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Estimation of the Composite Fast Fading and
Shadowing Distribution Using the Log-moments in
Wireless Communications

Juan Reig, Member, IEEE, and Lorenzo Rubio, Member, IEEE

Abstract—In this work, we propose a framework to obtain
estimators from a variety of distributions used in composite fast
fading and shadowing modeling with applications in wireless
communications: the Suzuki (Rayleigh-lognormal), Nakagami-
lognormal, K (Rayleigh-gamma), generalized-K (Nakagami-
gamma) and o-u (generalized gamma) distributions. These esti-
mators are derived from the method of moments of these distri-
butions in logarithmic units, usually known as log-moments. The
goodness-of-fit of these estimators to experimental distributions
has been checked from a measurement campaign carried out
in an urban environment. Moreover a new method to separate
fast fading and shadowing based on the Rathgeber procedure is
proposed. The results conclude that the best-fitting distribution
to the measurements is the Nakagami-lognormal. Also, the a-p
distribution provides an acceptable matching with the advantage
of its simplicity.

Index Terms— Mobile radio, fading, shadowing, estimator

I. INTRODUCTION

In wireless communications, the characterization of the
received signal variability is a fundamental topic which has
attracted the attention of numerous researchers [1], [2]. The
received field strength experiences fading due to two factors.
On the one hand, the received signal fluctuates deeply in a
small local area around the receiver (typically in few wave-
lengths covered) which is the well-known short-term fading
or small-scale fading phenomenon caused by the multipath
propagation. In the literature, this small-scale fading has
been characterized using the Rayleigh, Rice, Weibull and
Nakagami-m distributions [1], [3]. The Nakagami-m statistical
model has been extensively used in the literature, since the
Nakagami-m distribution matches the experimental data [4]-
[6] and it includes the Rayleigh distribution as a specific
case. On the other hand, for displacements of hundred of
wavelengths, the received signal suffers slow variations due
to the propagation shadowing of the direct path between the
transmitter and receiver. These slow variations are the well-
known long-term fading or shadowing which have been mainly
modeled using the lognormal distribution [7], [8].

The separation of the two fading contributions, i.e., the short
and long-term fading, is rather troublesome, specially if the
local mean of the received signal rapidly oscillates such as
in indoor environments or in a situation of turning around

Manuscript received January 10, 2012; revised July 20, 2012, and Decem-
ber, 4; and accepted February 27, 2013.

J. Reig and L. Rubio are with the Electromagnetic Radiation Group
(GRE) at the Universitat Politecnica de Valencia, Camino de Vera s/n, 46022
Valencia, Spain. Email: jreigp@dcom.upv.es

a corner in outdoor scenarios. Recently, an important effort
have been carried out to characterize scenarios as vehicular-
to-vehicular (V2V) communications, where the assumption of
stationary is not fulfilled [9]-[11].

Thus, the fast fading and shadowing compound distribution
has been thoroughly analyzed in the technical literature [2],
[12]-[21]. The most employed composite distribution is the
Rayleigh-lognormal or Suzuki distribution [2], [12]. In [22]-
[24] the estimation of the two parameters of the Suzuki distri-
bution was derived using the method of log-moments. More-
over the Nakagami-lognormal distribution has been frequently
employed for analyzing the fade depth and the performance
parameters using different modulation schemes in wireless
fading channels [13]-[16]. Nevertheless other distributions
have been recently proposed to model the composite fast
fading and shadowing [17]-[21], [25], since the Suzuki and
the Nakagami-lognormal probability density functions (PDFs)
cannot be expressed in simple forms and they are usually
evaluated using integral formulae. The K and the generalized-
K distributions have been proposed to model the compound
small-scale fading and shadowing [17]-[20]. The use of the
gamma distribution to characterize the shadowing in such
distribution provides the advantage that it leads to closed-
form expressions for the PDFs and cumulative distribution
functions (CDFs). The generalized-K distribution [17], [18]
is equivalent to the Nakagami-gamma distribution and it is
similar to the gamma-gamma or gamma- /K model described in
the radar literature [26], [27]. The K or the Rayleigh-gamma
distribution used in [19], [20] to characterize the composite
fading is a special case of the generalized-K distribution.

The a-p distribution has been derived to characterize the
fading in non-linear environments [28], [29]. This distribution
is a form of the well-known generalized gamma or Stacy dis-
tribution [30] with considerable simpler PDF than Nakagami-
lognormal or Suzuki distributions. The «-u was employed
in [25] to model the composite fast fading and shadowing
distribution. Moreover in [21], the authors have mathemati-
cally derived a comprehensive collection of models obtained
by compounding the Nakagami-m with 16 distributions.

Several studies have been carried out to estimate the param-
eters of the composite fast fading and shadowing distribution
in wireless communications from experimental data collected
in measurement campaigns [1], [9], [25], [31]. In [1] the
authors demonstrated that the Suzuki distribution fits bet-
ter than both the Nakagami-m and Weibull distributions in
the 168, 455 and 900 MHz frequency bands in London.
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In [25] the parameters of the a-u, Suzuki, Nakagami-m, Rice
and lognormal distributions were obtained and the statistical
Kolmogorov-Smirnov (K-S) test was used to evaluate the
goodness-of-fit of above distributions. The Weibull-lognormal
estimators were derived in [31] to analyze the results of a
measurement campaign carried out in Rio de Janeiro. The
results of these measurements provide a better fitting of
the Weibull-lognormal than both the Suzuki and Gaussian
distributions. Recently, in [9] from a measurement campaign
in a multiple-inputmultiple-output (MIMO) V2V scenario, the
authors have modeled the long-term fading as lognormally
distributed, whereas the small-scale fading is characterized by
the Weibull distribution.

The method of moments applied over the distribution in
logarithmic units is known as the log-moments or cumulants
estimation method. The log-moments method has been pro-
posed in synthetic aperture radar (SAR) image processing to
estimate the amplitude distribution [32], [33]. In [23], [24] the
comparison of the method of moments with the log-moments
estimators has been analyzed and discussed particularized
for the Suzuki distribution. The results of [23], [24] showed
that estimates based on log-moments are generally superior
to the method of moments. Other distributions have been
proposed to characterize the composite fading effect such
as the multiplicative N Rayleigh and N Nakagami-m [34]
distributions. However, Andersen showed in [35] that the NV
Rayleigh distribution does not fit measurements carried out in
a forest environment. That is why a multiple scattering model
with physical motivation was proposed in [35] which provides
a better fit to the measurements than the Nakagami-m distribu-
tion in an indoor scenario [36]. Nevertheless, the derivation of
estimators for the statistical distribution corresponding to this
model is cumbersome following the log-moments approach.

Nevertheless, to the best of the authors’ knowledge no
estimators of Nakagami-lognormal, K or generalized-K dis-
tributions have been obtained from measurement campaigns.
Moreover a derivation of Nakagami-lognormal distribution
estimators remains open in the technical literature. Further-
more the separation of the fast fading and shadowing has
not adequately been analyzed from a measured data yet [37].
To cover these gaps, in this work we propose an analytical
framework to estimate the parameters of several statistical
distributions based on the log-moments: the generalized-K,
K, Nakagami-lognormal, Suzuki and a-p. Moreover since the
received signal measurements data are usually expressed in
logarithmic units, e.g., dBm, dBuV/m, we derive the PDF
and CDF of above analytical distributions in logarithmic
units. Furthermore the goodness-of-fit of these distributions
are evaluated in eight routes covered in an urban environment
in the city of Valencia, in Spain, using the K-S test. A method
based on the Rathgeber analysis [37] is also proposed to
estimate an average window size for extracting the fast fading
parameters from a measurement data record.

This paper is organized as follows: firstly in Section II
we expose the relevant characteristics of the measurement
campaign used in the derivation of the fading distribution
estimators. Next the PDF, CDF and estimators of generalized-
K, K, Nakagami-lognormal, Suzuki and «-p distributions

are derived in Section III. In Section IV we propose a fast
fading extracting procedure based on the Rathgeber method.
Numerical results are analyzed in Section V. Finally the
conclusions are discussed in Section VI.

II. MEASUREMENT CAMPAIGN

A measurement campaign at 900 MHz band was carried out
in the urban area of Valencia, Spain. The received signal field
strength was measured along eight routes with a total length of
about 5 km. The measurement setup was a narrowband power
meter connected to a vertically polarized antenna mounted
on a van and synchronized with a navigation system. The
geographic information reported by the navigation system was
used to identify the measured route on a digital map. Fig.
1 shows the digital map of the urban area of Valencia, the
location of the two transmitters used in this campaign and the
routes where the measurements were performed depicted by
thick lines. The received signals along routes #3, #6, #7 and
#8 arrived from the transmitter #1 whereas the signals along
routes #1, #2, #4 and #5 came from transmitter #2.

Fig. 1. Map of Valencia urban area. Thick lines depict the routes measured.

The heights of the transmitting antennas were 35 m from
the ground. The measurements were carried out at nights to
facilitate a constant speed of the van of about 20 km/h. With
this speed, the spatial resolution of the measurement was about
A/4 (distance between two samples).

III. ESTIMATORS OF LOG DISTRIBUTIONS
A. Generalized-K Distribution

The PDF of the Nakagami-m fading distribution condi-
tioned on a shadowing distribution is given by

2 )"t (22,

r>0,Q22>0, (1)

Pria (r[Q) =

where m is the fading parameter, ) is the local power
which models the shadowing variation, and I'(z) =
Jy~ t* T exp(—t)dt is the gamma function [38, (6.1.1)].

We assume that this short-term power, (), experiences a
gamma variation due to the shadowing, whose PDF is written
as

Q)= 1 ! MQM*1 ¢ 0>0, 2
psz( )_F(]\/[)<QO) eXP<—QO) >0, (2)
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where M is the order of the gamma distribution and E [Q] =
M - Qg, with E[-] denoting expectation.

The PDF of the composed small-scale fading and shadowing
distribution can be expressed as

P () = / oo () pe (dQ r>0. @)
0

Substituting (1) and (2) into (3) the generalized-K or
gamma-gamma distribution PDF is easily calculated as [39]

2% b M+m—1
)= mmran (3)  Knlon, =0

m
b:2,/Q—O, (5)

with K, (-) being the modified Bessel function of the second
kind [40, (8.407)].
The k-moment of this distribution is given by [18, (7)]

T(m+ 5T (M+% g
e ORI

The CDF of (4) can be calculated as [41]

F, (r) = mesc (m (m — M)) (F£;0<sz>A4

mr? 1 mr2\"™"
Fo(M;M+1,M — 1 —
< T m+,90) r(M)( >

where

b

2
1F5 (m;erl,mMJrl,ng)) ,m >0,
0

where ,Fy (+) is the generalized hypergeometric function [40,

(9.14 1)], with p, g positive integers; and csc symbolizes the

cosecant function. Using the transformation ¢ = A Inr, where
20
~ In10’

the PDF of the log generalized- K distribution can be obtained

as
_ 4 bexp (i) M
Pl = AT T D) < 7 )

Kyom (bexp (i)) , —00 < € < 00. ©)]

From (9) and using [40, (6.561 16)] the moment-generating
function (MGF) of the log generalized-K distribution is de-
rived as

®)

Me(s)zf(m+;)F(M+;)(ﬂo)5_ 10)

I'(m)T (M)

The k-moment of the log K-gamma distribution can be
obtained by differentiating &k times the MGF given by (10)
for s = 0, following [42, p. 62] given by

OF M. (s)

E[ek} = — "

9 an

s=0

Using (10) and (11) the second and third central moments of
the log K-gamma distribution can be calculated as

po = B (e~ 9?] = (’;‘) (W' (m) + /(M) (12)

=[] = (2) i + v,

Pd(x) _

where /(1) = &ggf) =2 15;5(””) and ¢”(z) =
8% InT(x)

a3 are the polygamma functions of first and second
order, respectively [38, (6.4.1)] ¢ (z) = 81%71;("3) is the psi
(digamma) function [38, (6.3.1)]; and A is given by (8). We
can use equations (12)-(13) to estimate m and M parameters
using nurAnerical methods. Once M is calculated, we can

estimate () using

E [7“2}

M )
where (14) has been calculated by substituting £ = 2 in (6),
with b defined in (5). The K distribution corresponds to a
Rayleigh-gamma model. Therefore, we can substitute m = 1
in (4) to obtain the PDF of the K distribution. Thus, substi-
tuting m = 1 in (12) and using [40, (8.366 8)] '(1) = 72 /6,
the second central moment is obtained as

pa=E (e~ o] = (;1) (z//(M) " ”6> .

We can use the Lorenz estimator [22] obtained for the
Nakagami-m distribution to calculate M from (15). This
Lorenz estimator makes use of an approximation of the inverse
polygamma function of the first order as

2
uz(?) P (x) — x:u_lm%—&—

where u is a function of x and u~! symbolizes the inverse of
the u function. Combining (15) and (16) we can estimate M
as

Qo =

(14)

15)

17.4

- 4.4 17.4
M= ) 17
m + (,ELQ o B)I.QJ ( )

where [io is an estimator of the second central moment of the
log K distribution, and

A\? 72
B= () %:31.02,

5 (18)

is the variance of the log Rayleigh distribution. Therefore, M
is consistent for fio > 31.02. In other words, the Rayleigh-
gamma distribution in logarithmic units always has a variance
higher than 31.02 or equivalently a standard deviation larger
than 5.57 dB.

B. Nakagami-lognormal Distribution

Let 7|2 be a conditional random variable (RV) Nakagami-m
distributed whose PDF is given by (1). If the local power which
models the shadowing variation, 2, is assumed lognormal
distributed then its PDF is given by

2
po (Q) = — exp(—(hm_”)>, Q>0 (19)

- V2roQd 202



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS

where 97 and 1950 are the mean in dBV/m and the
standard deviation in dB of the associated Gaussian process,
respectively, corresponding to the lognormal shadowing. The
PDF of the Nakagami-lognormal distribution can be obtained
by substituting (1) and (19) into (3) as [14]

1= sty (7)o ()

(InQ2 — 77)2
exp (—M dsd,

1
X (20)
V270§
where m is the fading parameter of the Nakagami-m fading
process.

The CDF of the Nakagami-lognormal distribution can be
calculated using [40, (3.326 2)] as

F.(r)= /OOO ﬁv (m, %73)

2
\/2*1 - o <_(IHQ—")> a0,
o

where y(a,z) = [ t* "' exp(—t)dt is the lower incomplete
gamma function [38, (6.5.2)]. We can express the PDF of the
log Nakagami-lognormal distribution as

/ () (2 me 4
AF (m) R ) Q

InQ
\/QTrUQ Xp( : 20 217) )dﬂ’

with ¢ = Alnr and A given by (8). The MGF of the log
Nakagami-lognormal distribution can be obtained as [23, (3.6)]

2n

(22)

I'(m+ 4 1
M (s) = M exp (As (477 + AO'QS)) . (23)
m’z I'(m) 8
The first moment is easily obtained using (11) and (23) as
A
mi=Fld =5 - mm+om), @49

and the second and third central moments are also derived as

pe =B (e~ 97 = (?) (* +0/(m), (25

pa=E [(e - 9] = (’;‘)w (m).

From (26) if we define u = ¥"(m) = (2/A)%u3, we
can calculate an approximation of m = v~ using numerical
methods. Fig. 2 shows in solid line the numerical u function
for a relative error less than 10~% with « from —16.83 to
—0.001. The minimum value of v = —16.83 corresponds
to m = 0.5, which is the minimum possible value of the
Nakagami-m fading parameter. Note that both axes are in
logarithmic units. The behavior of this function suggests that
Inm can be approximated in this range of values with a poly-
nomial as a function of Inwu. Consequently the approximate
polynomial has been derived using the least-squares methods
as

(26)

y = 0.009622 — 0.391x + 0.3365, (27)

100,

- - - Polynomial approximation

—— Numerical approximation

Fading parameter, m

0.1

-0.1 -0.01

u

-10 -1 —-0.001

Fig. 2. Fading parameter, m, of the Nakagami-lognormal distribution as a
function of the u function.

where y = Inm and « = Inwu. In Fig. 2 this polynomial is
plotted with dashed lines and it shows an almost perfect fit.
Thus, using (27) we can calculate an approximation of m as

~ 1.4|a|70391+0.00961n|a\7 168 < <0,

5\ 3
= (A) s,

with fi3 being an estimator of the third central moment of
the log Nakagami-lognormal distribution, and |-| the modulus
operator. The rest of parameters of the Nakagami-lognormal
distribution, 7 and &, can be estimated from (24) and (25),
respectively. In Fig. 3 the relative error expressed in % of the

(28)
where

(29)

Relative error of the 7 approximation (%)

5 10 15 20 25 30
m estimator

Fig. 3. Relative error of the rix approximation as a function of 7in for the
Nakagami-lognormal distribution.

m approximation given by (28) is plotted in terms of the
estimator. The relative error of the m approximation is less
than 0.56% for 7 varying from 0.5 to 7. Fading parameters
found in real environments [43] are inside this interval. For
the Suzuki or Rayleigh-lognormal distribution [2], [12], we
can estimate 7 and &, by substituting m = 1 in (24) and (25)
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as [23]-[25]

(30)

3

2 2
5 = — | fig — — 31
o (A) 2 6 ) ( )
where C = 0.577... is the Euler’s constant [40, (9.73)]; and

m1 and fio being the estimators of the first moment and second
central moment of the log Suzuki distribution, respectively.

C. Generalized Gamma or a-p Distribution

The PDF of the generalized gamma or «-p distribution is
given by [30, (1)], [28]

e

autror—1 r
pr(r) = T oxp (—MQQ) ,r>0,a>0,u>0,

QL (p) 32)
where
B E? [r®]
/j‘ - E [T2a] _ E2 [T’a]’ (33)
Q= EY[re]. (34)

The CDF of the a-p distribution is calculated as [28, (9)]

L (1. piy )
NI

where T'(a, ) = [° ¢~ exp(—t)dt is the upper incomplete
gamma function [38, (6.5.3)]. The PDF of the log a-u distri-
bution is calculated by applying the transformation e = Alnr,
with A given by (8), in (32) as

—00 < €< 00,

Fo(r) = (35)

CE.
PR A Qe ()

(36)

From (36) and using [40, (3.381 4)], the MGF of the log a-p
distribution can be expressed as

Q‘“) L (p+ %) -

1 L'(w)

Substituting (37) in (11) the second and third central moments
of € can be calculated from as

Mo = (

po =B [(e—97] = (A)2 v/(n), (38)
!
ps=E|(e- 9] = <A>3w” (). (39)
!
We can define an estimator, &, according to [44] as
SN “0)

iz Y7 ()
where [io and iz are the estimators of the central moments o
and p3 of the log a-p distribution, respectively. From (40), the

« parameter of the a-u distribution can be estimated as [45]
R%+ 3 k< —2.85

—0.07734#* — 0.60464> — 0.794942

fi = ¢ —2.4675% — 0.9208 — 285 <k <—-0.6
—132.89954% — 232.065942

—137.6303k — 27.3616 —-0.6 <k <-0.5

(41)

From (34) and (38), an estimation of « and ) parameters can
be easily obtained as

a— AU (42)
H2
Q=EYe[74]. 43)

The normalized mean square error of the estimators given by
(41) and (42) is analyzed in [45].

IV. SEPARATION OF FAST FADING AND SHADOWING

A statistical characterization of the received signal varia-
tions for both the small-scale fading and shadowing is useful
to design the transmitter and receiver transceivers. Thus, the
knowledge of small-scale fading statistics can be used to de-
sign specific micro-diversity techniques (e.g., spatial, temporal,
polarization, etc.), coding and modulation schemes. On the one
hand, the implementation of small-scale fading models permits
us to evaluate the error probability in fast fading channels
taking into account parameters as coherence time and Doppler
spread that are related to small-scale variations of the signal.
On the other hand, the knowledge of the large-scale variations
is useful in power control techniques and in the evaluation
of the coverage area. The separation of both types of fading
permits us to develop and implement the proper technique to
mitigate each type of fading in a separate way.

Since the small-scale fading and shadowing is characterized
as a multiplicative effect [1, (5.84)], the envelope of the
received signal, r, can be written as

T=TfTs, 44)

where 7y is the small-scale amplitude with a normalized
power, E[rfc] = 1; and r; is the shadowing envelope. Note
that the PDF of the composite distribution of r can alternatively
be expressed as (3). If we define € = Alnr, ey = Alnry
and €, = Alnr, where A is given by (8), the logarithmic
composite amplitude, e, is calculated as [1, (5.85)]

€e=c¢€r+es, 45)

Since both the small-scale fading and shadowing amplitudes
are independent, the standard deviation of the compound fast
fading and shadowing log distributions, denoted by o. and
expressed in dB, is obtained as

UC:,/cr]%qLcrf,

where oy and o are the standard deviations of the fast fading
and shadowing amplitude distributions in dB, respectively.

(40)
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TABLE 1
STANDARD DEVIATION IN DB OF THE FAST-FADING AND SHADOWING
LOG DISTRIBUTIONS.

Generalized-K K Nakagami- Suzuki
lognormal
of ¥'(m) 1n1?0 % =557 1r.1?0 P'(m) 1n1(1)0 % =557
os V(M) 35V/Y (M) o o

The standard deviation of the logarithmic generalized gamma
and derived distributions (Nakagami-m, Rayleigh and Weibull
distributions) does not depend on the second raw moment
of such distributions in linear units, i.e., F [rj%] However
the standard deviation of the logarithmic Rice distribution
is related to the second raw moment of this distribution in
linear units. Thus the variance of the logarithmic composite
distribution is equivalent to the expressions (12) and (25)
for the generalized-K and Nakagami-lognormal distributions,
respectively. In Table I, these standard deviations are shown
as a function of the parameters of the distributions analyzed
in Section III. Note that the standard deviation of the log a-
1 or generalized gamma distribution cannot be separated in
the short-term fading and shadowing terms. Nevertheless, the
« and p estimated parameters using the log-moments method
are subject to limitations when the «a-p distribution is used
to model the composite small-scale fading and shadowing. It
is of interest to analyze the range of the estimated o and
v values for wireless communications. Assuming that the
fast fading is Nakagami-m distributed, then o is given by
ln 10 \/¥'(m) (see Table I) where m is the fading parameter
of the Nakagaml m distribution. In measurements carried out
in macrocellular environments, the fading parameter typically
oscillates from 0.5 to 3.5 [43]. The standard deviation of the
shadowing usually varies from 3 to 12 dB in macrocellular, mi-
crocellular and indoor environments [3]. Moreover, using the
log-moments method the standard deviation of the composite
distribution should be equal to the square root of the second
central log-moment of the a-p distribution given by (38), i.e.,

£ VU (i 5 52
e & ln 10 (i) \/ ln 10 Vim) +63. (47)

From the third central log-moments of both «-p and
Nakagami-lognormal distributions, we can find another limit
for the o and i parameters. From (26) and (39), we can easily
obtain

~ A 20 ° ) A 10 9
“3_(aln10> W) = (mm) Y om).

In Fig. 4 we have plotted a graph with the values of permitted
o and p for m = 0.5 to 3.5 and o, = 0 to 12 dB using (45)
and (46). The region shaded in grey corresponds to the possible
values of o and p using the log-moments estimators which
is limited for the four curves. Note that the a-u becomes a
Weibull distribution for ;4 = 1 and the «a-p converts into a
Nakagami-m distribution for o = 2 [28]. For both ;1 =1 and
a = 2 the a-p is equivalent to a Rayleigh distribution [28].
Recently, in [46] Shankar obtained boundaries for « values in

(48)

M T T T T T T al
Log-moment of second order; m=3.5 and [ 0dB

777777 Log-moment of second order; m=0.5 and o= 12dB -

— - — Log-moment of third order; m=0.5 -
— — Log-moment of third order; m=3.5

Rayleigh

o parameter

Nakagami-m

0.5 1.5 2 25 3 3.5 4 4.5 5 5.5 6
u parameter

Fig. 4. Values of permitted v and p parameters of the «-p distribution
using the log-moments estimation method. Fading parameter for the small-
scale distribution and shadowing standard deviation are m = 0.5 to 3.5, o5 =
0 to 12 dB, respectively.

shadowed channels. This restriction assumes that the multipath
physical model proposed by Yacoub in [29, (10)] is satisfied.
This implies that p is equal to the fading parameter, m, of
the small-scale amplitude distribution. This condition applied
to (47) leads to 0 < a < 2 [46, (65)]. Nevertheless from the
results shown in Table III, the estimated fading parameters,
m, of the Nakagami-lognormal distributions are substantially
different from the p estimated parameters in the measure-
ments carried out in this paper. Thus the Yacoub’s small-
scale model [29, (10)] cannot be applied to this environment
and therefore Shankar’s relationship given by [46, (65)], i
substituting ¢ = m in (47), is not fulfilled. Hence avoiding
this restriction, o can be equal or greater than 2 due to the
permitted values area shown in Fig. 4.

In [37], a method for the separation of the samples affected
mainly by short-term fading with a local mean practically
stable was suggested when there is a record data from mea-
surements. This procedure proposes to calculate the standard
deviation of a window extracted from a route expressed in
logarithmic received field strength. In this method, the size
of the window is increased until the standard deviation of
the logarithmic samples is stabilized below and close to 5.57
dB, which corresponds to the standard deviation of the log
Rayleigh distribution, oy = 1% /¢/(1) = ﬁ%’ff 5.57
dB. This optimal size of the window assures that the received
signal samples contained in this window are not substantially
affected by shadowing. For window sizes larger than this
optimal size, the received signal samples also suffer shadowing
and the standard deviation increases until o. given by (46).
Nevertheless, the performance of this method depends strongly
on the choice of the window center. If the samples around
the windows center are subject to the shadowing effect the
extraction of the short-term from the route is troublesome.
In Fig. 5, two examples of the separation of the short-term
fading and shadowing/ are illustrated for the route #4. Fig. 5.a
and Fig. 5.b show the standard deviation of the field strength
in dBV/m inside the window with A size. These samples are
extracted from two windows illustrated in the Fig. 5.c, where
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Fig. 5. Rathgeber method for separating both the short-term and long-term
fading in two windows of the route #4.

the field strength along the route #4 is plotted as a function of
the distance in A. Fig. 5.b shows that this standard deviation
is stabilized from approximately 20\ up to 140\ window sizes
below and close to 5.57 dB (log Rayleigh standard deviation).
Thus, the optimum window size can be estimated as the mean
value from 20\ to 140, yielding 80\. Since in the center
of the Fig. 5.b window the long-term field strength variation
is negligible, the short-term fading and the shadowing can
be easily separated using this method. Nevertheless in the
example of Fig. 5.a, the extraction of the short-term fading is
very difficult due to the shadowing varies substantially around
the center of the window.

That is why we propose a new method for estimating an
average window size along a route whose samples are not
mainly subject to the shadowing variation. We assume that
the small-scale and long-term processes are independent [47].
Once the window size is fixed, we can average the standard
deviation of the field strength in dBV/m along the route
varying the center of the window for a given route. Thus,
the averaged standard deviation in logarithmic units of the
composite processes (short-term fading and shadowing) along
a window of size Ad can be easily calculated following a
procedure similar to [47] as

Faa =103 (1= Cy (Ad) +02 (1~ C,(Ad)),  (49)

where C(-) and Cs(-) are the normalized auto-covariances
of the small-scale and long-term fading in logarithmic units,
respectively. Note that the shape of the averaged variance of
a process along a window is similar to that of the structure
function, used by Tatarski [48] and compiled in [49] to
describe non-stationary random processes corresponding to
wave propagation signals. This structure function is defined

as [49, (47)]

Daa=2(C, (0) — Cp (Ad)) = 2(1 — C, (Ad)),  (50)

where C),(+) is the normalized auto-covariance of the analyzed
process. If the process is stationary this function tends to
stabilize for high Ad corresponding to low values of C),(Ad)
(see Figs. 14 and 15 of [49]).

V. NUMERICAL RESULTS

In Table III, using the log-moments derived in above equa-
tions the parameters of the a-pu, Nakagami-lognormal, Suzuki,
generalized-K and K have been shown for the received field
strength in all routes. Since the parameters of the generalized-
K, m and M, in (12) and (13) are interchangeable, we have
selected the minimum of both values to m corresponding to
the fading parameter of the short-term fading. Moreover, in
the routes #1, #4, #5 and #8, the generalized- K log-moments
do not provide any solution. Thus, we have obtained the
values of 772 and M which simultaneously minimize both fi5 —
(4) (' (m) + ¢/ (M) and f1 — (£)” (" (m) + 7 (M)).
Note that for the «-p distribution, in Fig. 4 the estimated
values of o and p parameters of all routes are inside the shaded
area in grey. For instance, the estimated values for the route #1
are & = 0.45 and p = 5.01, which correspond to a dot inside
the area of permitted values.
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Fig. 6. Average standard deviation of the received signal in logarithmic units
for a window size in A along the route #5.

Fig. 6 shows the averaged standard deviation along the
route #5 as a function of the window size in A. For window
sizes less than 7\, since the slope of the averaged standard
deviation as a function of the logarithmic window size is
approximately constant, we can assure that the local mean
is almost constant. Thus, no appreciable shadowing effect
is present in these window sizes. Furthermore the long-term
variation prevails if the window size is higher than 200\.
Comparing the analytical standard deviation of (48) to the
experimental result of Fig. 6, since the slope of the average
standard deviation does not tend to O in any window sizes
between the high slopes corresponding to small-scale and
long-term fading (between 2 and 20, approximately). Hence
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the shadowing and the fast fading are substantially overlapped
and the channel is non-stationary. In this paper we have
estimated an average size window where the fast fading
predominates. For the route #5 this optimal window size is
approximately 45\. The optimal windows size for each route

TABLE II
OPTIMAL MEAN WINDOW SIZE (MWS) FOR EXTRACTING SHORT-TERM
FADING IN EACH ROUTE AS A FUNCTION OF THE WAVELENGTH, .

Route #1 #2 #3 #4 #5 #6 #7 #8
MWS  100A 75X 40X 80X 45X\ 150X 65X\ 25X

using this method is shown in Table II. This mean window size
varies substantially from 25\ to 150\ for routes #8 and #6,
respectively. Fig. 7 shows the fading parameter, m, calculated

2.2 \ \ \ ‘ ‘ ‘ : :

2t
g
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—
=
= L6y
fan
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o
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Fig. 7. Fading parameter, m, of the estimated Nakagami-m distribution of

the short-term fading along the route #5. The size of the window is 45)\. The
mean of the fading parameter is m = 1.15.

over the average window size of 45\ along the route #5 using
the Lorenz estimator [22]. This fading parameter oscillates
from 0.8 to 2.1. Note that fading parameters less than 1
correspond to situations as turning around a corner where the
shadowing effect cannot be completely eliminated. The mean
of the fading parameters calculated over this route is m = 1.15
which is very close to the estimated fading parameter for
the Nakagami-lognormal distribution, m = 1.14, shown in
Table III.

In Fig. 8, we have plotted the logarithmic CDF of the
experimental distribution and the a-p, Nakagami-lognormal,
Rayleigh-lognormal, generalized-K and K distributions with
the parameters estimated shown in Table III for the routes #1,
#4 and #8. The logarithmic CDFs have been obtained by sub-
stituting the inferred parameters of Table III in F). (exp (¢/A))
given by (7), (21) and (35) for the Generalized- K, Nakagami-
lognormal and «-p distributions, respectively. Substituting
m = 1 in (7) and (21) and following the same procedure,
we have derived the logarithmic CDFs for the K and Suzuki
distributions, respectively. For the route #4 the differences
between the CDF experimental and each CDF of the analyzed

8
TABLE III
ESTIMATED PARAMETERS OF THE DISTRIBUTIONS FOR THE ANALYZED
ROUTES.
a-p Nakagami-  Suzuki Generalized-K K
lognormal
#1 @& =045 m = 0.82 =713 m = 1.047 M =0.73
4500 ji="5.01 6=633 f=-611 M=105 Qo =56-10"6
samples Q=12-10"% #H=-575 Qo =38-10"°
# a=134 m=103 6=214 = 1.038 M =45
6266 a=1.61 & =242 fj=—656 M=351 Qp=13-10"7
samples Q=71-107% §=-62.7 Q=17-10"7
#3 a =117 m = 1.07 o =217 m=1.11 M =44
3208 =198 6=278 §=-613 M=255 Qg =4.1-10"7
samples Q=12-107% #H=-585 Qo =7-10""
#4 a=0.79 m=106 & =359 =135 M =187
2419 =318 5=39 fj=—-685 M=137 Qp=21-10"7
samples 0=49-10"% §{=-656 Qo =28-10"7
#5 a=0.58 m=114 &=38T7 =147 N =1.67
3483 =53 =451  §=-69.85 M =148 Qo=19-10"7
samples Q=4-10"* 7§ =—67.2 Q9 =21-10"7
#6 a=1.31 m = 1.02 & =2.36 m = 1.026 M =375
2832 =163 5=25 f=—79 M = 3.27 Q9 =76-10"°
samples Q=15-10"* #§=-76.1 Qo =8.8-10"°
#7 a=168 m=101 6=143 7 = 1.006 M =10.03
2923 a=1.22 &=1.63 f=—67.8 M =867 09 =35-10"8
samples Q=57-107" H=—-648 Qo=41-10"8
#3 a@=0.73 m=1.15 =313 m = 1.48 M =2.32
5361 a=39 5=392 §=-59.9 M=149 Qp=1.2-10"6
samples 0=13-10"3 §H=-573 =15-10"6

& in dB and 7 in dBV/m

10
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Fig. 8. Cumulative distribution functions of the experimental, o-p
(generalized gamma), Nakagami-lognormal, Rayleigh-lognormal (Suzuki),
Generalized- K (gamma-gamma) and K (Rayleigh-gamma) distributions using
the log-moments for the routes #1, #4 and #8.

distributions are low. The differences between experimental
and some analyzed CDFs are significant in the routes #1 and
#8. In particular the estimated generalized-K CDF differs sub-
stantially from the experimental CDF. For the plotted CDFs,
the a-p and Nakagami-lognormal CDFs fit the experimental
CDF better than the other distributions although significant
differences can be appreciated for the lower tails of the
distribution for the route #8. The K-S test of these distributions
has been applied for all routes. Table IV summarizes the values
of the confidence intervals of 5% and 1%, D5 and D1, respec-
tively. In bold letters, the values which provide less values of
K-S statistic among the a-p, Nakagami-lognormal, Rayleigh-
lognormal, generalized- K and K distributions are shown. Note
that the K-S test is calculated using the logarithmic CDFs.
According to the K-S test results, the received field strength
distribution which matches better the received field strength
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TABLE IV
KOLMOGOROV-SMIRNOV TEST FOR THE ANALYZED ROUTES.

Distribution a-p N-L Suzuki G-K K

Route #1
D5 = 0.0203
Dy =0.0243

Route #2
D5 =0.0172
D1 = 0.0206

Route #3
Ds = 0.0240
D1 =0.0288

Route #4
Ds = 0.0277
D; =0.0331

Route #5
D5 = 0.0230
Dy =0.0276

Route #6
D5 = 0.0256
D1 = 0.0306
Route #7
D5 = 0.0252
Dy = 0.0301
Route #8

D5 = 0.0186
Dy = 0.0223

N-L: Nakagami-lognormal, G-K: Generalized- K

0.0181  0.0252  0.0261 0.132 0.0658

0.0091  0.0106 0.0110  0.0079 0.0116

0.0411  0.0273  0.0305  0.0503  0.0617

0.0185 0.0187 0.0209  0.0445 0.0391

0.0381  0.0279 0.0370  0.1128  0.0812

0.0175  0.0108 0.0152  0.0155 0.0193

0.0179  0.0124 0.0151  0.0154  0.0179

0.0267 0.0194 0.0346  0.0736  0.0641

is in general the Nakagami-lognormal. This is the best-fitting
distribution for the routes #3, #5-#8. Nevertheless, the a-u
distribution matches better the measured field strength in the
routes #1 and #4, and the generalized-K distribution is the
best-fit distribution for the route #2. Note that the K-S value
for the generalized-K distribution is considerable high for the
routes #4, #5 and #8 due to (12) and (13) are not fulfilled.
Moreover the K-S condition is not accomplished in route #5
for all analyzed distributions. In the routes #3 and #8, the K-S
test is only fulfilled for a significance of 1%.

VI. CONCLUSION

In this paper, we have proposed a general method for
estimating the parameters of the -y, Nakagami-lognormal,
Suzuki, generalized-K and K distributions using the method
of moments in logarithmic units. These distributions have been
proposed to model the composite fast fading and shadowing
effects. A novel and simple parameters estimator of the
Nakagami-lognormal distribution has been derived. From a
measurement campaign carried out in an urban environment
of the city of Valencia, Spain, the parameters of these distri-
butions have been estimated in eight routes with number of
samples which oscillates from 2419 to 6266. Using the K-S
test, the Nakagami-lognormal is the best-fitting distribution in
five routes. The second best distribution which matches the
experimental measurements is the a-u being the best-fitting
distribution in two routes. Moreover, to separate the fast fading
and the shadowing we have proposed a procedure based on the
Rathgeber method [37]. Using this procedure we can estimate
the average window size in a route where the shadowing can
be assumed neglected. The mean window sizes calculated in
the routes vary considerably from 25X to 150A.
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