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We review Sawford's [Phys. Fluids A 3, 1577 (199 1)] second-order Lagrangian stochastic model for
particle trajectories in low Reynolds number turbulence, showing that it satisfies a well-mixed

constraint for the (hypothetical) case of stationary, homogeneous, isotropic turbulence in which the

joint probability density function for the fixed-point velocity and acceleration is Gaussian. We then
extend the model to decaying homogeneous turbulence and, by optimizing model agreement with

the measured spread of tracers in grid turbulence, estimate that Kolmogorov's universal constant
(Co) for the Lagrangian velocity structure function has the value of 3.0_0.5. ( 1995 American
Institute of Physics.

1. INTRODUCTION

In this paper we are concerned with the numerical va
of the universal (?) constant C0 that appears in Kolmog
ov's theoretical small-time estimate

D j(At)=oCeoijAt

for the Lagrangian velocity structure function

Dij(At) = ([U+(t+ At) - U+(t)][U(t+ At)

- U,+(t) I -

Here the bracket 0 denotes the expected value of its c
tents: Us+ is the Lagrangian velocity. [We
U+,A+=,UJ+/dt for Lagrangian velocity and accelerati
U,A=dU/dt denote the fixed point (Eulerian) velocity,
acceleration fields.] t and t+ At are arbitrarily separa
times: e is the mean rate of dissipation of turbulent kin(
energy: and At in Eq. (1) is a time increment satisfy
t0t<At<-TL, where to is the Kolmogorov inner time sc
and TL is the integral time scale. Our interest in C0 ste
from the fact that predictions of turbulent dispersion, if
tained using Lagrangian stochastic (LS) models satisfy
the criteria provided by Thomson,} which include con
tency with Eq. (1), will depend upon the value taken fot
That this is so is seen most easily in the case of homo
neous, stationary turbulence; for C0 is then2 related to
Lagrangian timescale by

2 cry,

Co)e
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In principle the "true" value of C0 could be determined
from investigations of any turbulent flow, and widely differ-

alue ing means to do so have been exercised i.e., Lagrangian ve-

gor- locity measurements; direct numerical simulations (DNS);

the observed dispersion of tracer particles in a flow. It is
perhaps not surprising that a wide range of estimates of C0 is
to be found in the literature. 3 Luhar and Britter4 and Du
et al.5 obtained (qualitatively) adequate predictions of disper-
sion from sources in the convective boundary layer (CBL),
using well-mixed' LS models with CO=2.0. Wilson et al.6

compared predictions of a well-mixed LS model with the
(2) (numerous and definitive) Project Prairie Grass observations 7

of atmospheric surface layer dispersion, and obtained excel-
on- lent quantitative agreement with (in effect) the specification

use CO=3.1. Hanna8 suggested CO=4.0±2.0, on the basis of La-
ion; grangian velocity measurements (neutrally-buoyant bal-
and loons) in the CBL. Sawford 9 suggested CO=7.0, by compar-
ated ing the ratio TLIt ,7 as obtained from a second-order

ietic Lagrangian stochastic model with the value calculated from
ying Yeung and Pope'sl' DNS of homogeneous isotropic turbu-

ale, lence. And at the upper end of the range suggested, Sawford
ems and Guest" found 5-Co0 - 10 yielded best simulations of dis-
ob- persion within a physically-modeled neutral boundary layer.
ying When, as has sometimes been the case, C0 is inferred

Isis- from measured tracer dispersion, the value obtained depends
)r it. on the correctness (or otherwise) of the dispersion model.
3ge- First order LS models presume the joint evolution of position
the and velocity (X+ ,U+) to be Markovian. This is defensible

for large Reynolds number turbulence, but at low Reynolds
number a better assumption is that position, velocity and

(3) acceleration are jointly Markovian (second-order LS model).
Sawford 9 suggested that variations in the Reynolds number,
across the various dispersion experiments available, may ac-

mail: count for the variability in estimates of C0 obtained using
first-order LS models. By introducing a second-order LS
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model (in which the Reynolds number is explicitly incorpo-
rated and C0 is truly independent of it) for homogeneous,
stationary, and isotropic turbulence, he showed that in first-
order models the supposedly universal constant C0 is not
universal, but rather depends on the Reynolds number-
Reynolds number effects are manifested in first-order models
through nonuniversality across different flows of the "best"
value of C0 .

Our objective here then, is to use a Lagrangian stochastic
dispersion model (of known pedigree) to infer from measure-
ments of dispersion in the very simplest of turbulent flows,
the true value of C0 . To this end, we will first review the
physical basis of Sawford's model. By broadening the well-
mixed constraint to encompass acceleration, we will show
that the Sawford model is uniquely correct for homogenous,
stationary, isotropic turbulence; only provided it is a satisfac-
tory assumption that for such turbulence the joint probability
density function (PDF) for the Eulerian velocity and accel-
eration is Gaussian (Gaussianity of that PDF was not explic-
itly assumed by Sawford). Then by extending the model to
decaying turbulence, we will evaluate the optimal value of
C0 , by fitting model predictions to laboratory measurements
of tracer spread in grid turbulence.

II. SAWFORD'S SECOND-ORDER MODEL

Consider isotropic, homogeneous, and stationary turbu-
lence, and let (Z+, W+,A +) be one component of the posi-
tion, velocity, and acceleration of a tracer particle. Assuming
that the collective evolution of (Z+,W+,A+) is Markovian
(for very high Reynolds number, it is usually assumed that
the evolution of velocity and position is jointly Markovian),
one has the (otherwise general) model:

dA + = a(A +, W+,Z+,t)dt+ b(A +, W+,Z+,t)d;(t),

dW+=A+dt, (4)

dZ+ = W+dt,

where ;(t) is a Wiener process. Sawford 9 assumed within this
overall framework a particular form for a(Z+,W+,A+,t),
namely

position, then at a later time t>to, p must remain to be
proportional to Pa. Mathematically this requires that Pa be a
solution of Eq. (6). So, we have

dPa d d d
at dj (WPa) -W (APa) - - (aPa)

+ 12 (b2
(7)

In homogeneous and stationary turbulence this requirement
reduces to

d a 1 d2

dW(AP a) dA (ap,,) + - TA (b 2P. )=°0 (8)

We now introduce the assumptions upon which, in ef-
fect, the Sawford model rests. First, we assume the Eulerian
velocity PDF to be Gaussian; this is supported by experimen-
tal data from homogeneous and isotropic turbulence.'2 Sec-
ond, we assume that the Eulerian acceleration PDF is also
Gaussian (the validity of this assumption is explored in the
Appendix). In stationary turbulence, velocity and accelera-
tion are uncorrelated, and so in this case we obtain for the
Eulerian joint PDF of velocity and acceleration:

I ( W 2 A 2

e P - (9)1

where ow and oA are the standard deviations of the velocity
and the acceleration, respectively. Substituting into Eq. (8),
we obtain

2 2
a =-2 A +- W+ 

22WWWWAWWWWwW.
(10)

By requiring his model to yield an asymptotically sta-
tionary random process A + (t), Sawford from his assumption
[Eq. (5) here] found

b = 2 a ao-W,

a= - ceA+-a2W+. (5)

It can be shown that choice (5) implies (by virtue of
Thomson'sI well-mixed condition) a joint Gaussian PDF for
A, W. However for our purpose it helps to turn the argument
around: we will presently assume the Eulerian (A, W) statis-
tics Gaussian, and deduce the form of a(Z+,W+,A+,t).

The stochastic differential equations (4) imply a govern-
ing equation, the Fokker-Planck equation, for the evolution
of the joint PDF p(Z+,W+,A+,t):

ap a + d
d ,=-dZ+ (W+P)-dW+ (A p)-d-A (ap)

I a2
2)

+ 2 TA'T2 (bp) (6)

Now, we extend Thomson's well-mixed constraint by the
following proposition:If at time t=to, p is proportional to
Pa, the Eulerian joint PDF of the acceleration, velocity and

(II1)

where in view of our Eq. (10),

b 2
a, = 2 2 

2
UA-To2 2w (12)

It is obvious that this stationarity property is satisfied by the
present (more general) model. This is not surprising because
Thomson's well-mixed constraint encompasses the condition
of the asymptotic stationarity of a random process.'

Equation (10) automatically gives the correct velocity
structure function in the dissipation range. It is desirable that
it also yields the correct correlation function in the inertial
subrange. Following Sawford, this is ensured if we specify

b= () Re*(I + Re- 1/2),

where
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Re' =* ~ e

0

TE T

2 

2

E- 

TE is an Eulerian time scale and T is a Lagrangian time
scale. The dimensionless constant ao is defined by13

a0E
A= -.

tA

This is obtained by dimensional analysis in the framewo
Kolmogorov's second hypothesis: that in locally how
neous and isotropic turbulence, the motion is determine
the forces of viscous friction and inertia. 1 4 For very
Reynolds number, ao is universal; but when the Reyn
number is finite, ao can be Reynolds-number dependen

Since b, if specified by Eq. (13), is independent of
IV+ and A +, then a in Eq. (10) will be linear in W+ and
This is the property assumed by Sawford as a preconditic
his model for homogeneous, stationary, and isotropic tu
lence. It follows from our reexamination of that model
since the PDF of acceleration cannot be exactly Gau
(see Appendix), the Sawford model cannot be exactly
rect.

11. EXTENSION OF THE SAWFORD MODEL TO
DECAYING TURBULENCE

In any real flow, energy dissipation ensures that the
bulence cannot be both stationary and homogeneous. In
section we extend the Sawford model to homogeneous
caying turbulence, in order to develop a model applicab
decaying grid turbulence.

In nonstationary turbulence, the Eulerian velocity
acceleration are correlated:

(WA). 1 I / dW\ I d W2fI

SUCA CYCA (TA dt (W
2

)

Continuing to assume the Eulerian PDF for velocity an(
celeration is a joint Gaussian, we then have

I

Pa2 =Tag aA

10] for stationary turbulence. Since the statistics of the incre-
ment of acceleration A + are mainly determined by small

(14) scale eddies, under the hypothesis of local isotropy b re-
(14) mains, as given by Eq. (13), even in decaying turbulence.

IV. THE MAGNITUDE OF C0

In second-order trajectory models, the constant CO is free
(15) of the Reynolds-number effects and is therefore genuinely

universal. This property makes it possible to determine CO by
rk of fitting-second-order model predictions to experimental data.
Loge- In grid turbulence the collective assumptions of homogene-
d by ity, isotropy, and Gaussianity (of the velocity PDF) are ap-
high proximately satisfied. Therefore, we will use Eqs. (4), (13),
nolds and (18) to predict turbulent dispersion in water channel and
It.10 wind tunnel grid turbulence.
both

i A+. A. Simulation of water channel dispersion
on of Measurements of the dispersion of a neutrally-buoyant
urbu- saline tracer released from a point source into decaying ho-
I that mogeneous turbulence (grid turbulence) have been carried
ssian out in a water channel at the University of Alberta. A detailed
cor- description of the experiment has been given by Wilson

et al.,15 and here we list only the turbulence statistics needed
in order to simulate tracer trajectories using the present
model:

n this M
s de- -1/2 (19)
Vle to cyt~Ou=0.195Ut M 6.5)

i and -1Here U=18.75 cm s is the mean alongstream velocity;
M=7.62 cm is the center-to-center mesh spacing; X is the

O. downstream distance from the source to the point of interest;
and X0 is the distance from the grid to the source (XO= 147.5

(16) cm).

id ac- In decaying homogeneous turbulence the turbulent ki-
netic energy budget is approximately a balance between the
dissipation rate e and advection by the mean flow, i.e.,16

a~k U d 2 22a

X exp4 -

-~A +_ A -2po-WoAWA1
WcrA (I - P2 ) I. (17)

Equation (7) yields

r b2 CA CA PP1+
a ____ O-AO + p AT2(A( I-P2) P SW OrA 1P1

2 ~~2 ' 1
-[- 2o (a 1 Ip2 ) CA 7| Wt (18)

The symbol (') represents the derivative with respect to time.
It is interesting that in this slightly more complicated turbu-
lence the second-order model remains linear in A + and W+.
Equation (18) reduces to the original Sawford model [Eq.

Because v was not measured, we assume that o" = aw-
To specify ao we used Pope's' 7 formula

3(13 I- 22

(20)

(21)

where Re,= o-rw/v is the Reynolds number based on the Tay-
lor microscale \=(15vo01e)1 2. This formula is derived from
the DNS data of Yeung and Pope.1 0

Figure 1 compares the measured and predicted standard
deviation of vertical spread (r, for several assumed values of
CO. The choice CO=3.0+0.5 gives a good fit of the second-
order model to the experimental data.
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FIG. I. Vertical dispersion from a tracer source in a water channel experiment, compared with simulations using a second-order LS model with different
values of C0 .

B. Simulation of wind tunnel dispersion

The rate of dispersion was measured in decaying grid
turbulence in a wind tunnel at Division of Atmospheric Re-
search, CSIRO, Australia. Best-fit formulae for turbulence
velocity statistics are

(x+x 0 -0.74

Uu=O.O6o -0 71

'TV=0.055U ,XX) (22)
X0

2.0.

1.5

1.0

0.5

0

c~w~o~o53u( ) -069,

where U(=548 cm s 1) is the mean velocity along the wind
tunnel, X is the streamwise distance from the source, and
XO=31.0 cm is the distance from the grid to the source. We
estimated dissipation rate e by the means indicated earlier.

Figure 2 compares measured and calculated vertical
spread of the tracer. As in the case of the water channel data,
CO=3.0-0.5 gives a good fit.

X/x0

FIG. 2. Vertical dispersion from a tracer source in a wind tunnel experiment, compared with simulations using a second-order LS model with different values
of C0 .

3086 Phys. Fluids, Vol. 7, No. 12, December 1995 Du et al.

Downloaded 17 Mar 2006 to 129.128.66.187. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



0.6

k 0.4

0.2

0

(a) x/xo

2.0 -...... .. 

~1.5

1.0

0.5 (b) wind tunnel
3.0

- C=C(Re)
* experimental data

0 1 2 3 4 5 6 7 8 9

(b) X/XO

FIG. 3. Vertical dispersion from a tracer source compared with simulations using a first-order model (with and without Reynolds number correction): (a) water
channel, (b) wind tunnel.

C. Estimates of CO from infinite Reynolds number flow where

The Reynolds number for atmospheric boundary layer
turbulence is (effectively) infinite. Rodean3 estimated that in
the neutral atmospheric surface layer (NSL), the Kolmog-
orov constant CO-5.7. The basis for this result (or its equiva-
lent for the specification of a Lagrangian time scale) is as
follows.

Suppose in the NSL we regard the Eulerian velocity sta-
tistics as Gaussian (this is quite a good assumption, except
within or close to the vegetation, i.e., provided height Z>z O,
where zo is the surface roughness length). Thomson' proved
that the model

2( +(W+ 1 (9'
dW+= - dt+ --- I 1+-y- dt+bd~, (23)

T(Z) 2 a9Z /'

2 c
b = Coe, T(Z)= CTe (24)

is the uniquely correct one-dimensional model for Gaussian
inhomogeneous turbulence; that is, it is the "uniquely cor-
rect" model within the most rigorous theoretical framework
presently available, that of Thomson.' This model is easily
shown to be equivalent to

d(W+~= __W+dt do-W 2t JTd
\JW cTW T a9zT (25)

which is the infinitesimal form of the model compared by
Wilson et al.6 (hereafter WTK) against the Project Prairie
Grass field observations of dispersion. [The equivalence be-
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FIG. 4. Reynolds number versus along stream distance in the experimental grid turbulence: (a) water channel, (b) wind tunnel.

tween the discrete-time implementation of the above equa- where we have used the fact that in the NSL, e u /uKZ.
tion for d(WW/ro-) and the model compared by WTK against Now, since ow- 1.3u*, we have CO-5.7. This is the value
field data can be traced through Wilson et al. 19 Durbin20 may suggested by Rodean, here deduced by a logic which avoids
independently have suggested this model.] Now, Durbin 18 reference to the Lagrangian timescale (the latter being unde-
has analyzed this model to show that it implies (in the large fined in the case of inhomogeneous turbulence). The equiva-
time limit t/T--:) a random displacement (or zero-order) lent result for a Lagrangian time scale (albeit difficult of
model interpretation) was arrived at much earlier.23

This is a pleasing theoretical argument. However one

dZ+= 2K(Z)d+-dt, (26) would be unduly bold to claim the present generation of LS
dZ models as ultimately correct, and may expect Thomson's

where d;(t) is a Wiener process (dg has variance dt), and 1987 criteria eventually to be superseded. The above logic
does not guarantee that the conformance of (properly se-

2 24 lected) LS models with atmospheric observations is optimal,
K= owT= CO (27) when Co=5.7. In fact, several workers have found otherwise.

For example, Wilson et al.6 found that a better fit to observed
is an effective eddy diffusivity. dispersion (Project Prairie Grass) is obtained using (in effect)

Flux-gradient experiments in the horizontally-uniform CO-3.1 (the WTK model was actually couched in terms of a
NSL indicate that the eddy diffusivity is K =KU* Z, where Lagrangian timescale and WTK wrote orwu*=1.25). Ear-
u* is the friction velocity, and the von Karrnman constant (K) lier, Reid23 reached the same conclusion in reference to the
is now generally accepted as having the value Porton field data. Findings corresponding to CO-3. 1
K=0.4±0.02.21,22 If this (empirical) result is to be matched exist2 4'25 in the context of Eulerian dispersion models, for
with Durbin's result (asymptotic eddy diffusion model), we the magnitude of the turbulent Schmidt number (S,, the ratio
require that of the eddy diffusivity for mass to the eddy viscosity) giving

4 best agreement with observed (field and wind tunnel) disper-
C=2 -) (28) sion. CO3.1 is close to our best guess for CO on the basis of

~ u* our examination of laboratory experiments.
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V. FIRST-ORDER LAGRANGIAN STOCHASTIC MODEL

Sawford9 found that for homogeneous, isotropic, and
stationary turbulence, Reynolds number effects in first-order
models can be incorporated by replacing the universal con-
stant C0 with

C= Co( I + Re- 1 /2) - 1. (29)

Now we ask: Is this correction to the first-order model useful
in homogeneous, isotropic, but decaying turbulence?

For such a flow, the one-dimensional first-order model
is'

dW+= 2 --- I W'~dt+ /Coed~,( C C' )
dZ+ =W+dt. (30)

By replacing C0 in Eq. (30) by C, as given by Eq. (29),
and carrying out a simulation with the revised first-order
model, we found that Eq. (29) works well, especially for the
wind tunnel experiment (Fig. 3). For comparison, we also
show the prediction with C=3.0.

Figure 4 shows the Reynolds number in the range of
interest of the wind tunnel and water channel experiments.
This helps to explain why the correction (29) is more signifi-
cant for the wind tunnel experiment. In the water channel,
the Lagrangian Reynolds number Re* is sufficiently high
that the Reynolds-number correction to the first-order model
is not large. But in the wind tunnel experiment Re* is lower,
so C is significantly different from its asymptote.

VI. CONCLUSION

The Sawford 9 model has been shown to be implied by a
generalized well-mixed constraint, for (hypothetical) homo-
geneous, isotropic, stationary turbulence, for which the Eu-
lerian joint PDF for the velocity and acceleration is (puta-
tively) Gaussian.

We have extended that model to cover decaying grid
turbulence. By comparing measured and modeled dispersion,
the universal Kolmogorov constant C0 is estimated to be
3.0±0.5, substantially different from the result, CO=7.0, ob-
tained by Sawford by comparing modeled dispersion statis-
tics with direct numerical simulation data.' 0

When the Reynolds-number effect is incorporated into
the first-order model via the supposedly universal constant
C0 , i.e., by replacing C0 with a variable C [Eq. (29)], the
first-order model also gives a very good prediction, suggest-
ing that Sawford's revision of the first-order model for finite-
Reynolds-number flow is satisfactory. This is useful, because
first-order models are simpler than second-order, and require
less Eulerian statistical information on the flow.
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APPENDIX: THE PDF FOR FIXED-POINT
ACCELERATION

The spatial derivative of velocity is not Gaussian,'2 and
recent studies of isotropic turbulence show that, even if the
single-point velocity PDF is identically Gaussian, the distri-
bution of the pressure fluctuation is negatively skewed.26 2 7

While it is not clear how these non-Gaussian properties im-
pact the Eulerian acceleration PDF, we believe the latter is
non-Gaussian on this and the following evidence.

Recall that we signify Lagrangian quantities by super-
script (+). The Eulerian acceleration field

A(X0, to) = lim
t-g0 -'0 f- to

= lim ,+
,r- 0 Tr

(Al)

is defined by the difference of Lagrangian velocity over an
infinitesimal time interval.' 3 Here U+(Xo,t) is velocity at
time t of that fluid element which, at time to, was at location
X0 . We can therefore infer the distribution for Eulerian ac-
celeration if we know the distribution of the Lagrangian ve-
locity difference, taken over a very short time interval. Ac-
cording to Fig. 15 of Yeung and Pope,' 0 derived from DNS
of isotropic turbulence, the distribution of Lagrangian veloc-
ity difference ATU+ (where U+ is one component of U+) is
symmetric about AU+ =0 for any time interval r, and devi-
ates from the Gaussian distribution as r gets smaller. When r
is extremely small (7-t,7), the distribution appears to be ex-
ponential. This suggests the PDF for Eulerian acceleration
may be exponential, and symmetric about A =0.

We derived a second-order model (for stationary turbu-
lence) from the exponential PDF, and compared its predic-
tion for tracer spread with the model of Sec. II. No substan-
tial difference was found: out to t/TL=10, the maximum
difference was less than 5% in uz, and had no effect on the
choice of CO=3.0±0.5. In modeling the mean concentration
field, we are concerned with low-order statistics of highly
integrated properties (position is twice-integrated accelera-
tion). For this reason, we suggest that for our purposes the
adoption of a Gaussian PDF for Eulerian acceleration is ac-
ceptable.
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