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                       Abstract 
   The problem of estimation of the integral of the squared derivative 

of a probability density f is considered using wavelet orthonormal bases. 
For f such that f(d), the d-th derivative belongs to the Sobolev space 
H2 , s > 0, we obtain the precise asymptotic expression for the mean 
integrated squared error of the wavelet estimator.
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1. Introduction 
co 

   The motivation for estimation of the functional Id(f) = f f (d)2 (x)dx where f is 
-00 

a probability density and f(d) is its d-th derivative is well known. For instance , the 
functional I2(f) appears in the asymptotics of the integrated mean squared error of a 
kernel-type density estimator (cf. Prakasa Rao (1983), p.63). Kernel-type estimation for 
the functional Id(f) has been investigated recently by Hall and Marron (1987), Bickel 
and Ritov (1988), Jones and Sheather (1991) and Hall and Wolff (1995) among others. 
In a recent paper , Birge and Massart (1995) studied estimation of functionals of the 

00 

type T(f) = f (1)(x, f (x), f (1)(x), ... , f (k) (x)) dx where 4(x) is a smooth function of 

k + 2 variables and f belongs to a class of probability densities of smoothness s. Birge 
and Massart (1988) generalized the results on the bounds for the rates of convergence of 
the mean squared error obtained by Bickel and Ritov (1988) to general functions of the 
type T(f). The motivation for the estimation of general functionals T(f) comes from 
the need, for instance, in the selection of bandwidth for density estimation , for the 
estimation of the Fisher information and for the estimation of Shannon entropy etc.(cf. 
Prakasa Rao (1983)). 

    In Prakasa Rao (1996), we have studied nonparametric estimation of the derivative 
of a density by wavelets and obtained a precise asymptotic expression for the mean 
integrated squared error following techniques of Masry (1994). Estimation of the integral 
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of squared density was discussed in Prakasa Rao (1997) by the method of wavelets and 
a precise asymptotic expression for the mean squared error has been obtained. We now 
extend these results to the case of the estimation of the functional  Id(f  ).

2. Introduction to Wavelets 

    A wavelet system is an infinite collection of translated and scaled versions of func
tions 0 and V called the scaling function and the primary wavelet function respectively. 
The function 0(x) is a solution of the equation 

                                                         00 

0(x) = E Ck .0(2x — k)(2.1) 
k=—co 

with 

fc5(x)dx = 1(2.2) 
-00 

and the function 0(x) is defined by 
00 

0(x) = E (1)kC_k+l 0(2x — k)..(2.3) 
k=—oo 

Note that the choice of the sequence {Ck} determines the wavelet system. It is easy to 
see that 

00 

E Ck -=(2.4) 
k=—oo 

Define 

0j,k(x) = 2'/20(2'x — k), —oo < j,k < oo (2.5) 

and 

ikj,k(x) = 22/2 b(2'x — k), —oo < j, k < oo. (2.6) 
Suppose the coefficients {Ck } satisfy the condition 

00 

ECkCk+2/ = 2if£=0 
k=-0o 

                   = 0 if £#0.(2.7) 

It is known that, under some additional condition on 0, the collection {`tkj,k, —oo < 
j, k < oo} is an orthonormal basis for L2(R) and {0j,k, —oo < k < oo} is an orthonormal 
system in L2(R) for each —oo < j < oo (cf. Daubechies (1990)). 

    DEFINITION 2.1. A scaling function 0 E CO') is said to be rregular for an integer 
r > 1 if for every nonnegative integer 1 < r and for any integer k, 

10(1)(4 < ck(1 -I ~x~)-k, —oo < x < oo(2.8) 

for some ck > 0 depending only on k where 0(t)(.) denotes the e-th derivative of 0.
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    DEFINITION 2.2. A multiresolution analysis of L2(R) consists of an increasing se

quences of closed subspaces  {Vj} of L2(R) such that 

(i) n Vj = {0}; 
     7=-00 

         ao 

(ii) U Vj = L2(R); 
      ~=—oo 

 (iii) there is a scaling function q E Vo such that 

{0(x — k), —oo < k < oo} 

    is an orthonormal basis for Vo; and for all h E L2(R), 

(iv) for all —oo < k < oo, h(x) E Vo h(x —k)EVo; 

(v) h(x) E Vj h(2x) E Vj+1. 

    Mallat (1989) has shown that given any multiresolution analysis, it is possible 
to derive a function lib (primary wavelet function) such that for any fixed j, —oo < 
j < co, the family {2bj,k, —oo < k < oo} is an orthonormal basis of the orthogonal 
complement Wj of Vj in Vj+1 so that {'tkjk, —co < j, k < oo} is an orthonormal basis 
of L2(R). Conversely, given any compactly supported wavelet system, it gives rise to a 
multiresolution analysis of L2(R) (cf. Daubechies (1990)). When the scaling function 
is rregular, the corresponding multiresolution analysis is said to be rregular. 

    Let HZ denote the space of all functions g(•) in L2(R) whose first (s— 1) derivatives 
are absolutely continuous and define the norm 

001/2 

d 

IIgIIH; = E f IgU)(t)12dt . 
j=0 —m 

    LEMMA 2.1. (Mallat (1989)). Let a multiresolution analysis be rregular. Then, 
for every 0 < s < r, any function g E L2(R) belongs to H2 iff 

co 

Ee2e2a1 < oo(2.9) 

where e2 = Ig  g/II2 and gi is the orthogonal projection of g on V1. 

    Remarks: The above introduction is based on Antoniades et al. (1994). For a 
detailed introduction to wavelets, see Chui (1992) or Daubechies (1992). For a brief 
survey, see Strang (1989).
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3. Estimation by the Method of Wavelets 

    Suppose  X1, . , Xn are independent and identically distributed random variables 
with density f . Suppose that f is d-times differentiable and that f(d) denotes the d-th 

derivative of f . We interpret f(°) as f . The problem of interest is the estimation of 

co 

Id(f) = f f (d)2 (x) dx.(3.1) 
-co 

    Assume that f(d) E L2(R) and there exist D > 0, ,(3j > 0 such that 

f(')(x)1 < Di lxr8, for lxj > 1, 0 < j < d(3.2) 

where 00 > 1. 

    Consider a multiresolution as discussed in Section 2. Let 0 be the corresponding 
scaling function. Suppose that the multiresolution is rregular for some r > d. Then , 
by definition, 0 E CO.), 0 and its derivative c(i) up to order r are rapidly decreasing i.e., 
for every integer m > 1, there exists a constant Am > 0 such that 

                 IOU) (x)1 < 1Am, 0 < j < r.(3.3) 

Let 

Ol,k(x) = 21/20(21x  k), -co < k,1 < oo. (3.4) 

Then 

~r1k(x) = 2(h12)+lic(.i)(21x  k), 0 < j < r (3.5) 
and 

                           2(112)+LiA 
               10(/).(x)1 <(1+Ixl),,m, 0 < j < r. (3.6) 

If d > 1, then it is clear that 

               lim 0(til(x) f (di-1)(x) = 0, 0 < j < d  1 (3.7) 

for any fixed e and k. Let fld be the orthogonal projection of f(d) on V1. Note that 

fld(x) _ E at,j O1? (x)(3.8) 
=-oo 

where 

a1i = f f (d) (u) cb1,.i (u)du 
-00 

00 

                   = (-1)d f f (u) qS(I dii)(u)du(3.9)



Estimation of the Integrated Squared Density Derivative51

by (3.6) for d > 1. Clearly the equation (3.9) holds for d  = 0. Hence, for all d > 0, 

a1i = (-1)dE [(3.10) 
Further more 

00 

eL = I f(d) — f1d l l2 = If (d)112 — E adk - 0 as i -+ oo (3.11) 
k=—oo 

oo 

by the properties of a multiresolution decomposition. Here lIgliP = { f IgIPdx}1IP, p > 1. 

Note that 

Id(f) = If(d)112.(3.12) 

Let 
K 

f,1,d(x) = = atk Ot,k(x)(3.13) 
                                        k=—K 

where K = Kn is a sequence of positive integers depending on £ = 4, tending to infinity 
as n -4 oo and P = en --* oo as n -* oo. Note that fK t d(x) is a truncated projection of 
f(d) on Vt. Given an i.i.d. sample X1, ... , Xn, let 

1n n 
`4tk =                 n(n 1)E E0tk)(Xi) 0(1a2(Xi) (3.14) 

i=1,i#j j=1 

and we estimate Id(f) by 

K 

               Id(f) = = Atk• (3.15) 
                                           k=—K 

Note that 

E(Atk) = aL (3.16) 

and 
K 

E(Id(f)) = a/k. (3.17) 
k=—K 

Observe that 
lirn lim E(Id(f)) = Id(f). (3.18) 

t-aoo K--.00

4. Computation of the Mean Integrated Squared Error for Id(f) 

   Let 

    Jn = EIId(f) — Id(f )I2 
                    = var(Id(f)) + (E(Id(f))  Id(f))2 

Ko0 

                       = var(Id(f)) + ( = atk —J f (d)2 (x) dx)2 
k=—K —oo 

                     = var(Id(f)) + (UK,t,di12 — I!f(d)113)2• (4.1)
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Note that 

                    f(d) = f(d) fld + fld — fK,l,d + f,L,d 

and 

            Ilf(d)II2 — IIf(d) — fld112 + Ilfld — fK,l,dII2 + fK,I,dII2(4.2) 

Hence 

          Ilf(d)II2 — IIfK,l,d112 = IIf(d) + fld112 — IIld — fK,I,dII2 
el + Qn = B2(4.3) 

where 

Qn = I Ifld — fK,l,d I l2 and el = I I f (d) — fld I12 •(4.4) 

Hence 

J2 = var(Id(f)) + (ei + Qn)2 = var(Id(f)) + Bn.(4.5) 

    Throughout the following discussion, we assume that (Al) the multiresolution anal
ysis given by c is rregular where r > 1 is a positive integer, the function f(d) E H2 
where 0 < s < r and the function f is of bounded variation on R and (A2) 1 < Q0 < 
(7/6) + (d/3). 

    As a consequence of Lemma 2.1., it follows that 

el = IIf(d) — fld112 = O(e-2u1)(4 .6) 

Note that 

Qn = Ilflnd — fKn,1n,d112 
            = E IalI2•(4.7) 

IAI>K,1 

But 

al; = (-1)d J f (u)0(i dj(u)du 

               = (1)d2l(+d) f  (d)(2zu  j)f(u)du 
co 

_(1)d2l(a+d) f o(d)(v) f (v212-1dvj) 
co 

             = (-1)d2Id-(l/2) f 0(d)(v)f v 21 (3)dv.(4.8)
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Hence
-4j) la1jI < 21c/—(t/  f(V)f21dv + f(v)f21dv 

         Ivl<llIvl>ll 

      < 21c1—(1/2)sup f v+f10(d)(v)Idv} 

                                                             v 

               Iv1<li1/2co 

                   Ji+sup I0(d)( v-------21dv               M>lal/2 

       < 2Ld-(L/2) Do1110(d)Hi + Amm21 
              WI/21)~0(1 + IiI/2) 

       <2Ld-(1/2)DOII0(d) II12(L+1)a0 + 21+m Am            ii 1P° I I m(4.9) 

Hence 

Qn < 22Lnd-c„+1DOII~(d)IIl22'°0(1R+1) YIi2-------                          /30} 

                                              

IA>Kn 

+ 22(1„+m) A2[. 1                     mL2m                           
IjI>K„IjI 
                        2(d)222~30(1„+1)222(1„+m) 

         <22Lnd—Ln+1DoII~II A              1 + m(4.10) 
                             (200  1).K72,130-1(2m  1) K2m-1 

from (3.2) and (3.6) for any integer m > 1. Let m > ,Qo. Then 

        2DoII~(d)II121„(2d1)+2/3o(L„+1) A2 22(Ln+m)+1„(2d-1)       Q 2
(2Q0 _ 1)K2/3°-1 + (20o  1)Kna°-1 

                21n{(2a1)+2/30} 22ao+1 
< DoIIO(d)IIi(1 + 0(221n(1-00))) 

 -----------------K"0 _ 1 (200 -----------1) 
2Ln{(2d1)+2,80} 22/30+1          <_K2/30 _1(23o _-----------1)DoII~(d)IIi(10(1))(4.11) 

since 13o> 1 andin -+oo. If 

Kn = 2{(2d1)+2p0+28}(1„/(2/30-1)) log n,(4.12) 

then 
2Ln{(2d1)+2/30}1 

K2Po-1 — (log n)2P0-1 22,1„0 as n —4 oo(4.13) 
since 00 > 1 and in -* oo and in fact 

Qn = O(22s1n).(4.14)
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Note that 

               B72, = f (d) — fKnrin,d I I2 — Qn + if(d)  — fln,d 13 
O(2-2s1„) + 0(e-2tln) 

by Lemma 2.1 (cf. Mallat (1989)) and hence 

B2 = 0(22sln).(4.15) 

Observe that 

K 
var(Id(f )) = var[ E Alk] 

k=-K 

K K 

= E E cov(Alk, Alk') (4.16) 
k=-K k'=-K 

where cov(X, X) is interpreted as var(X). It can be checked that 

     112K K      var(Id(f))= --------(Ewa)(Xl)0Lk)(Xl)])2 
n(n — 1) 

k=-K k'=-K 

K K 

                 +4(n — 2)Ialkalk'E[0lk)(Xl)0(11)(X1)] n(n — 1) 
                                          k=-K k'=-K 

(4n — 6)22 
K n(n-1}                         Lilkalk' •(4.17) 

                                          k=-K k'=-K 

This can be seen from the fact that Xi, 1 < i < n are i.i.d. random variables and 

E(Alk) = alk following Prakasa Rao (1983), p.270 and the fact that for any k and k', 

1(d)))(
X      E(Alk Alit') =2 1)2E[0lk(Xi )olk(d'(X; )0lk(d)(Xi )olk(d'j)](4.18)                 n(n-1) 

where the summation runs over all i, j, i', j' with 1 < i, j, i', j' < n. Note that 

(E[elk)(X1)46l )(X1)])2 
00 

= ( f d'(tk)(u)0«;(u)f(u)du)2 
    ooco 

=( f q5(i )a (u) f(u) du)  ( f 0V 2 (u)f (u)du) 
co 
                                     v 

+ [0(tdk)(uwi)(v) — 0(i)(v)0~)(u)]f(u) f(v)dudv(4.19)
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by the Lagrange identity. Therefore 

  K K 

 E  E (E[C1)(ik)(X1)c(Lk(X1)])2 
     k=—K k'=—K 

   K K  °Oco = E E ( f oc,k)2(u)f (u)du)(fck(zdk)a (u)f (u)du) 
k=—K k'=—K —co—oo 

         KK °°ti 

±E Elf/ [0()(u)ck«'(v) — ckik) (v),(k~(u)]f (u)f (v)dudv} 
k=—K k'=—K —co 

       K °OK °° = E ( f Cb`k)2(u)f (u)du) E (f2(u)f(u)du) 
      k=—K _00k'=—K _00 

      K K 

    + E E 411, (say).(4.20) 
                k=—K k'=—K 

Note that 

                            0000 

        Kcb(td)2.(u)f„fu (u)du=f)2(u)f (u)du21,~E1,.,7 
      -K

n-07-00 —oo 

00                     1 E f (tn~~d 

                                                                                             2 

                                                 21, 
                                         (u)f (u)du 

                                                          ial>K.. -«, 

                          = Si + S2 (say).(4.21) 

Since f is of bounded variation on R by assumption, it follows that 

              21?,(1+2d)00f10o         S1 = -----------(112+j                 (d)2{ 
              21,-,(u)2~,~fdu 

-00 i=-00 

             = 22t„d((//~~0(d)2 (u)1fu-----+ )1du 
                      J21 21n 

            -00.1--00 

               00
f22ldf (d)2 (u)f(u)du + 0(2 in)du 

            -00 -00 

                (by Lemma A.1 of Masry (1994)) 
00 

221„d f (d)2(V)dV (1 + O(2-1n)).(4.22) 

Further more 

               S2 = —,1E E [(x1)] .(4.23) 
                                             „ I.7I > K,,
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But 

 00 

 E[0(d:,2i (Xi)] = f Cb(Ia),; (u) f (u)du 
—oo 

00 

                = 24„(2d+1) f gb(d)2 (21u — j)f (u)du 
—oo 

                                                  0o 

                = 22L„d f o(d)2 (u)f +du 
                                      2L 

                                               — o0 

                                                 A2               < 224„4 D0II,A(d)2II1+ ----------------Am2Ln} 
                        (I~ I/2Ln+1)/30(1 + I.7 I/2)2m 

                   < 22LndDoII0(d)2II12(Ln+1)go 2L,,,+2mA2 

                                                 m  

                                                    (4.24)               I:7Ia°+Ii 12m 

by methods similar to those used to derive (4.9). Hence 

Is2I <2I"d Do IO(d)2II12ao(Ln+1)2Ln+2mA,2,,                  2Ln (Q° — 1)K~+°-1(2m — 1)K73m-1 

                   DoIIck(d)2II120o(1„+1)+2L„d—Ln 
(i3o — 1) 4o-1 

                          A2 24,+2m+2L„d—L„ 
            +m2/3

0-1                    (2i3— 1) Kn 
                  2Ln(p0+2d1)2/30 DOII0(d)2II 1 

+ O(21„(1-130) (Q
o — 1)Ke°-1 (i3o —1) 

                         24.(0o+2d-1)           = O ----------
4'1(4.25) ) 

for m > 0o > 1 as in —+ oo from (4.23) and (4.24). Let 

S3 = 
2L„ {(1)daLn?}2(4.26) 

IiI<Kn 

Then 
Co 

1831 <— L aLnj < 2Tn IIf(d)II2•(4.27) 
j=—oo 

Combining the above results, we have 

                                            oo 

1K 

         21„(11-2d) E f 0Ldk)2 (u)f (u)du 
k=—K —oo 

co 

= f 0(d)2 (v)dv +--------1Ea2+O(2))•(4.28) 2L„(1+2d)L,ikL,i(1+2d 
_~k=—K
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Therefore, following the relation (4.20), we have 

   1K K 

 221,1(1+2d) E E (Ekb(k)(Xl)0Lk)(Xl)])2 
                  k=-K k'=-K 

fK         { 0(d)2 (v)dv +21-----------(1+2d)EaLnK+O( 2c,~(1+2d) )} 
                                      k=-K 

                                K 

         { f O(d)2 (v)dv + 2Ln(1+2d)E alnk + 0(2/„(1+2d) )} 
-~k'=-K 

           K K        1  

   

+-----------{")} 
                                     c 22cn(1+2d)E EI(k,k 

k=-K k'=-K 

                 K K 1 1 

        { f  (d)2()}2 + 22cn(1+2d)at„kaInk' + O(22Ln(1+2d) ) 
-~k=-K k'=-K 

     1K K      + 22Ln(1+2d) { EEIklk)}(4.29) 
                            k=-K k'=-K 

since 
                       K 

1 E aik l< Ilf(d)HH2 < oo.(4.30) 
                              k=-K 

Let us now consider 

E[0(tk) (X 1)0L), (X1)] 
              E[ckik) (X 1)]E[0Lk) (Xi)] 

+c0V(ek)(Xi ), (15(ik) (X1)) 
             = aLkalk' + O[(var[0(tk)(Xl)]var[0(ik)(Xl)])112](4.31) 

uniformly in k, k'. Note that 

                       !!Pv     var[0lk)(Xi)] =Jl!Pf (u)f(v)(q5Lkk)(u) — qStk)(v))2 dudv= ..ft) (say)                                         coao 

by the Lagrange identity. Combining the above relations, we have    

1-----------varIdf)) 
22Cn(i-}-2d)(( 

coK K 
      2 

_ n(n — 1) ({4(d)2(v)dv}2 + 221n(1+2d)a<nkaLnk, 
                   -00k=-K k'=-K 

1             J.K K +O( 22L„(1+2d)) + 22c„(1+2d) E EIklk)) 
                                        k=-K k'=-K
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    +4(n  2) 1  {Y. E atukaink, +  E E atnkatnk,O((Jkt,ti)Jk,~)1/2)} 
       n(n 1)22t,ti(1+2d) 

k=—K k'=—K k=—K k'=—K 

     (4n  6)  1 K K                          22 

       n(n  1) 22tn(1+2d)at,~kat,~k, 
                              k=—K k'=—K 

coK K 

      n21----------{Cis(d)2(d>2(V)d02 O(22t„(1+2d)) +221„(1+2d) E E Iktk~}  n(n) —co—K k'=—K

1     +4(n 1)21„1+2dE  
            K K 

 E at,~katnk,O((Jktn)Jk")1/2)].()   n(n 1) 2()4.32 
                               k=—K k'=—K 

Therefore 

n(n  1)( 

      22tn(1+2d) varId(f)) 

fKK      = {0(d)2(0d02 + O(------------1) +--------1EI~t") 
                             22t,~(1+2d)22t„(1+2d)k,k' 

                  —00k=—K k'=—K 

          4(n -2K K 

          

+-------)EE at,~kat,lk'O((JJ~(.-)Jt;L)1/2). (4.33) 
              22t„(1+2d)                                k

=—K k'=—K 

We shall prove later that 

          1K K 

22t„(1+2d) E E Itkn= o(1)(4.34) 
k=—K k'=—K 

and 

        4n-2K K 

             22t„(1-1-2d)at,~katnk'O((J~(.,t'~)J%')1/2) = °(1)(4.35) 
                             k=—K k'=—K 

under the condition (Al) .Hence we have the following main result. 

    THEOREM 4.1. Suppose the conditions (Al) and (A2) hold. Further suppose that 
in -* oo and 

          Kn = 2{(2d1)+2/30+2s}(tn/(200-1)) log n. 

Define Id(f) as an estimator for Id(f) where Id(f) is as given by the equation (3.15). 
Then 

            22n(1+2~)EIId(f)  Id(f)12{ (d)2(v)dv}2(4.36) 
as n -+ 00. 

    PROOF. Observe that 

      n(n  1)  EII 
      22tn(1+2d)d(f) — Id(f) 12
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 n(n    1)  [
var(Id(f )) + Bn] 

221„(1+2d) 

         22~(1+2d) var(Id(f ))+ ----------------(1-1-2d) 2-4s1„) 
co 

{ f 0(d)2 (v)dv}2 + O(221„(1+2d))+ o(1) + 221(1+2d) 0(2-4s1”) 
—co 

from the relations (4.33) to (4.35). Hence 

00 

          n(n  1) E I
d(f)  Id(f) 2 -~ { o(d)z (v)dv}2 as n 00 22C„(1+2d) 

—co 

since in -+ oo as n -3 00.^ 

    Remarks: If d = 0, then the relation (4.36) reduces to Theorem 3.1 in Prakasa Rao 

(1997). If 21,1 n (2.1+1) , then it follows that the mean squared error Eli d(f)  Id(f)I2 
is exactly of the order O(2n:-----) = O(n (2s+1) ). The rate of convergence or the bound on 

8(d-e)  

the mean squared error is O(n (48+1) ) for the kernel-type estimator suggested by Bickel 
and Ritov (1988).

5. Proof of Equation (4.34) 

   Case (i). Suppose k 0 and k' � 0. Then 

        

1.//(,1,)k,I < f {I0(161,),(u)0ed2(v)I + I0(za2,(u)¢.idk,(v)I}dudv 
                                                                        o0 

           < 2{ f 2 (u) I f (u)du}{ f I 0(td2, (V)If (v)dv} 
-00—m 

                 = 21d-(1/2) DoN(d)II12(1+1)a° + 21+mA 
Ik a° Ikim m 

x 21d-(112) Do 10(d)1112(1+1)130 +21+mA,,, IONIkIIm 

                                                    (5.1) 

from the estimate following (4.9)(cf. Prakasa Rao (1996)). Hence 

K 

     E L                     Ilk,k'I 
k=—K,k�0 k'=—K,k'#0 

1 
     < 221d-1{(Do I0(d)II1200(1+1)                             IkI0-------°+21+mAm1-----12 

k=—K,k�Ok=—K,k#0 IkI
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     < 22Ld—L{2DoII0(d) 11200 (L-1-1) K oodx+21+7 A,~K1dx}2           XJ1 x 

      < 22/d—L{2DoII0(d)II12,8°(L+1)1 — K— 1+1 +21+mA"'1m— 1+1 }2                           130 

      < 22Ld1{C12200 + C2221} 
      = 0(2L(2d1+200)) +. 0(22Ld+L). 

Hence 

1 KK 

    22./„(1+2d)IIlkk'I— 0(21 n(2/30-3-4d))0(2-4,(1-1-2d)) 
k=—K,k#0 k'=—K,k'#0 

             = o(1)(5.2) 

provided ,3o < 2 + 2d. 

    Case (ii). Suppose k = 0 and k' � 0. Note that 
  coco 

     ato = (_1)d f 0(ta2) (u) f (u)du = (_1)d aid (1/2) ~(d)(u) f (~L)du 
-co-cc 

O(2Ld(L/2)) (5.3) 

by the bounded convergence theorem and the fact that 10(d)111 < oo. Now, for k = 0 
and k' 0, 

         I(1), I < C4{2Ld—(L/2)}2Ld—(L/2) DoII0(d)II12(1+1)~0+21+m5.4                           Am()     0kIk1I0 0Ile In' 

                                                                   from (5.3) and the estimate used earlier following Prakasa Rao (1996).It is easy to see 
that 

                                   2/3"21  
IlotkI< 22Ld—L{C5Ik~II3o+ C6 Ik~Im}.(5.5) 

Therefore 
K 

E7I(Ln,)<C2Ln(ao-1+2d)+C8221„d                   10,kI 

and 
         1 

       22/„(1-1-2d)E< C72Ln(13° 3-2d)+C8221n0.+d) =o(1)(5.6) 
since /30 < 3 + 2d. 

    Case (iii). Suppose k = 0 and k' = 0. Then 

                         41(?) < C922Ld-1 
from (5.3) and hence 

                    1  I(Ln) = O(23Ln-2Lnd)(5.7) 
                        221n(1+2d)0,0
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Combining (5.2),(5.6) and (5.7), we obtain that 

             2t1+2d EIlkt_°(1)(5.8)                   2,~()  k -K k'-K 

proving (4.34).^

6. Proof of Equation (4.35) 

    Consider 

                                          00 
                                                 v          Ji(.,t) = f f 00                     [0ldk(u) —~Ldk(v)]2f(u)f(v)dudv 

                                   —00 

                              00 00 

            < f f [0(/~k(u) — 0L:k(v)]2f(u)f(v)dudv 
-CO —00 

                              00 00 

            = f f [0ia(u) + (ta/(v)]2f(u)f(v)dudv 
                                     00 —00 

                                 00 00 

              —2 f f c/)idk(u)0Ldk(v)f(u)f(v)dudv 
-00-00 

       00 CO 

            = 2J 44dk2f (u)du — 2[ f cbldk f(u)du]2 
         —00 —00 

                                          00 

          < 2 f 0ldkz f (u)du.(6.1) 
                                      —00 

   Case (i). Suppose that k � 0 and k' � 0. Then 

          00CO 

Iatk(J t))1/2l < 21/21 f 0(iakf(u)dull f (k(tdkz f(u)dull/2 
             —00—CO 

                   < 21/22td—(t/2) DoI 0(d)II12(t+1)po + 2t+r. A,,,                                IklaoIklm 

[2td—(t/2) Do1I0(d)II12(t+1)po + 21+71/A m]2 (6.2)                  IkIPoIkl"'L 

The bound given above can be derived by arguments similar to those given in Prakasa 
Rao (1996). Hence 

                213°12t«2~~2z     l
atk(J~(t))1/2l < 2tdz {C101143°+C11-----}2a 4 {C12Iklljo-(C13IkIm}
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by the elementary inequality 

                     (A + B)112  < A1/2 +B1/2 

for A > 0 and B > 0. Therefore 

     (~)123cd3C23~2L+12"212''8°+1 22   Iatk(J
k)/1 < 2=V{C14-------(q+ C15+ C16----------                                

I Im+~kl3a+m+ C17Ik2m(6.3)                 Iki~ 

Hence 

K 

: atk(41))1/2I 
k-K,k�0 

3Cd 3L3~0~(apC3C 
            <2z{C1822+C1921+2+C202t/3°z+C212z 

                             3Cd3G3/901 

    < C22222Z(6 .4) 

(since Qo > 1). Therefore 

KK 

EE atk(41n))1/2aLk,(41„))1/2I < C2323td z 23hJ30(6.5) 
k=—K,ky 0 k'=—K,k'�0 

Hence 

4(n — 2) K x 

 221„(1+2d)+1I E atk(Jtn))1/2aLk,(Jk))1/2I<C24n2tn(3,Q0—(7/2)—d) 
k=—K,k�0 k'=—K,k'�0 

                                                    (6.6) 
since !3 < (7/6) + (d/3). 

    Case (ii). Suppose k = 0 and k` � 0. Since 

                             r0 

41”) < 2J 01d02 f (u)du 
-00 

00 

2t„+21„d+12-1,,. f ~(d)2 (u)f (u )du 
                                                        2L„ 

-00 

       = O(22"),(6 .7) 

it follows from (5.3) and (6.7) that 

Iato(Jo1))1/21 < C25221d i(6.8) 

But 
                    K 

E atk(J~(.,t))1/2I < 232d 342 2(6.9) 
k=—K,k�0
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from (6.4). Therefore 

            K  

1  E ato(J(V))1/2atk' (J,l))1/2 1 < 23L(° a+ a c2622Ld-(L/2) 
 k'-K,k'#0 

and hence 

               K 4(n — 2)  I E atn0(Jot,l))1/2aLnk'(J'k(L,i))1/2I = O(n21-(Q ;3 21)) 
k'=K,k'#0 

                                = o(1)(6.10) 

since ,Qo < 6 + 3. 

    Case (iii). Suppose k = 0 and k' = 0. Note that 

    aLOJot) < 2[ f~'tof(u)du]2[0to2 f(u)du] 

           = 2[21+1d  (d)(2lu)f(u)du]2[2L+2Ld Jf (d)2 (21u)f(u)du] f
-CO-oo 

00CO 

22L+4/d+1[ f p(d)(2tu) f (u)du]2 [ f ck(d)2 (21u) f (u)du] 
-00-00 

and hence 

              L      CO00 

     22L( +0d)f< 2(2-L[~(d)(v)f (v2L)dv]2)[2-Lf0(d)2 (v) f (v2-L)dv] 
00co 

            = 2-3t+1[ f 0(d) (V) f (v2L)dv]2][ f 0(d)2 (v) f (v2-L)dv] 
-cc-cc 

which implies that, for n > 2, 

0 <4(n — 2) a~pJoL)< 4n2-3t+1[0(d)(v)f (v2t)dv]2] [f 40(d)2 (v)f (v2-t)dv]  — 22L(1+2d)f 
-oo-CO 

and the expression on the right side tends to zero as n -3 oo if f = £n and 

cc 

                 sup I f 0(d)(v) f (v2-L)dv I < o0 

L and 
cc 

                 sup I f .0(d)2 (v)f (v2-L)dvI < oo. 

I
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Note that 
    0000 

 f 0(d)  (v)f  (v2-L)dvf0(d) (v)f (0)dv 
-00-00 

and 

0 

             f0(d)2 (v)f (v2-L)dvf0(d)2 (v)f (0)dv 
as P -* oo by the bounded convergence theorem and the fact that II0(d)II1 < oo and 

10(d)2II1 < oo. Hence 
                      4(n  2) 2 (z) 

221(1+2d)+1 at0J0 = o(1).(6.11) 

Relations (6.6), (6.10) and (6.11) prove the theorem.^
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