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Abstract

The problem of estimation of the integral of the squared derivative
of a probability density f is considered using wavelet orthonormal bases.
For f such that f(d), the d-th derivative belongs to the Sobolev space
Hj,s > 0, we obtain the precise asymptotic expression for the mean
integrated squared error of the wavelet estimator.
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1. Introduction
o<}
The motivation for estimation of the functional I4(f) = [ f(d)z(a:)dm where f is
-

a probability density and f(4) is its d-th derivative is well known. For. instance , the
functional I5(f) appears in the asymptotics of the integrated mean squared error of a
kernel-type density estimator (cf. Prakasa Rao (1983), p.63). Kernel-type estimation for
the functional I4(f) has been investigated recently by Hall and Marron (1987), Bickel
and Ritov (1988), Jones and Sheather (1991) and Hall and Wolff (1995) among others.
In a recent paper , Birge and Massart (1995) studied estimation of functionals of the

type T(f) = }0 qﬁ(m,f(a:),f(l)(:n),...,f(’“)(w))d:z: where ¢(z) is a smooth function of

k + 2 variables and f belongs to a class of probability densities of smoothness s. Birge
and Massart (1988) generalized the results on the bounds for the rates of convergence of
the mean squared error obtained by Bickel and Ritov (1988) to general functions of the
type T(f). The motivation for the estimation of general functionals T(f) comes from
the need, for instance, in the selection of bandwidth for density estimation , for the
estimation of the Fisher information and for the estimation of Shannon entropy etc.(cf.
Prakasa Rao (1983)).

In Prakasa Rao (1996), we have studied nonparametric estimation of the derivative
of a density by wavelets and obtained a precise asymptotic expression for the mean
integrated squared error following techniques of Masry (1994). Estimation of the integral
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of squared density was discussed in Prakasa Rao (1997) by the method of wavelets and
a precise asymptotic expression for the mean squared error has been obtained. We now
extend these results to the case of the estimation of the functional I4(f).

2. Introduction to Wavelets

A wavelet system is an infinite collection of translated and scaled versions of func-
tions ¢ and ¢ called the scaling function and the primary wavelet function respectively.
The function ¢(z) is a solution of the equation

o(z) = Z Cr o(22 — k) (2.1)
k=-—o0
with -
/ é(z)de =1 (2.2)

and the function ¥(z) is defined by

e o}

P() = Y (=1)*C_ry1 ¢(22 —k).. (2.3)

k=—c0

Note that the choice of the sequence {C}} determines the wavelet system. It is easy to

see that -
Y a=2 (2.4)
k=—c0
Define
¢in(z) = 2/°¢(2 e — k), —00 < j,k < o0 (2.5)
and
PYin(z) = 2972 (272 — k), —o0 < j,k < 0. (2.6)

Suppose the coeflicients {C}. } satisfy the condition

E CiCryoe = 2if£=0

k=—o0

= 0if £#0. (2.7)

It is known that, under some additional condition on ¢, the collection {t;i, —c0 <
7,k < oo} is an orthonormal basis for L2(R) and {¢; x, —c0 < k < oo} is an orthonormal
system in L(R) for each —oco < j < oo (cf. Daubechies (1990)).

DEFINITION 2.1. A scaling function ¢ € C{") is said to be r-regular for an integer
r > 1if for every non-negative integer £ < 7 and for any integer k,

6 (2)] < er(1+]2])™*, —co <z < o0 (2.8)

for some c; > 0 depending only on k where ¢(9)() denotes the £-th derivative of ¢.
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DEFINITION 2.2. A multiresolution analysis of L*(R) consists of an increasing se-
quences of closed subspaces {V;} of L(R) such that

() () vi=A{0
() J vi=LR);

(i1i) there is a scaling function ¢ € Vj such that
{¢(z — k), —oo0 <k < oo}
is an orthonormal basis for Vy; and for all h € L%(R),
(iv) for all —oo < k < o0, h(z) € Vo = h(x — k) € Vo;
(v) h(z) € V; = h(2z) € Vj41.

Mallat (1989) has shown that given any multiresolution analysis, it is possible
to derive a function ¥ (primary wavelet function) such that for any fixed j,~oco <
j < oo, the family {¢;x,—00 < k < oo} is an orthonormal basis of the orthogonal
complement W; of V; in V;;; so that {#;i, —co < j,k < oo} is an orthonormal basis
of L?(R). Conversely, given any compactly supported wavelet system, it gives rise to a
multiresolution analysis of L?(R) (cf. Daubechies (1990)). When the scaling function ¢
is r-regular, the corresponding multiresolution analysis is said to be r-regular.

Let H} denote the space of all functions g(-) in L?(R) whose first (s — 1) derivatives
are absolutely continuous and define the norm

1/2

lgllms = 3 / 109 (2) [2dt
7=0 o

LEMMA 2.1. (Mallat (1989)). Let a multiresolution analysis be r-regular. Then,
for every 0 < s < 7, any function g € L*(R) belongs to H3 iff

(o]
Z ele?t < o0 (2.9)
{=—o00

where €2 = ||g — g¢||3 and g, is the orthogonal projection of g on V.

Remarks: The above introduction is based on Antoniades et al. (1994). For a
detailed introduction to wavelets, see Chui (1992) or Daubechies (1992). For a brief
survey, see Strang {1989).
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3. Estimation by the Method of Wavelets

Suppose Xi,..., X,, are independent and identically distributed random variables
with density f. Suppose that f is d-times differentiable and that f(¢) denotes the d-th
derivative of f. We interpret f(°) as f. The problem of interest is the estimation of

L(f) = / F9 (2) da. (3.1)

Assume that f(¢) € L2(R) and there exist D; >0, B > 0 such that
[f9 ()] < Dz~ for o] 21, 0< 5 <d (3.2)

where Gy > 1.

Consider a multiresolution as discussed in Section 2. Let ¢ be the corresponding
scaling function. Suppose that the multiresolution is r-regular for some r > d. Then,
by definition, ¢ € C("), ¢ and its derivative #) up to order r are rapidly decreasing i.e.,
for every integer m > 1, there exists a constant A,, > 0 such that

Am

6V (2)] < —, 0<j <. 3.3
@ T ()
Let
dor(z) = 242¢(2%c — k), —00 < k,£ < co. (3.4)
Then ’
¢E{2($) = 2/ N+4 4(3) (2tg — k), 0<j<r (3.5)
and (2415
(4) 2 T Am ;
(@) < ————- 05T 3.6
| L,k( (1+l$|)m ( )
If d > 1, then it is clear that
lim ¢{)(z) @ D(@) =0, 0<j<d—1 (3.7)

||~ 00
for any fixed £ and k. Let f,q be the orthogonal projection of f(¢) on V,. Note that
fraz) = Y ar; d4i(2) (3.8)
j=—0o0

where

[l
Th
&
—_
14
~
-
~
[
G
Qu
13

agj
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by (3.6) for d > 1. Clearly the equation (3.9) holds for d = 0. Hence, for all d > 0,

ai; = (-8 [ (x1)] . (3.10)
Further more
=Y~ fualf = 1PN~ Y ah = 0ast— o0 (3.12)
k=—oc

by the properties of a multiresolution decomposition. Here |||, = { [ |g[Pdz}'/?,p > 1.

Note that -
L(f) = [IF913. (3.12)
Let
K
fra(z) = Z awk d1,k(T) (3.13)
k=—K

where K = K, is a sequence of positive integers depending on £ = £, tending to infinity
as n — oo and £ = £, — oo as n — co. Note that fx ,q(z) is a truncated projection of
@ on V,. Given an ii.d. sample Xq,..., X,, let

Ap = Z Zcbz Xi) ¢ X;) (3.14)

i=1l,i#j5j=1

and we estimate I4(f) by

K
L(fy= Y Au. (3.15)
P
Note that
E(Aun) = a2, (3.16)
and
K
E(jd(f)): Z ajy- (3.17)
k=-K
Observe that
lim lim E(I4(f)) = Ia(f). (3.18)

L—00 K00

4. Computation of the Mean Integrated Squared Error for fd(f)
Let

= E|lu(f) - La(f)?
= var(la(f)) + (E(La(f)) — (f))2
- var Z / f(d

-0

= var(la(f)) + (llfK,z,dH§ — LF D). (4.1)
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Note that
FD= D~ fog + fra — fra+ froa
and
IFDUE = 15D = Fualls + 1fea — Frenall} + l1Fx call3- (4.2)
Hence
IFNE = fkeals = 1FD + fualld ~ W fea - Freall}
= &£+Q2=B? (4.3)
where
Q7 = |lfea — frall3 and ef = [|F19) — f,4]13. (4.4)
Hence
I3 = var(la(f)) + (e + Q2)* = var(I4(f)) + BL. (4.5)

Throughout the following discussion, we assume that (A1) the multiresolution anal-
ysis given by ¢ is r-regular where r > 1 is a positive integer, the function f(4) ¢ H;
where 0 < s < r and the function f is of bounded variation on R and (A2) 1< By <
(7/6) + (d/3).

As a consequence of Lemma 2.1., it follows that

ef = [|If'Y — full} = O(e™*). (4.6)
Note that
Q2 = |frna— frotna kK
= Z |atmj 2 (4'7)
lFI>Kn
But
a;; = (=1)¢ / f(u) S?(u)du

I

(~1)263+d) / 6@ (2% — 5)f(u)du

[l

(_1)d2z(§+d) / ¢(d)(v)f (v;]) 2~ Ldu

(—1)d2u-(4/2) / ¢ (v)f (v;j) dv. (4.8)
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Hence
- v+ v+7
lagg| < 2t / ¢(d)(”)f< 24J)dv+ / ¢(d)(v)f< QAJ)dv
lol< 14 jul> 14l
- v+ *©
< ou (z/z){[ sup f( 2/) / ,¢(d)(v)|dv}
Jvl<lil/2 -0
+{| s 189) /f('”ij)dv
vl>131/2 I 2
D A
< 21&—(1/2){ 0 (d) m 21}
< Girzeme ¢ T
< gtd-(2/2) {Do||¢(d)||12(l+l)ﬁ° 2t } (4.9)
- |71 5™
Hence
@ < eten {Dénqs@n% Pt 5 ——miﬁo}
’ lil>Kn
R
iox.
o gtni-tar1 | DElEWIL 2280(Ln+1) A2, 2Utntm) 4.10
- 2B0-1 + om— 1 2m—1 ( . )
(2ﬁ0 - 1)Kn ( m ) n
from (3.2) and (3.6) for any integer m > 1. Let m > (3g. Then
Q2 < Dg”‘ﬁ(d)”% 21,,(2d—l)+2ﬁ.,(z,,+1) N A2n22(1n+m)+t,.(2d—1)
" (280 - 1) K 2Pt (280 — 1)K2Po?
9Ln{(2d-1)+280} 92B0+1
< D2 qs(d) 2 1_+_0 221,,(1——ﬂo)
—_ K"Zlﬁo_, (2ﬁ0"1) OH Hl( ( ))
24n{(2d-1)+260}  92Bo+1
D2|16D|2(1 + 0(1 4.11
— K,zlﬁ"“ (2ﬁ0— 1) OH ||1( ( )) ( )
since 3p > 1 and £, — oo. If
K, = 2{34-1+2804 20t/ (2001 1og | (4.12)
then
tn{(2d—1)+280} 1
T = e S0 (4

since 3y > 1 and £, — oo and in fact

Q5 =027 %) (4.14)
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Note that

BY = (If'— frotndl’ = QL +1IFD — fr.all}
— 0(2—2:ln) + 0(6_2‘1")

by Lemma 2.1 (cf. Mallat (1989)) and hence

B2 = g(27 %), (4.15)
Observe that
R K
var({g(f)) = wvar| E Apl
k=—-K
= Z Z cov( A, Awrr) (4.16)
k=—K k'=

where cov(X, X) is interpreted as var(X). It can be checked that

K K
i) = ot 32 el

k=~Kk'=-K
4n-2) & & @)y 4(d)
+ Do . aman Eldy) (X1)dg (X))
n(n —1) k=—K k'=—K
4n — 6 K K
LSS P (417

This can be seen from the fact that X;,1 < ¢ < n are i.i.d. random variables and
E(Agu) = a2, following Prakasa Rao (1983), p.270 and the fact that for any k and &',

d d d
B(AnAue) = 553 > Bl (X)Si0(X)60 (XDSR(x)] (418)
where the summation runs over all ¢, 7,4, 7' with 1 < 4,3 4,5/ < n. Note that
d
(Ble (Xa)egeo (X))

/ S50 (w)g) (u) £ (w)du)?

( / 84 (u) £ (w)du) / B4 () £ () )

o0

+ / 66 (o) (0) — D ()4 (W] F () f()dudv  (4.19)

— 00

[
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by the Lagrange identity. Therefore

Z Z Xl ¢uu(X1)])

k=—K k'=—

u)du)( / ¢w du)

+Z Z{// 659 ()8l (v) — 659 (0) 852 (W) (1) f (v) dudo)

—-Kk'=—-K

I
(]

\MN

<;
&

-0

K K
85 (u)f () o5 (u
k;(/ﬁ() 9 3 / 2 (u) (w)du)

K

+ Z Z I,(fk, (say). (4.20)

Kk'=—K

i

Note that

15
&~
I>q .
I
>
—
~—3
S
~ e~
&
s
~~~
&
N
H,
—~~
£
U
e
—
i
—
\8
S
e~
a
[ S
—
£
N
—~~
£
.
e
——

e 3 f&ﬁwmwu

1J'>Kn -
= 51+85, (say). (4.21)

Since f is of bounded variation on R by assumption, it follows that

2l (1+2d) o u+
Sto= o /()u) Zf(%)

_ 22(,,d/°?¢(d)’(u){ i f(u+1)}
= 22“7(;;(4) u){/f )du + O(2~ ")}du

(by Lemma A.1 of Masry (1994))

= 2%nd { / ¢(d)2(v)dv} (14+0(27%)). (4.22)

= Y E [¢(“) ] (4.23)

|Jl>K

Further more



56 B.L.S. PraKAsA Rao

N
/ S w)

_ 2zn(2d+1)/¢(d)’(2‘u—j)f(U)d“

— 22[d/¢(d)2 (U+J>du

But

B2 (X1))

D 2 A?
< 22tnd{_f_0_ @ +___jn__2z.,}
< 72y 197 I+ Gy

<

g2taa | Dollg @ [ 20t otnt2m 47,
1P Hg

by methods similar to those used to derive (4.9). Hence

olnd {Do||¢(d)2|112'6“(£"+1) 2tu+2m 42 }
2tn

|Sa] <

- (Bo — 1)KEe~! (2m — 1)K2m-1
Dol|¢(?]|y 2P0(tn+1)+2tnd—tn
T (Bo-1) KBo-1
A2 oln+2m+2Und—L,

T -1 kP

2ln(ﬁg+2d—1)2ﬂu DO”QS(d):Hl
(Bo— KB~} (Bo—1)

9ln(Bo+2d-1)
o[
K&
for m > By > 1 as £, — oo from (4.23) and (4.24). Let

= 300 > {(-1)%a,;3

l7l<Kn

+ O(an(l-ﬂo)}

Then

(e}

1
IS3| < 2L, Z a’ll] = 9t ‘”f(d ||2

j:—OO

Combining the above results, we have

K oo
1
9L, (1+2d) Z /¢$}? (w)f(u)du
k:—K_oo

e K

1 1

—_ d)? :
= / qS( ) (v)dv + S (iT2d) L_ZK ag.x+ O(W)'

— 00

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)
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Therefore, following the relation (4.20), we have

(d) (d)
2MH%)Z ZI ek (X1)))?

~-Kk'=—K
. (@ (1)d 1 0 1
= { ¢ (v)dv + gy Z af x + (Srmean )}
AN k=—
T 1 K 1
d)? 2
{/ ¢( ) (v)dv+ 2£“(1+24) Z alnk +O(2["(1+2d) )}
o ki=—K
1 K K o)
Lo
+22£"(1+2d){ Z Z Ik,k'}
k=—~K k'=-K
_ d 2,
= {/¢() Jdv} + 221,.(1+2d) Z Z 07,101, k'+0(221 1+2¢))
- KLI
K K )
221 (1+2d){ Z Z Ik l:'} (4'29)
k=—K k'=-
since
K
Y ai <A < oo (4.30)
k=—K

Let us now consider

E[¢{D (X1)4 (X1)]
= Eg{) (X1)El$ (X))
+C°”(¢u¢ (X1), lk’(Xl))
= agag + Ol(var(gly) (X1)lvar(gl (X1)))!/?) (4.31)

uniformly in k, k'. Note that
var d’u (X1)] / / f(u (:)(u)—ngZ)(v))2 dudv = J,Et)(say)

by the Lagrange identity. Combining the above relations, we have

1 .
etz vera(f))

2 7 4)? 9 1
= n(n_ 1) ({/ ¢( ) ('U)dv} + 22[,—.(1‘}-2(1) Z Z al"ka’t k!

Kk'=—K

1 (L))
+0(22£"(1+2d)) 221"(1+2d) Z Z I, w)
=—Kk'=—K
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4(n - 2)

* n(n — 22‘n(1+2d){ Z Z R Z Z ar kar,wO((JS T2y
=—Kk'=—K k=—K k'=—K

(4n — 6) 1

- a?  a? /
n(n — 1) 2% (1+2d) :Z;K k’:Z;K Lkl k

= n(TL — 1){ ¢ (U) U} + (221"(14_2(1)) 221,1'(1_’_2(1) Z Z k, k’
— 00 =——_Kk'=—K

4(n — 2 .

+ E ) 22£n(1+2d) Z Z at, ka1 O J( )Jﬁ:‘)ln)]. (4.32)

k=—K k'=
Therefore

n(n—1) N

224,.(1+2d) var(la(f))

1
B 4)? 9 (L)
= {/ P’ v)dv} +0(22¢,,(1+2d)) 22t, (1+2¢) Z Z Tk

k=—K k'=—

K

4(n - 2) = Ln) 7o
toay O O Ganw O I, (4.33)
k=—Kk'=-K

We shall prove later that

1 K K ()
— tll
92¢,.(1+2d) Z Z I = of (4.34)
k=—Kk'=
and
——4(n_2 (£n) 7LaN1/2
922, (1+24) Z Z ag ka1 O((J, ™ J,0) %) = o(1) (4.35)

k=—K k'=—

under the condition (A1) .Hence we have the following main result.

THEOREM 4.1. Suppose the conditions (A1) and (A2) hold. Further suppose that
£, — oo and
K, = 2{(2d-1)+280+2s}(£n/ (280 -1)) log n.

Define fd(f) as an estimator for I4(f) where fd(f) is as given by the equation (5.15).
Then

2n(?1+23)E11d( )= L(f)* - {/ ¢ (v)dv}? (4.36)
as n — o0.

PROOF. Observe that

n(n — 1)

mEUd( ) = La(f)?
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n(n—1 N
= b var(iu(f) + B
n(n—1) : n(n—1) oo 4,
= 221,1(14-2(1)“‘”(%(1‘)) 225,,(1+2d)0(2 )
2 1 TL(‘IL — 1) _
_ d 2 454,
- {/ " (v)dv} + O(gz7rray) + o1 + gargran O(274)

-0

from the relations (4.33) to (4.35). Hence

n(n — 1)

T EILa() = L) = { [ 697 ()} asm - oo

-0

since £,, — 00 as n — oo, O

Remarks: If d = 0, then the relation (4.36) reduces to Theorem 3.1 in Prakasa Rao
(1997). If 24 ~ n(2‘1+1) then it follows that the mean squared error E|fd(f) — Li(f)?

245 Ad—s)
1) = O(n‘““)) The rate of convergence or the bound on

is exactly of the order O(%

sd
the mean squared error is O(n “'+1)) for the kernel-type estimator suggested by Bickel
and Ritov (1988).

5. Proof of Equation (4.34)
Case (i). Suppose k # 0 and k' # 0. Then

L
1|

IN

/{M’t k )| + |¢z k’( ) Ef?f(v)l}dudv

IA

2 / 164 () F ()} { / 1669, ()11 (v)do}

otd(¢/2) {DO|!¢(d)H1 ‘“)‘3“ N 2‘*"‘Am}
2 I

B D Hqg(d)” 2(£+1)Bo ot+m
td—(4/2) 0 1 A
x2 { "/Po g A

(5.1)

from the estimate following (4.9){cf. Prakasa Rao (1996)). Hence

K
> Y

k=—K k#0k'=—K. k'#0

K K
_ 1 - 1
S POHDoISNIEY 3, gt 2 A Y gl
k=—K,k#0 k=—-K,k#0
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X K1
< 2%ty ||pl D 2%+ | ——de + 2P A, | —dz}?
1 "Eﬁn 1 ™
1 — K—Potl 1 K-m+1
2d—¢ (d) 11, 9Bo(£+1) ot+m 4 2
< 2797 H2Dglle [ 2 B 1 + m—— }
22ld—l{0122lﬁ0+02224}

AN

0(21(24—1+250)) + 0(22£d+l)'

Hence

1 K K
L,
P (172d) > . M
k

=K k#0k'=—K k'#0

0(21"(2ﬁ0~*3—4d)) + 0(2—ln(1+2d))

1l

= of1) (5.2)
provided B < % + 2d.

Case (i1). Suppose k = 0 and k' # 0. Note that

azo:(—l)d/¢£:ig(u)f(u)du = (_1)d2td—(z/2)/¢(d)(u)f(§u7)du
O(2ld—(l/2)) ) (5.3)

by the bounded convergence theorem and the fact that ||¢(?)||; < co. Now, for k = 0
and k' # 0,

A
1184,

(5.4)

< Oy {24~ (D) gtd=(4/2) {D0||¢(d)||12(z+1);3,, olim }

Am
W e

from (5.3) and the estimate used earlier following Prakasa Rao (1996).It is easy to see
that

Bot ¢
L 2 2
1] < 2244~ ey 2 e+ Co }k'l"‘} (5.5)
Therefore
K
Z if(()l;:')) < C72Ln(,60—1+2d) + 0822‘""
k'=— K k'£0
and
1 K
g D Mow| <o mini Gt —o(1) - (5.6)
k'=—K,k'£0
since Gg < 3 + 2d.
Case (iil). Suppose k = 0 and k¥’ = 0. Then
I(()% < Cg22d-t
from (5.3) and hence
1
I(z..) = Q27 ¥n—2nd), (5.7)

92¢,(1+2d) "0
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Combining (5.2),(5.6) and (5.7), we obtain that

(¢n)
220, 1+2d) Z Z e i | = of (5.8)

k=—Kk'=-K

proving (4.34). o

6. Proof of Equation (4.35)

Consider

79 =

[64%) (u) — 8L (v)]2F (u) f (v)dudv

IA
é\,g é\,g é\.g
~——3 é\,g

|
8

d

() (v) f(w) f(v)dudv

= 27¢§, flu /¢(d)

|
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Case (1). Suppose that k # 0 and k' # 0. Then

( )1/z|

IN

ack(Jy

21/2|/¢, ) f(u)du H/a& u)dul'/?

_ D H¢(d ||12(£+1 9t+m
1/22ld (l/?) 0 A
? e+

_ D ||¢(d)“12(1+1)ﬁn 9t+m
td—(£/2) 0 1/2
[2 { o + e Am ]2

IN

(6.2)

The bound given above can be derived by arguments similar to those given in Prakasa
Rao (1996). Hence

9ot 9B 2%

1/2) o otd—4 s 27
o (T2 < 2 {Clotklﬁ“ +Cn ik|m}2 H{Cramr e Clalklm}
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by the elementary inequality
(A+B)l/2 <A1/2+Bl/2

for A > 0 and B > 0. Therefore

2Lt 1420t LBo+ % 9%

¢ 3t _ 3t 273 2
a2 Cu g+ Cuog g + O + O (69
Hence
K
L
Y a9
k=-K ,k#0
< 2%_%‘{01823—[?_[ -+ C'lgzﬂ_ﬂ_'-éi + Czo?lﬁ°+% + C212}ZA}
< Oyt ¥eE (6.4)
(since Bg > 1). Therefore
K K )
DS > an (TN 20 (TE)2| < Cpg28d% 93080, (6.5)
k=—K,k#0k'=—K,k'£0
Hence
4(n - 2) K X
220, (112d)+1 | Z Z alk(ngl"))l/Qatk'(J;Ef"))l/zi < Cqn2t+(3o=(7/2)=d)
k=—K,k#0 k'=—K,k'£0
(6.6)
since Bg < (7/6) + (d/3).
Case (ii). Suppose k = 0 and k' # 0. Since
1< 2 [ o s
— 2l,l+2l"d+12—ln / ¢(d)2(u)f(2—'ZL:)du
0(2%»%), (6.7)
it follows from (5.3) and (6.7) that
laco(JS)2] < Cy522td-4, (6.8)
But
ut 3¢ed _ 3t 3Bg¢
Y aw() <2 (6.9)

k=—K k#0
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from (6.4). Therefore

K
Y (U ane (T2 < 23 g ()
k'=—K k'£0
and hence
K
4(n — 2 38 13 _ 3d
5((—+))T| S a0 P (RN = 02t R )
k'=—K,k'£0

since (3 < % + %.

Case (iii). Suppose k = 0 and k' = 0. Note that

a2 I < / B4 (u)du)? / 84" (

= g[23tHd / D (2%u) f(u)du)2[2¢H24¢ / D (2%) f(u)du)

— —o0

_ 221+4td+1[/ ¢(d)(2‘u)f(u)du]2[/ ¢(d)2(2lu)f(u)du]

and hence N
22%1(:_; < /¢d> ~4ydv]?)[2~ 7¢(d)2(v)f(vi“)dv]
_ 2—3L+1[/¢(d)(v) F(v274)dv]? /¢(d) ~H)dv)
which implies that, for n > 2, N
0< -;i"ﬂ—?)) a3o ¥ < 4n2-3‘+1[f ¢ (v) f(v2 ) do’][ 7 8 (v) f(v27")do]

— 00

and the expression on the right side tends to zero as n — oo if £ = £, and
sup | / ¢(d)(v)f(v2"t)dv1 < oo
L

and

sup | / ¢(d)2 (v)f(v27 Y dv| < 0.
L
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Note that

f¢(d>(v)f(v2—‘)dv—> / ' (v) £(0)dv
and

/¢(d)2(v)f(v2")dv—> /¢<d>’(v)f(0)dv

as £ — oo by the bounded convergence theorem and the fact that ||¢(¥)||; < co and
1¢(®?|]; < co. Hence

4(n - 2) 2 (l)

220(1+2d)+1 aoJy " = of1). (6.11)

Relations (6.6), (6.10) and (6.11) prove the theorem. 0
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