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Econometrica, Vol. 37, No. 4 (October, 1969) 

ESTIMATION OF THE LINEAR EXPENDITURE SYSTEM' 

BY ROBERT A. POLLAK AND TERENCE J. WALES 

In this paper we estimate a complete system of demand equations making full use of the 
restrictions implied by economic theory. Our theoretical model is based on the Klein-Rubin 
linear expenditure system which was first estimated by Stone. We place primary emphasis 
on maximum likelihood estimates obtained using annual time series observations of 
prices and per capita consumption for the U.S. economy in the period 1948-1965. The 
plan of the paper is as follows: Section 1 begins with a discussion of the problems involved 
in making systematic use of economic theory to estimate demand functions; this is followed 
by a brief description of the linear expenditure system and discussion of the specification 
of its dynamic and stochastic structure. In Section 2 we describe three methods of estimating 
the linear expenditure system, including the maximum likelihood procedure which we 
believe is most appropriate. We report our results in Section 3 and our conclusions in 
Section 4. 

1 A. INTRODUCTION 

The pure theory of consumer behavior is concerned with individual demand 
functions. An individual's preferences are assumed to be representable by a well 
behaved utility function, U(x1, .. . , x"), where xi denotes the rate of consumption of 
the ith good. He is supposed to maximize U subject to the budget constraint 

n 

(1) E PkXk =I 
k = 1 

where pi is the price of the ith good and ,u denotes total expenditure. The utility 
maximizing quantities of the various goods are functions of all prices and total 
expenditure; we write xi = h'(P, 4) where P denotes the price vector, (PI,... Pn) 
and the functions (hl,. . ., hn) are the ordinary demand functions. These demand 
functions satisfy the budget constraint and are homogeneous of degree zero in all 
prices and total expenditure; in addition, the implied Slutsky substitution matrix is 
symmetric and negative semidefinite. Furthermore, since any set of demand 
functions that satisfies these conditions is derivable from a well behaved utility 
function, we call such a set a "complete system of theoretically plausible demand 
functions."' 

The data we use in this study are annual observations on prices and per capita 
consumption, so we are concerned with "market" or "aggregate" demand func- 
tions. Unfortunately, a complete system of market demand functions need not be 
theoretically plausible even if every individual's demand functions are. Neverthe- 
less, as a matter of research strategy, we shall assume that market demand functions 
are theoretically plausible, since this assumption reduces substantially the number 

' This research was supported in part by a grant from the National Science Foundation, GS-1462. 
We are grateful to J. R. Behrman, D. S. Brady, M. D. McCarthy, E. C. Prescott, R. Summers, and the 
anonymous referees for helpful comments. 
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612 R. A. POLLAK AND T. J. WALES 

of parameters to be estimated.2 Our procedure is to begin with an "aggregate 
utility function," derive the corresponding aggregate demand functions, and esti- 
mate them. 

We have chosen to work with four broad categories of goods: food, clothing, 
shelter, and miscellaneous. Our reasons are twofold: first, the utility function 
underlying our demand functions is additive, implying a type of "independence" 
among "goods." On a priori grounds, additivity is a more reasonable working 
hypothesis when applied to broad aggregates than to more narrowly defined 
commodity groups. Second, because we are estimating an interrelated system of 
equations simultaneously, the computer requirements are substantial and econo- 
mizing on computer time is a nontrivial consideration.3 In the absence of this 
constraint, we would have experimented with disaggregating the miscellaneous 
category somewhat further-perhaps treating medical care as a separate category 
- but (in any event) the scope for further disaggregation is not great. 

In its simplest form, demand theory is concerned with the allocation of total 
expenditure among goods in a single period. In order to discuss either "saving" or 
purchases of durable goods in terms of utility maximization, it is necessary to 
formulate an explicitly intertemporal model, recognizing the role of future con- 
sumption, assets, future prices, and future income. Instead of proceeding in this 
direction, we shall work with a single period model and analyze the allocation of 
total expenditure on nondurables among broad categories of nondurables. 
Avoiding the problems of saving and purchases of consumer durables in this way 
requires strong assumptions about tastes, for the stock of durables may influence 
the pattern of consumption of nondurables (e.g., the demand for electricity is related 
to the stock of electrical appliances) and intertemporal complementarity may make 
future consumption plans relevant to today's consumption decisions. Technically, 
our approach is justified if and only if the marginal rates of substitution involving 
current consumption of nondurables are all independent of current consumption of 
the services of durables and of all future consumption.4 

lB. FUNCTIONAL FORM 

In this section we discuss the static, nonstochastic form of the demand functions 
we intend to estimate. 

We begin with a utility function of the form 
n n 

(2) U(X) = E ak log (Xk - bk), ai > 0, Zak = 1, xi - bi > O. 
k=1 1 

2 It might seem sensible to estimate aggregate demand functions without imposing the requirement 
of theoretical plausibility and test whether the estimated set of demand functions is theoretically 
plausible. The difficulty with this approach is that there is no way to distinguish between misspecification 
of the functional form of the aggregate demand functions and failure of the aggregate demand functions 
to satisfy the Slutsky symmetry conditions. We remind the reader that the Slutsky symmetry conditions 
are restrictions on the partial derivatives of the demand functions, and not on finite first differences. 
The bahavior of estimates of these partial derivatives may be very sensitive to the a priori specification 
of the functional form. 

We discuss this problem briefly in the appendix. 
4 Since the demand for "transportation services" and "gasoline and oil" are closely related to the 

stock of automobiles, we have excluded them from our analysis. 
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LINEAR EXPENDITURE SYSTEM 613 

Maximizing (2) subject to the budget constraint (1) yields demand functions of the 
form 

(3) hi(P,f,) = bi - - Z Pkbk +-/ (i = 1,... ,n). 
Pi k= 1 Pi 

Any system of demand functions implies a corresponding system of expenditure 
functions, (e1(P,yj),...,e n(P, i)) defined by e'(P, j) = pihh(P, j). The expenditure 
functions corresponding to (3) can be written as 

n 

(4) e'(P, p) = pibi + aiL[ - Pkbk~ (n 
k= 1 

If the b's are all positive and income is greater than Zpkbk, we may describe the 
individual as purchasing necessary quantities of the various goods (b1,... , bn) and 
then dividing his remaining or "supernumerary" income (, - Zpkbk) among the 
goods in fixed proportions (a1,.. ., an) 6 Although it is theoretically possible for 
some or all of the b's to be negative, it is unlikely in the present context. If bi is 
negative, the demand for the ith good is elastic with respect to its own price; this 
seems improbable for any of the broad categories of goods with which we are 
dealing. Positive b's imply inelastic demand. 

IC. DYNAMIC SPECIFICATION 

To use observations from different time periods to estimate demand functions 
one must either assume that the demand functions are the same in all periods or 
make fairly specific assumptions about how they change. From a technical stand- 
point, it is relatively simple to incorporate changing b's into the linear expenditure 
system, because the b's enter the demand functions linearly.7 And if one takes the 
necessary basket interpretation seriously, it seems plausible that the b's should vary 
over time. 

We write the demand functions (3) with varying b's as 

(5) xit = bit, - Pktbkt + At, 
Pit k= 1 Pit 

where bit is the necessary quantity of good i in period t. The demand functions of 

5 The demand functions (3) were introduced by L. R. Klein and H. Rubin, "A Constant-Utility Index 
of the Cost of Living," Review of Economic Studies, XV (2), No. 38 (1947-48), pp. 84-87, and first 
estimated by Richard Stone, "Linear Expenditure Systems and Demand Analysis; An Application 
to the Pattern of British Demand," Economic Journal, Vol. LXIV, 255 (Sept., 1954), pp. 511-527. 
Stone has pioneered in empirical applications of the linear expenditure system in a series of papers. 
See, for example, "Demand Analysis and Projections for Britain, 1900-1970; a Study in Method," 
with A. Brown and D. A. Rowe, in J. Sandee, ed., Europe's Future Consumption, Vol. 2, Amsterdam, 
North-Holland, 1964, pp. 200-225. 

6 For stylistic reasons, we shall hereafter refer to ,u as "income." 
7 Stone has estimated the linear expenditure system under assumptions which permit the a's and b's 

to vary; he has made use of the linear time trend and has suggested using the lagged consumption 
dynamic specifications. See Stone, "Linear Expenditure Systems...," op. cit., p. 522, and "Demand 
Analysis...," op. cit., p. 205. 
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614 R. A. POLLAK AND T. J. WALES 

period t are generated by a utility function of the form 
n 

(6) Ut(Xt) = E ak log (xkt - bkt), ai > 0, xit - bit > 0, E ak = 1. 
k= 1 

The regularity conditions are identical to those of (2) and they must be satisfied in 
every period. It is easy to verify that, ceteris paribus, a higher level of bit implies a 
higher level of xit (and a lower level of xjt, j = i). 

The simplest way to permit the b's to vary is to assume that bit is a linear function 
of time: 

(7) bit = b* + fit. 

Although we do estimate the linear expenditure system with this dynamic specifica- 
tion, the use of a time trend is not very satisfactory because it gives so little insight 
into the structure of the economic system. Furthermore, it implies that taste change 
would continue unabated (i.e., the necessary quantities would continue to increase) 
even if prices and income remained constant over a long period of time. 

A more satisfactory dynamic specification-one which attempts to deal directly 
with the mechanism underlying changes in tastes-is based on the concept of 
"habit formation." Habit formation can be incorporated into the model by allow- 
ing the b's to depend on past consumption. The simplest habit model is based on 
the assumption that bit is a linear function of consumption of the ith good in period 
t - 1, 

(8a) bit = bV + /Sixit - 

The constant b model is a special case of (8a) with the ,B's all equal to zero. 
Another special case of (8a) which we consider is the proportional habit model 

(8b) bit = pixit 8 

In general, the linear habit formation model can be written as 

(9) bit= b* + fizit- 1 

where zit- 1 is a variable representing consumption of the ith good prior to period 
t. In addition to (8), we consider two specifications in which zit- 1 depends on the 
level of past consumption and two in which it depends on the rate of growth of 
consumption. The two based on the level of consumption take zit- 1 to be: (a) the 
highest level of consumption of the ith good during the three years prior to period t, 
and, (b) the average level of consumption of the ith good during the three years 
prior to period t. 

The two models based on the rate of growth of consumption, git, 

(10) g= Xit 1 
xit- 1 

8 Existence and stability of the long run equilibrium in these models have been analyzed by Robert A. 
Pollak, "Habit Formation and Dynamic Demand Functions," Discussion Paper Number 79, Depart- 
ment of Economics, University of Pennsylvania, March, 1968, mimeographed. 
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LINEAR EXPENDITURE SYSTEM 615 

take zit- 1 to be (c) the sum of the gi,'s up to period t - 1 (so Abi, = figi,- 1), and, 
(d) the sum of (gi, + 1) up to period t - 1 (so Abi, = /pi + f3igi, J)9 

ID. STOCHASTIC SPECIFICATION 

Although the linear expenditure system has been estimated by a number of 
investigators, little systematic attention has been given to the problems of specifying 
an appropriate error structure.10 We assume throughout that the disturbance 
terms enter the demand functions additively. That is, 

( 1) xit = bit E Pktbkt + 11t + Vit 
Pit k=1 Pit 

where vit is a random variable. It is sometimes more convenient to work with the 
expenditure functions 

n 

(12) pitxit - pitbit- ai E Pktbkt + aio/t + Wit, 
k= 1 

where wit = Pitvit denotes the disturbance term of the ith expenditure equation. 
It would be convenient to assume that the v's (or the w's) are mutually independ- 

ent; but this assumption is inconsistent with the budget constraint which requires 
that 

n n 

(13) E PktVkt = E Wkt = O(t = 1,..., T). 
k= 1 k= 1 

To satisfy (13), the covariance matrix of disturbance terms for each period must be 
singular. We shall discuss three general ways of specifying the distributions of the 
v's (w's) which satisfy these requirements. 

If we assume that the w's in the first n - 1 expenditure equations are mutually 
independent, then the disturbance term in the last equation is the negative of the 
sum of the first n - 1 w's. Expenditure on the nth good is a residual in the sense 
that it adjusts passively to the independent disturbances in the other equations so as 
to satisfy the budget constraint. We have two objections to this stochastic specifica- 
tion. First, we are not happy with the assumption that the disturbances in n - 1 of 
the expenditure equations are mutually independent. We believe that the disturb- 
ance terms in the various expenditure equations are interrelated, and that a 
random shock which causes an increase in the consumption of one good is likely to 
affect consumption of many other goods. Second, this specification of the error 

9 Specification (c) implies that if past consumption has been constant, then bi, will remain constant; 
(d) implies that if past consumption has been constant, then bit will grow in the manner described by 
the linear time trend (7). We were led to experiment with (d) because of plausible results obtained 
using (7). 

10 With the exception of the work of Theil and Barten, very little attention has been given to the 
problem of specifying error structures for empirical demand analysis. See H. Theil, Economics and 
Information Theory, North-Holland Publishing Company, Amsterdam, 1967, especially pp. 227-233, 
and A. P. Barten, "Estimating Demand Equations," Econometrica, Vol. 36, No. 2, April, 1968, pp. 213- 
251. 
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616 R. A. POLLAK AND T. J. WALES 

structure forces us to decide which good is to play the role of residual, but it offers 
no criterion for making the decision. 

If we assume that the covariance matrix of the w's is the same in each period, 
then its form need not be specified. " The elements of the covariance matrix can be 
estimated together with the other parameters.12 This procedure has two obvious 
drawbacks. It is expensive in terms of degrees of freedom, and the assumption that 
the covariance matrix is constant is not an appealing one. More specifically, it seems 
to us that as per capita consumption and expenditure increase over time, the 
variance of the expenditure equations should also increase. Furthermore, the 
specification of a constant variance-covariance matrix implies that if all prices and 
income were to increase proportionally, then the variance of each expenditure 
equation would remain unchanged, while the variances of the demand equation 
disturbances would decrease. On theoretical grounds, we prefer a specification of 
the error structure in which the covariance matrix of the demand equation disturb- 
ances (the v's) is unaffected by proportional changes in all prices and income. One 
way of specifying such an error structure is to assume that the covariance matrix of 
the w's in each period is equal to a constant matrix (the same in each period) 
multiplied by the square of income. 

We now present a third method of specifying the structure of the disturbances 
which we feel is superior to the two methods described above. Formally, our 
method is based on replacing bit in each demand equation by bit + ui,, where ui, is a 
random variable. The implied stochastic demand functions are of the form (11) 
where vi, is given by 

a. n 

(14) Vit = Uit- , PktUkt- 
Pit k= 1 

We can rationalize these stochastic demand functions by postulating a stochastic 
utility function of the form 

n 

(15) Ut(Xt) = E ak log (Xkt - bkt - Ukt), ai > 0, (xit - bit - uit) > 0, 
k=1 

Zak = 1. 

The u's can be interpreted as random variations in the necessary basket, but it is 
neither necessary nor especially useful to interpret this error structure in terms of a 

" The covariance matrix of the v's must depend on prices for (13) to hold; hence, the covariance 
matrix of the v's cannot be the same in each period. Formally, the covariance matrix 2, is given by 
Qt = E(v,v9). Since p'v, = 0, we have p'Q, = 0. That is, P1 is an eigenvector of (, corresponding to eigen- 
value 0. If Q is constant and if there are n linearly independent price vectors in the set {P1 I ... PT}, then 
the covariance matrix is of rank zero. This strongly suggests that the covariance matrix is not constant. 

2 This is the procedure followed by R. W. Parks for the constant b model; Richard W. Parks, 
"Systems of Demand Equations: An Empirical Comparison of Alternative Functional Forms," Center 
for Mathematical Studies in Business and Economics, University of Chicago, Report 6808, Feb., 1968. 
Also see: A. P. Barten "Maximum Likelihood Estimation of a Complete System of Demand Equations," 
Center for Operations Research and Econometrics, Universite Catholique de Louvain, Discussion 
Paper No. 6709, August, 1967. 
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LINEAR EXPENDITURE SYSTEM 617 

stochastic utility function. A specification of the error structure should be judged 
on its implications for the stochastic demand functions.13 

We first observe that ui, is directly related to vi,; a higher value of ui, implies, 
ceteris paribus, a higher value of vi, (and hence xi,) and a lower value of vj, (and 
hence xi,) for all j 0 i. Second, the adding-up condition (13) is automatically 
satisfied by the v's implied by this error structure, regardless of the distribution of 
the u's. Third, proportional changes in all prices and income (providing these 
changes do not affect the distribution of the u's) will not affect the distribution of the 
v's. Fourth, the Slutsky substitution matrix implied by these stochastic demand 
functions is symmetric and negative semidefinite regardless of the values assumed 
by the u's. Fifth, this method of specifying the error structure treats all goods in a 
symmetric manner. 

The simplest assumptions about the distribution of the u's are: 

(16) E(ui,) = 0, 

(17) E(u2) = vi 

(18) E(uitujt) = 0, i # j, 

(19) E(uituj, J = 0, T # 0. 

That is, the expected value of each ui, is zero, its variance is constant over time, and 
the u's are independent across goods and time periods. Finally, we assume that the 
u's have a multivariate normal distribution. 

The implications for the distribution of the v's of our assumptions about the 
distributions of the u's are easily derived. Since the v's are linear combinations of 
the u's, they also have a multivariate normal distribution.'4 The covariance matrix 
of the v's depends on prices, so it is not constant over time. The variance of the 
disturbance term in the ith demand equation is independent of income and it is not 
directly related to consumption of the ith good, although it is inversely related to 
the price of the ith good. Finally, v's from different periods are mutually independ- 
ent. The a priori plausibility of these last two properties deserves critical scrutiny. 

It seems unlikely that the variance of the disturbance for the ith good would be 
independent of income. If prices remain constant and income increases, causing an 
increase in consumption of each good, then the variance of the disturbance terms 
in each demand equation will probably also increase. One way to incorporate this a 
priori belief into our specification of the error structure is to replace assumption (17) 

13 In its most general form, our approach to the specification of the error structure is the following. 
Consider a nonstochastic utility function, U(X, a, b), where a and b are vectors of unknown parameters 
to be estimated; let H(P, ,u, a, b) denote the demand functions corresponding to U (in vector form). We 
postulate that a subset of the parameters are random variables (i.e., b = b* + u, where u is a vector of 
random variables with zero mean) and estimate the stochastic demand functions H(P, ,u, a, b + u). 

The Theil-Barten approach, which they describe as the "marginal utility shock model" appears to 
us to be equivalent to the following procedure. Again starting with a nonstochastic utility function, 
U(X, a, b), define a new stochastic utility function, V(X, a, b, u), by V(X, a, b, u) = U(X, a, b) + Sk= l UkXk; 

then derive the stochastic functions corresponding to V and estimate them. 
14 For a discussion of singular linear transformations of a multivariate normal vector see T. W. 

Anderson, Introduction to Multivariate Statistical Analysis, New York, John Wiley and Sons, 1958. 
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618 R. A. POLLAK AND T. J. WALES 

by 

(20) E(uit) Ixt 

where Xi, is the expected value of xi, (i.e., the nonstochastic portion of (11)). We use 
A rather than x2 in order to preserve the additivity of the error structure. A higher 
level of income will cause a higher level of A2 and hence increase the variance of uit 
which, in turn, increases the variance of vit 15 

The assumption that the u's are uncorrelated over time implies that the v's are 
uncorrelated over time. We believe that, in the context of the habit models which 
depend on lagged consumption, (8a) and (8b), and also in the habit models (b), (c) 
and (d), this is a plausible assumption. One would expect autocorrelation of the v's 
if a higher level of consumption of the ith good yesterday is associated with a 
higher level of consumption of the ith good today. But in the habit models which 
depend on lagged consumption, this relationship has already been taken into 
account. In all of these models, a higher level of vit -1 implies a higher level of xit- 1, 
which in turn implies a higher level of bit and xit. Thus, there is no reason to assume 
that the v's are autocorrelated in the habit models which depend on consumption 
in the previous period. In the constant b model, the linear time trend, and the 
habit model which depends on previous peak consumption, we would expect 
the v's to exhibit autocorrelation. A higher level of vit -1 does not imply a higher 
value of bit in the first two cases, and need not in the third. Unfortunately it would be 
extremely complicated to estimate the linear expenditure system with an error 
structure incorporating autocorrelation, and we have not attempted to move in this 
direction. Consequently, parameter standard errors in these models should be 
viewed with extreme caution. 

2. ESTIMATION PROCEDURES 

The most straightforward procedure for obtaining estimates of the linear 
expenditure system and the one used by most investigators is to minimize the sum 
of squared residuals over all expenditure equations and time periods.'6 It is 
appealing because of its simplicity, because it is a straightforward generalization of 
single equation ordinary least squares, and because it requires no a priori specifica- 
tion of the error structure. Its major drawback is that, because it does not rest on a 
specification of the error structure, the properties of the estimator are not known. 
It should be noted, however, that it is not a maximum likelihood procedure since a 
maximum likelihood interpretation requires a disturbance covariance matrix 
proportional to the identity, whereas in fact the covariance matrix of the system 
(although unknown) is singular. 

An alternative least squares estimation procedure is to minimize the sum of 
squared expenditure residuals after omitting one equation. The major drawback of 

15 This argument may be misleading. If the variance of the v's is only slightly sensitive to changes in 
income or consumption, then the constant variance specification (17) may be more appropriate than 
(20). 

16 For example, this is the technique used by Stone. 
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LINEAR EXPENDITURE SYSTEM 619 

this method is that the estimates depend on which equation is omitted. That is, n 
sets of parameter estimates are obtained by estimating the system with a different 
equation omitted each time. This procedure yields maximum likelihood estimates 
if (i) the disturbances associated with all but the omitted expenditure equation are 
mutually independent and (ii) the variances associated with the disturbances in the 
retained equations are equal and constant over time. If these two conditions are 
satisfied, the covariance matrix of the retained equations is proportional to the 
identity matrix. As noted in Section 1 the difficulty with this specification of the 
error structure is that it is asymmetric, and there is no basis for deciding which good 
should play the role of residual.'7 

The stochastic specification which appears to us most appropriate and the one 
for which we obtain maximum likelihood estimates of the parameters assumes that 
the disturbances are associated with the b's. The demand equations for any period 
(11) may be written in matrix form as 

x = (I-yp')(b + u,) + Ty 

= (I - yp')b + Ty + (I - YP')Ut, 

where x is an n x 1 vector of quantities, ut is an n x 1 vector of disturbances, p is an 
n x 1 vector of prices, ,u is a scalar, equal to total expenditure, b is an n x 1 vector 
to be estimated, and y is an n x 1 vector with elements ai/pi, where the ai are 
parameters to be estimated.'8 As discussed above, the vector u, is assumed to be 
multivariate normal with mean 0 and covariance matrix Dt given by 

Dt = E(utu') = diag (4k1", 2 
* 2X) 

where xit is the nonstochastic component of xit. 
The disturbance vector of the demand equations, vt, is given by 

Vt= (I - YP')Ut = mtut- 

Clearly v is a linear transformation of u, with the covariance matrix of the v's, Qt, 

given by Qt = M,D,M'. Since the transformation M, is singular, the covariance 
matrix Qt is also singular.'9 

To obtain maximum likelihood estimates of this system, we drop one equation 
and maximize the likelihood function of the reduced system. We show in the 
appendix that this procedure yields maximum likelihood estimates for the full 
system, and that the estimates obtained are independent of which equation is 
omitted. If we redefine, u, v, and M, after omitting the nth good, as 

17t = (u1t, ...I* Un 1,t), 

bt= (vt, I Vn. 1t). 

Mt = Mt with the nth row deleted, 
17 As discussed in Section 1 this problem does not arise if the elements of the covariance matrix are 

estimated together with the other parameters using generalized least squares. 
18 The assumption that the b's are constant over time is easily modified. We have supressed the time 

subscripts on the p's, x's, y's, and ,u. 
'9 Proof: p'v = p'(I - yp')u = p'u - (p'y)p'u = 0 so Qp = E(vv'p) = 0; hence 0 is an eigenvalue of 

Q and IQI =0. 
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620 R. A. POLLAK AND T. J. WALES 

then Vt has a multivariate normal distribution with mean 0 and covariance 
?t = M D M. Further, since the vectors v 1, , VT are assumed to be independently 
distributed, the likelihood of V 1, , VT is given by 

T T 

L( ..., VT) = H L(it) = H (2t<) - )I2IQ - e- lot 
1 1 

and the logarithm of the likelihood by 

(n -1) T T 

(n 2) ln (2it) - 2 (ln IKft + ?tt Vt). Y(i V) 2 2 

Let G = ET (ln f?t + Y?Q5 'it); then maximizing L is equivalent to minimizing G. 
Consequently we obtain maximum likelihood estimates of bi and ai for i = 1, 
... , n and of ai for i = 1,-.. , n - 1 by minimizing G. The estitnate of an is obtained 
by subtracting the estimates of a1,... , a, 1 from 1. 

Asymptotic standard errors of the parameters are obtained in the usual manner 
from the matrix of second partial derivatives of Y(V1,..., VT) evaluated at the 
critical point. 

For models in which the b's are not constant, but are given by bit = b* + f3izit- 1 
where zit-1 is any predetermined variable, G is minimized with respect to the 
b*'s and #i's in addition to the ci's and ai's. 

We assume that prices and total expenditure are nonstochastic, or if stochastic 
then independent of the disturbance terms. This avoids simultaneous equation 
problems. 

3. RESULTS 

The results of estimating the linear expenditure system assuming four different 
dynamic specifications for the b's, and assuming that Eu2 = U 2 are reported 
in Table I. Values in parentheses are asymptotic standard errors. As a rough 
rule of thumb, parameter estimates are considered "significant" (that is, significantly 
different from zero) if they are more than twice their standard errors. The reported 
R2 statistic for each equation was computed as one minus the ratio of the variance 
of the disturbances to that of the dependent variable. The R2 values are generally 
high, which is not surprising since the data are time series, and a large number of 
parameters are used in the equations. In any event this statistic is not of particular 
interest since the estimation procedure involves a system of equations, and a 
"least squares" criterion is not employed. The R2 estimates are presented primarily 
for comparison with other studies of the linear expenditure system. 

For the model with constant b's the estimated marginal budget shares (a's) 
are all positive, less than one, and significantly different from zero. The estimates of 
the b's, however, although significant, exceed consumption values in every time 
period. This result is not consistent with the underlying utility function, suggesting 
that the constant b model is inappropriate. 

The values of cr? range from zero for shelter to 9.8 x 10' for clothing. The 
estimate of zero suggests that in our stochastic formulation the u disturbance for 
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TABLE Ia 

LINEAR EXPENDITURE SYSTEM, 1948-1965 

Stochastic assumption: Eut = xit. 
Food Clothing Shelter Misc. 

I. Constant b: bit = bi 
a .190 (.026) .079 (.018) .566 (.022) .165 (.017) 
b 526 (64) 202 (28) 641 (153) 250 (41) 
o2 1.51 (.82) 9.86 (4.57) 0 (6.22) 3.80 (1.87) 
R2 .90 .66 .99 .98 

II. Linear Time Trend: bit= b* + fit 
a .205 (.053) .446 (.187) .151 (.065) .199 (.139) 
b* 328 (99) -16 (27) 208 (56) 47 (34) 
,B .068 (.178) .089 (.412) .142 (.121) .082 (.136) 
o2 .84 (.64) 0 (.12) 1.36 (.48) .71 (3.35) 
R2 .96 .89 .99 .99 

III. Proportional Habit Formation: bit = fixi,_ I 

a .343 (.055) .239 (.036) .286 (.047) .131 (.031) 
,B .969 (.016) .943 (.026) .996 (.019) .987 (.017) 
a2 1.19 (.49) 2.00 (1.00) .56 (.35) .95 (.44) 
R2 .96 .94 .99 .99 

IV. Linear Lagged Consumption Habit Formation: bit = b + f ixit -I 

a .348 (.057) .219 (.044) .302 (.042) .130 (.024) 
b* 136 (66) 49 (49) 59 (43) 23 (26) 
Al .749 (.135) .797 (.188) .928 (.037) .939 (.074) 
a62 1.21 (.52) 2.34 (.95) .35 (.23) .49 (.25) 
R2 .96 .93 .99 .99 

a In Tables I-IV ai, f3i, and ai are pure numbers, while bi and b* are expressed 
in 1958 dollars. The initial value and increment for the time variable (t) is 100, 
while x is per capita expenditure in 1958 dollars. All estimates of a2 have been 
multiplied by 104 before being entered in the tables. In view of the fact that the 
second derivative matrix of the log likelihood function is based on numeric 
derivatives (see Appendix), the standard errors should be viewed with caution. 

shelter is essentially zero. This does not mean that the demand for "shelter" is non- 
stochastic, since the disturbance in each demand equation involves all the u's. 

One of the simplest dynamic specifications involving the b's is the assumption 
that they change by a constant amount each year-this implies a linear time trend 
of the form (7). None of the estimated f, values and only two of the b* values differ 
significantly from zero. The annual increase in b is the largest for shelter, followed 
by clothing, miscellaneous, and food. The estimated marginal budget shares differ 
considerably from those of the constant b model, which is not surprising in view 
of the difference in specification. Finally, calculated bit values are less than con- 
sumption in all time periods, for all goods. 

The habit formation model which assumes that b is proportional to lagged 
consumption (8b) yields significant estimated proportionality coefficients which 
are very close to one for all goods. The implied estimates of bit are less than con- 
sumption in all time periods for shelter, clothing, and miscellaneous, and in all 
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but the first time period for food. The marginal budget shares differ from those in 
both the preceding models. The fact that the fl's are approximately unity means that 
supernumerary income is very small in every time period. But this does not mean 
that the marginal budget shares are of no interest. First, in the dynamic process, 
although supernumerary income is small in every period, its allocation among the 
different goods helps to determine future b values (through the effect of lagged 
consumption) and hence consumption in succeeding periods. Second, the short 
term effect on the consumption of various goods of a policy change which increases 
income (for example a tax cut) will depend solely on the marginal budget shares. 

The habit formation model in which b is a linear function of lagged consumption 
(8a) yields marginal budget share estimates which are all significant and less 
than one. The fl's are also significant, but the model is not acceptable because 
calculated bit values exceed the corresponding consumption values in every time 
period for all goods. 

Several other versions of the linear habit formation model were estimated using 
different variables to represent past consumption. First, each b was linearly related 
to a three year moving average of past consumption. Second, each b was linearly 
related to the largest annual consumption value in the preceding three years. 
Finally, two models were estimated in which b was related to the growth rate of 
consumption. Although all models yielded significant parameters, the estimated 
bit's exceeded consumption in many time periods. Parameter estimates are not 
presented for any of these models because of this inconsistency with the underlying 
utility maximization framework. 

Finally, several of the models were estimated under the assumption that the 
variance of the u's is constant over time, although different for each good. The 
results obtained by estimating the models under this specification do not differ 
significantly fiom those reported in Table I. 

It is interesting to compare the results given above with those obtained by 
assuming a common U2 value for all goods: E(u2) = U22 . The advantage of 
this procedure is that it economizes on degrees of freedom. The results of estimating 
the four basic models under this assumption are presented in Table II. The pro- 
portional habit formation model again yields acceptable results, and indeed the 
parameter estimates differ only slightly. Similarly, the linear time trend estimates 
are approximately as given above, although the /3 values are all slightly lower and 
the b* values slightly higher than those reported in Table I. Nevertheless the 
calculated bit values are less than consumption in all periods. For the linear lagged 
consumption habit model the marginal budget share estimates are very close to 
those of Table I while the ,B and b* estimates differ considerably. However, cal- 
culated b values still exceed consumption for sixty-four of seventy-two observa- 
tions. Finally for the constant b model, although the marginal budget share 
estimates do not differ appreciably from those given above, the b values do. 
The latter are at least twenty per cent larger for each good than previously, and 
consequently exceed consumption values by more than this amount. 

As mentioned above an alternative estimation procedure is to minimize the 
sum of squared residuals over all expenditure equations and time periods. The 
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TABLE II 

LINEAR EXPENDITURE SYSTEM, 1948-65 

Stochastic assumption: Eu' = 
a' " 

Food Clothing Shelter Misc. 

I. Constant b: bit-bi 
a .199 (.026) .102 (.028) .554 (.028) .144 (.019) 
b 623 (87) 258 (61) 896 (187) 308 (38) 
R2 .83 .76 .99 .97 

II. Linear Time Trend: bit =b + pit 

a .202 (.052) .423 (.053) .161 (.049) .214 (.030) 
b* 345 (34) 25 (66) 271 (20) 59 (31) 
f, .058 (.023) .065 (.043) .136 (.016) .074 (.018) 
R2 .96 .91 .99 .99 

III. Proportional Habit Formation: bit = fixit 1 
a .342 (.053) .247 (.033) .284 (.057) .127 (.031) 
fl .975 (.014) .952 (.023) 1.002 (.017) .993 (.014) 
R2 .96 .94 .99 .99 

IV. Linear Lagged Consumption Habit Formation: bit = b* + fixi, - 

a .354 (.051) .235 (.032) .297 (.051) .115 (.029) 
b* 91 (58) 25 (39) 37 (39) 8 (20) 
,B .816 (.102) .888 (.149) .952 (.037) .994 (.062) 
R2 .96 .94 .99 .99 

results of estimating the basic models using this technique for the postwar period 
appear in Table III. The R2 values are tabulated for each equation; standard 
errors, however, cannot be calculated. It is interesting to study the acceptability 
of these estimates in terms of the underlying utility function, and to compare them 
with the maximum likelihood results of Table I. 

Marginal budget shares are positive and less than unity for all goods and 
models. For the constant b formulation, bit values exceed consumption in all time 
periods, thus rendering this formulation unacceptable. The three other models, 
however, yield bit values which in almost all instances are acceptable. 

For the constant b model, marginal budget shares reported in Table III are 
approximately the same as those in Table I, while the least squares b values are 
uniformly lower than the maximum likelihood estimates, although they still 
exceed consumption. For the linear time trend model, the marginal budget shares 
of Tables I and III differ considerably for clothing and shelter; the maximum 
likelihood /1 estimates exceed, and b* estimates fall below, those obtained using 
least squares. The two sets of estimates obtained for the proportional habit model 
are very similar. In the lagged consumption habit model the least squares /1 
estimates exceed, and b* estimates fall below, the corresponding maximum 
likelihood estimates. The bit values implied by the least squares estimates are 
slightly less than consumption, while those obtained from the maximum likelihood 
estimates are slightly greater than consumption. Nevertheless, the least squares 
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TABLE III 

LINEAR EXPENDITURE SYSTEM, 1948-65 

Least Squares Estimates. 

Food Clothing Shelter Misc. 

I. Constant b: bit = bi 
a .182 .090 .556 .172 
b 526 208 648 257 
R2 .90 .66 .99 .98 

II. Linear Time Trend: bit = b* + flit 

a .185 .367 .249 .199 
b* 383 104 233 101 
f, .028 .063 .111 .041 
R2 .96 .94 .99 .98 

III. Proportional Habit Formation: bit= pixit i 
a .358 .275 .242 .125 
f, .974 .946 1.006 .997 
R2 .96 .94 .99 .99 

IV. Linear Lagged Consumption Habit Formation: bit= b* + ,Bixit 1 
a .380 .232 .273 .115 
b* 77 -5 1 -10 
f, .769 .941 .976 1.036 
R2 .97 .93 .99 .99 

estimates imply that the linear lagged consumption habit model is acceptable, 
while this conclusion is not warranted by the maximum likelihood procedure. 

The final estimation procedure considered involves minimizing the sum of 
squared residuals with one equation omitted. The constant b model for the post- 
war period under the stochastic assumption of least squares was estimated four 
times with a different good omitted each time. The marginal budget share estimates 
do not differ greatly for any good, with the largest discrepancy in absolute terms 
being .05 for the miscellaneous category. The b estimates on the other hand depend 
crucially on which good is omitted from the estimation procedure. In the shelter 
category, for example, b values range from 418 to 880 while per capita consumption 
in the period ranges from 286 to 486 (in 1958 dollars). Also, when shelter is omitted 
from the estimation procedure, the b estimates fall below consumption in the 
final four or five time periods for all goods, whereas b estimates exceed consump- 
tion in all other cases. 

It has often been argued that consumer tastes changed during World War II. 
It is interesting, therefore, to compare the basic models using data from the prewar 
and postwar periods. Table IV contains estimates based on data for the time 
period 1930-41, under the assumption that E(u2) = U2 . A casual comparison 
with Table I reveals a striking difference in parameter values. Without resorting 
to rigorous tests it is clear that the prewar and postwar observations are not drawn 
from the same population. 

This content downloaded from 128.118.88.48 on Thu, 8 Aug 2013 00:34:11 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


LINEAR EXPENDITURE SYSTEM 625 

TABLE IV 

LINEAR EXPENDITURE SYSTEM, 1930-41 

Stochastic assumption: Euit = xit. 
Food Clothing Shelter Misc. 

I. Constant b: bit = bi 
a .480 (.026) .175 (.016) .213 (.015) .132 (.007) 
b 279 (32) 122 (11) 195 (10) 87 (7) 
2 13.35 (3.72) 9.90 (3.47) .83 (1.22) 0 (3.00) 

R2 .93 .79 .96 .98 

II. Linear Time Trend: bit= b* + f3it 
a .348 (.022) .258 (.013) .248 (.015) .146 (.008) 
b* 223 (36) 105 (26) 179 (18) 75 (13) 
,B .087 (.072) .004 (.052) .013 (.038) .011 (.026) 
2 2.97 (1.49) 1.84 (1.87) .74 (.45) .22 (.68) 

R2 .99 .97 .97 .99 

III. Proportional Habit Formation: bit = pixit 1 
a .399 (.040) .233 (.021) .214 (.022) .154 (.010) 
f, .887 (.060) .818 (.060) .921 (.026) .857 (.049) 
2 3.56 (1.81) 4.30 (1.86) .90 (.34) 0 (.96) 

R2 .99 .96 .97 .99 

IV. Linear Lagged Consumption Habit Formation: bit = b* + ,Bixit 1 
a .417 (.041) .217 (.022) .216 (.024) .150 (.010) 
b* 44 (33) 19 (17) 43 (24) 19 (11) 
fi .757 (.108) .709 (.104) .722 (.114) .679 (.110) 
2 3.55 (1.99) 3.29 (1.49) .85 (.36) 0 (.91) 

R2 .99 .97 .97 .99 

Both the proportional and linear lagged consumption habit specifications are 
acceptable in the prewar period, in that calculated b values are less than con- 
sumption in all cases. The time trend model is again acceptable, while for the 
constant b model consumption falls below the corresponding b value in only 
eight of thirty-two cases. Also in this model the postwar estimates of b are from 
two to three times as large as the prewar estimates. For all models the marginal 
budget shares are less than one and significantly different from zero, while for 
the other parameters the only insignificant estimates are certain b* values in the 
linear habit formation model and the ,B estimates in the time trend model. 

4. CONCLUSIONS 

Several important conclusions emerge from our study. First, for our preferred 
stochastic formulation only the linear time trend and proportional habit formation 
models are consistent with the underlying utility functions for the postwar period. 
On the other hand all the dynamic specifications are appropriate in the prewar 
period. 

Second, the dynamic specification of the model is of crucial importance. Different 
dynamic specifications result in widely differing estimates, not only of the 
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parameters which characterize the dynamic specification (the b*'s and the fl's), but 
also of the marginal budget shares. Therefore, in the absence of a criterion for 
choosing among the dynamic specifications, we can have little confidence in any of 
the estimated parameters. Further study of the merits of various dynamic specifica- 
tions is clearly warranted. 

Third, the estimation technique is important. The estimates obtained by 
minimizing the sum of squared expenditure residuals over all equations, over three 
equations, and by the maximum likelihood technique based on our preferred 
error structure differ substantially in some cases. The problem with relying on 
the simpler techniques is that one cannot know beforehand whether they will 
yield parameter estimates similar to those obtained by the more sophisticated 
procedure. 

Fourth, the different assumptions made about the variance of the u's affect our 
parameter estimates only slightly. They might make a difference, however, in 
estimates based on a time period in which consumption grew substantially. 

Finally, it seems to us that future work in empirical demand analysis should 
experiment with more general specifications of the functional form of the demand 
equations. The fact that many of our habit models did not yield theoretically 
plausible parameter estimates may reflect misspecification of the functional form 
of the demand equations, rather than misspecification of the dynamic or stochastic 
structure. 

University of Pennsylvania 

APPENDIX 

A. ESTIMATION THEOREM 

In this section we show that minimizing G (text, page 620) is equivalent to maximizing the appropriate 
likelihood function. 

Since ut is assumed to be multivariate normal with covariance matrix D,, then vt = Mtu' is multi- 
variate normal with covariance matrix Ot = M D M', and w = Ptvt is multivariate normal with 
covariance matrix S = PtQ23P, where P = diag (p1t, . . p,t). Both Ot and St are singular, so the densities 
of vt and wt cannot be expressed directly in terms of Ot and S,. A. P. Barten has shown, however, that 
in this case the density of wt (ignoring a factor of proportionality) is given by 

f(wt) = ISt + {(Ie - wes- ?-(, [St+.l] wt 

where e is the n x 1 column vector (1, .1).20 Hence, the density of vt (again ignoring a factor of 
proportionality) is given by 

g(vt) = K2t + Pt 'e'P't- 1 -e (+Pt '6'PJt 

The likelihood of the sample (v1,. VT) is therefore 
T 

L(vl,. VT) = f1 g(v1) 
t = 1 

and the logarithm of the likelihood is 
T 

.(V1, VT) = Z log g(v1). 
t=1 

20 A. P. Barten, op. cit. 
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We define G(v , VT) by 

G(v l,.. ., VT) = -2Y(v VT), 

so minimizing G is equivalent to maximizing L. Clearly 
T 

G = E log 10, + P-'tl7'P- ' + v'(Q +P-lee'P-l)-lv 
t= I 

We shall show that G and G differ only by a constant so that minimizing G is equivalent to minimizing 
G. We focus on a typical term of G and drop all time subscripts.2' 

(i) The typical term of G can be written as 

(Al) log lo + P-'l{'P-'j + v'[Q + p-lerP- ]-'v. 

(ii) Define a matrix E by 

(A2) E = I - ene- (1/n)P eeY'P 

where en is a vector consisting of all zero elements except the last one which is unity. Then 

(A3) E(Q2 + P-l{'P-')E' = (I - ene)Q(I - ene) + (l/pn2)ene' 

L l[/p21 

where Q2 is the (n - 1) x (n - 1) matrix obtained from Q by deleting the last row and column. 
(iii) Taking the determinant of this expression, it is easy to show that 

jI2 + P-l{eep-11 = (l/p2)I- 21 21 
where the determinant of E1 is independent of the parameters to be estimated as follows from the 
definition of E in (A2). The typical term of G is then given by 

(A4) -2 log jEj - 2logPn + log IQI + v'[Q + P- "'P-11-1V 
(iv) Since p'v = 0, 

(A5) Ev = (I - ene')v = LO1 
where v is the (n - 1) x 1 vector obtained from v by deleting the last element. Now, using (A3) and 
(A5), 

(A6) v'[Q + P- {'P- 1] - 'v = v'E'[E(Q + P- letP p )E ] Ev 

( -'')[0 p20]l) V - . 

Consequently the typical element of G can be written as 

(A7) -2 log jEj - 2logPn + log 1I2 + v'Q2- lb. 

B. DATA 

Constant dollar expenditures on the various categories of goods were obtained from Table 2.6 of 
The National Income and Product Accounts of the United States, 1929-1965, Statistical Tables, pp. 48-49. 
The price variables (pi) are implicit deflt: Jrs (1958 = 100) and were obtained from Table 8.6, pp. 162-163, 
of the same source. In terms of the caoegories reported in those tables, we defined our four broad 
categories of goods as follows (numbers in parentheses refer to the two tables cited above): 

I. Food: 
1. Food and Beverages (15). 

II. Clothing: 
1. Clothing and shoes (21), 
2. Shoe cleaning and repair (54), 
3. Cleaning, dyeing, pressing, etc. (55). 

21 We are indebted to M. D. McCarthy and an anonymous referee for this proof. 
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III. Shelter: 
1. Housing (35), 
2. Household operation services (39), 
3. Semidurable house furnishings (29), 
4. Cleaning and polishing preparations, etc. (30), 
5. Other fuel and ice (31). 

IV. Miscellaneous: 
1. Tobacco products (27), 
2. Toilet articles and preparation (28), 
3. Nondurable toys and sport supplies (33), 
4. Barbershops, beauty parlors, and baths (56), 
5. Medical care services (57), 
6. Admission to specified spectator amusements (61), 
7. Drug preparations and sundries (32). 

Per capita consumption of a good (xi) was calculated by dividing annual expenditure in 1958 dollars 
by population. The population figures are "total population residing in the United States" and are 
taken from Table 2 of the Statistical Abstract of the U.S., 1967. Per capita expenditure (p) was calculated 
as Vi4- Pixix- 

C. NUMERICAL PROCEDURE 

The algorithm used to maximize the likelihood function was "Grad x," a nonlinear routine developed 
by Goldfeld, Quandt, and Trotter. This procedure requires the evaluation of first and second derivatives 
at each iteration. Since the covariance matrix of our system is a product of three matrices, each depen- 
dent on the unknown parameters, it is difficult to express the second derivatives of the likelihood 
function analytically. Consequently, we calculated the second derivatives numerically, that is, by 
differencing the first derivatives. We also experimented with calculating both the first and second 
derivatives numerically, and found that numeric first derivatives were close to the analytic ones, and that 
second partial derivatives based on the numeric first derivatives were close to those based on the 
analytic first derivatives. All of our reported results are based on numeric first and second derivatives. 
Numeric first derivatives are convenient because they permit estimation of variants of the basic model 
without substantial reprogramming, and because they reduce computation time. But even using 
numeric first derivatives, estimation time was substantial; for example, models involving fifteen 
parameters and eighteen observations (e.g., the time trend and the linear lagged habit models for the 
postwar period) required approximately twenty-five seconds per iteration and in many cases ten to 
twenty for convergence. All computations were carried out on the University of Pennsylvania IBM 
360/65 computer. 

Because of the nature of the likelihood function and the large number of function evaluations needed 
to calculate derivatives in the maximization procedure, the computation time required is approximately 
proportional to the number of observations. Investigators considering longer time periods or a finer 
classification of goods might find it advisable to use a maximization algorithm which does not require 
second derivatives. 
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