the perceptual frames 
In a previous paper [15], we specified two kinds of problems connected with the 
definition of the hue: 
* H is 6-periodic 
• H is undefined if S=0 (15). 

The first problem leads to computational difficulties for estimating hue averages 
or differences. It is easily solved using a suitable algebra [15]. The second problem 
makes the interwetation more difficult when using the hue to describe the image. We 
call this case the "low saturation effect" because in experiments, it begins to appear 
when the value of S is low. In order to solve this problem, we consider the existence 
of achromatic and chromatic areas in the perceptual color space [ 15]: 
* In the achromatic area, H is undefined (or badly defined), so that it should not be 

used; the color is only described by S and V. 
* In the chromatic area, previous research works [ 14] confirm that hue is generally 

the most discriminant attribute. It can be used for an efficient image analysis. 

In order to optimize the analysis algorithms, it is necessary to define a way for 
classifying pixels into chromatic and achromatic zones. We have proposed the concept 
of "chromaticity degree" [ 15]. The chromaticity degree y of a pixel is a scalar function 
depending on S and V in the range [0,1]. The closer y is to one, the more chromatic 
the pixel is; the closer y is to zero, the more achromatic the pixel is. The 
identification of y is done by manual classification of a representative set of pixels. 
We have proposed in [ 15] different identification methods. 

4 .3  The HVy representation 

~7 y being a function of S and V and ~-~ being different of zero, the HVy transform is 

a diffeomorphism. Consequently, it defines a new perceptual color space. In this 
frame, H is still periodic and undefined if y = 0. The interest of the HVy 
representation is that it does not require any external variable to perform the analysis 
of the color image, unlike HSV which also needs the chromaticity degree. 

5 Image Gradient  in a Perceptual  Color Frame 

One of the most important advantages of a perceptual space is that it allows direct 
color comparison based on geometric distance estimation. 

5.1  Linear gradients combination 
Using a linear combination of the three gradient components in the HSV or in the 
HVy space cannot provide a correct gradient estimation. In fact, hue being not defined 
inside achromatic areas, the component VH has no significance here. Moreover, 
across transitions between chromatic and achromatic zones, a large hue variation 
induces a wrong edge. 

Figure lc illustrates this problem. We present the magnitude of the VH gradient 
component which has been obtained with the Sobel operator. Erroneous edges appear 
in the achromatic areas and along the reflections boundaries. In the next section we 
propose a solution to this problem by taking into account the chromaticity degree. 
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5 .2  Non Linear gradients combination 
In the HSV space, we propose the following definition of the resultant gradient: 

VC = v(VH +VS) + (I-7) VV (I6) 

This definition may be improved to solve the reflections problem using: 
VC = vVH+ (l-v) VV (t7) 

In the HV v space the non linear gradient combination takes the form: 
VC = vVH+ (I-7) VV+V v (18) 

We have shown, in [9], that this solution improves the previous results. However 
some edges are not correctly enhanced. 

5 .3  A metric for the perceptual space 
We have defined a new metric in the perceptual space which is based on a tensorial 
formula: 

dC 2 = vdH 2 + (l- v) dV 2 + d7 2 (19) 
This definition means that in chromatic zones the distance between two pixels is a 
function of the hue H, while it is a function of the intensity V in achromatic zones. 

The last term dv 2 allows the separation of chromatic and achromatic zones. This 
yields the metric tensor: 

0N 0H . . . 0 v  0v 0v 0v l( v( H) ox +( )2ox 
= /  0HOH . .  . 0VOV 0Y0V 

oy oy oy ) 

In figure ld we give the multilevel gradient image obtained with this new metric. 
Now, homogeneous color regions are well separated, with few over-segmentations. 
Their edges are correctly enhanced. This gradient estimator is less sensitive to shadow 
and reflection effects. 

In figure 2a we present the original color image of a natural landscape. The 
following normalized gradient images have been obtained respectively with a sum of 
the elementary gradient components in the RGB space (18) (Fig. 2b), and by using 
the perceptual metric in the HVy space (20) (Fig. 2c). We can see that with this 
second metric, the road and mountains edges are more correctly enhanced. We have 
also compared these gradient estimators with the color image of two birds (fig. 3a). 
The same performance can be observed for edge detection (fig. 3b, fig 3c). 

6 C o n c l u s i o n  

In this paper we have proposed a new definition based on a spatial metric, for the 
gradient of a multi-spectral image. Our main goal being to obtain a perceptual 
gradient, we have defined a new color representation based on the concept of 
chromaticity degree. We have proposed a metric adapted to this color space and 
deduced a perceptual gradient formulation. Experimental results show the performance 
of this gradient estimation. They illustrate the interest of the chromaticity degree 
concept and its robustness. Moreover, this concept can be extended with other 
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perceptual color representations in order to define a perceptual gradient. It is obvious 
that such a color gradient definition may be applied in classical gradient-based edges 
detectors or in segmentation methods like those using region growing [15]. 
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(a) 

(d) 

Fig. 1. (a) Manufactured  objects. 
(b) Gradient magnitude computed 
with (12) in the RGB space. (c) 
Hue gradient computed with a 
Sobel operator. (d) Gradient 
magnitude computed with (19) in 
the HVy space. 

(a) (b) (c) 
Fig. 2. (a) Landscape. (b) Gradient magnitude computed with (12) in the 
RGB space. (c) Gradient magnitude computed with (19) in the HVy space. 

(b) (c~ 
Fig. 3. (a) Birds. (b) Gradient magnitude computed with (12) in the RGB 
space. (c) Gradient magnitude computed with (19) in the HVy space. 


