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Summary

We study the nonparametric likelihood-based estimators of the mean function of counting

processes with panel count data using monotone polynomial splines. The generalised Rosen

algorithm, proposed by Zhang & Jamshidian (2004), was used to compute the estimators.

We show that the proposed spline likelihood-based estimators are consistent and their rate

of convergence can be faster than n1/3. Simulation studies with moderate samples show

that the estimators have smaller variances and mean square errors than their counterparts

proposed in Wellner & Zhang (2000). A real example from bladder tumor clinical trial is

used to illustrate the method.

Some key words: Counting process; Empirical process; Maximum likelihood estimator; Max-

imum pseudolikelihood estimator; Monotone polynomial splines; Monte Carlo; Isotonic re-

gression.



1 Introduction

This article considers estimation of the mean function of counting processes with panel count

data using monotone polynomial splines. In many long-term clinical trials or epidemiological

studies, the subjects were observed at several discrete times during the study. The only

available information was the number of recurrent events occurring before each observation

time. The exact event times were unknown. The number of observations and observation

times may vary from individual to individual. This kind of data is referred to as panel count

data.

Panel count data arises frequently in clinical studies, in which each patient visits the

clinical center at some subsequent follow-up times after the initial visit. An example is

the National Cooperative Gallstone Study, a 10-year multicenter double-blinded placebo-

controlled trial investigating the effects of the natural bile acid chenodeoxycholic acid on

the dissolution of cholesterol gallstones (Thall & Lachin, 1988). The individuals were asked

to report the total number of symptoms such as nausea and diarrhea that had occurred

during the intervals between successive clinic visits. One of the primary objectives of this

study was to assess the impact of the treatment on the incidence of biliary (digestive) symp-

toms commonly associated with gallstone disease. Another example is the bladder tumour

randomized clinical trial conducted by the Veterans Administration Cooperative Urological

Research Group. All patients had superficial bladder tumours when they entered the trial,

and they were randomly assigned to one of three arms: placebo, pyridoxine, and thiotepa.

Many patients had multiple recurrences of the tumour, and new tumours were removed at

each visit. The goal of this study was to determine the effect of treatment on the frequency

of tumour recurrence; see for example, Byar (1980), Wei et al. (1989), Wellner & Zhang

(2000), Sun & Wei (2000), and Zhang (2002).

Several authors have considered methods for analysing panel count data (Kalbfleisch &

Lawless, 1985; Thall & Lachin 1988; Thall, 1988 and Lee & Kim, 1998). Sun & Kalbfleisch

(1995) appears to be the first in the literature studying the nonparametric estimation of the

mean function with panel count data. Their method was based on the isotonic regression
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by pulling the observations together and taking into account the monotonicity of the mean

function. Wellner & Zhang (2000) studied nonparametric maximum pseudolikelihood and

nonparametric maximum likelihood estimators based on a ‘working model’ of nonhomoge-

neous Poisson process. They showed that the maximum pseudolikelihood estimator was

exactly the one described in Sun & Kalbfleisch (1995) and they also studied the asymp-

totic properties of both maximum pseudolikelihood and maximum likelihood estimators.

The maximum likelihood estimator is more efficient than the maximum pseudolikelihood

estimator, but the maximum likelihood estimator is more difficult to compute.

Many investigators have studied spline estimation of an unknown function such as hazard

and survival functions in survival analysis. However, directly modelling the hazard function

using the spline may not guarantee the nonnegativity of the function (Anderson & Senthil-

selvan, 1980 and Whittemore & Keller, 1986). To overcome this drawback, Rosenberg (1995)

proposed to use the spline with coefficients expressed in exponential form; Kooperberg et

al. (1995) and Cai & Betensky (2003) modelled the log hazard function using linear spline

in their corresponding applications. Doing so, the nonnegativity of the hazard function is

automatically satisfied.

In our application, the pseudolikelihood and likelihood functions with panel count data

are functions of the cumulative mean function of event numbers. Although we can reparam-

eterise the likelihood functions in terms of the intensity function and use the spline method,

for example, proposed by Kooperberg et al. (1995), it will incur unnecessary complication in

estimation procedure computationally, especially when the estimation of the mean function

is the primary interest. In this article, the monotone cubic spline studied in Ramsay (1988)

is applied to directly approximating the true mean function Λ0(t) of the counting process by

Λ(t) =

qn∑
j=1

αjIj(t) subject to αj ≥ 0 for j = 1, 2, · · · , qn

This is referred to as I-spline by Ramsay (1988) and the monotonicity of the Λ is guaranteed

by imposing the nonnegative constraint on the coefficients of the linear combination.

We express both the pseudolikelihood and likelihood functions given in Wellner & Zhang
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(2000) using the I-spline functions and estimate the spline coefficients using the generalised

Rosen algorithm proposed by Zhang & Jamshidian (2004). Our approach has two attractive

features: (i) it is much less demanding in computing the spline likelihood estimator compared

to computing the nonparametric maximum likelihood estimator in Wellner & Zhang (2000)

based on the iterative convex minorant algorithm proposed by Jongbloed (1988) and (ii) the

spline estimators may have a higher convergence rate than their counterparts proposed by

Wellner & Zhang (2000).

The rest of the paper is outlined as follows: In section 2, both the spline maximum

pseudolikelihood and likelihood estimators, Λ̂ps and Λ̂, are characterised and the generalised

Rosen’s algorithm is introduced to compute the spline estimators. In section 3, the main

asymptotic results, consistency and rate of convergence, are stated. In section 4, two sets

of simulation are carried out to study the properties of the spline-based estimators. The

methods are illustrated with the bladder tumour example. In section 5, future extension of

the monotone spline estimator is discussed. Finally, proofs of the asymptotic consistency

and rate of convergence of the spline estimators are sketched in the Appendix.

2 Monotone Spline Estimators of the Mean Function

Let {N(t) : t ≥ 0} be a counting process with mean function EN(t) = Λ0(t). The total

number of observation K on the counting process is an integer-valued random variable and

T = (TK,1, TK,2, · · · , TK,K) is a sequence of random observation times with 0 < TK,1 <

TK,2 < . . . < TK,K . The cumulative numbers of recurrent events up to these times N =

{N(TK,1), N(TK,2), . . . , N(TK,K)} with 0 ≤ N(TK,1) ≤ N(TK,2) ≤ · · · ≤ N(TK,K) are observed

accordingly. The panel count data of the counting process consist of X = (K, T, N). We

assume that the number of observations and the sequence of observation times are distributed

independently of the underlying process. That is, N and (K, T ) are independent.

Suppose we observe n independently and identically distributed copies of X, Xi =

(Ki, Ti, N(i)) with Ti = (TKi,1, TKi,2, . . . , TKi,Ki
) and
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N(i) =
{
N(i)(TKi,1), N(i)(TKi,2), . . . , N(i)(TKi,Ki

)
}

for i = 1, 2, . . . , n. We denote the observed

data by D = (X1, X2, . . . , Xn). Wellner & Zhang (2000) proposed two nonparametric estima-

tion methods for the mean function of the counting process. Assuming the underline counting

process being nonhomogeneous Poisson process and ignoring the correlations among the cu-

mulative counts, they established the log pseudolikelihood by omitting the parts irrelevant

to the mean function Λ,

lps
n (Λ|D) =

n∑
i=1

Ki∑
j=1

{
N(i)(TKi,j) log Λ(TKi,j)− Λ(TKi,j)

}
. (1)

In parallel, they also established the log likelihood for Λ using the independence of the

increments of N(t),

ln(Λ|D) =
n∑

i=1

Ki∑
j=1

{∆NKi,j log(∆Λj)} −
n∑

i=1

Λ(TKi,Ki
) (2)

where ∆NKi,j = N(i)(TKi,j)−N(i)(TKi,j−1) and ∆Λj = Λ(TKi,j)−Λ(TKi,j−1) for j = 1, 2, . . . , Ki;

i = 1, 2, . . . , n.

As described in Wellner & Zhang (2000), the nonparametric maximum pseudolikelihood

estimator can be computed in one step via the max-min formula, and the computation of

the maximum likelihood estimator involves the iterative convex minorant algorithm which

can be computationally demanding when the sample size is large.

Polynomial regression splines defined on the interval [L, U ] is a piecewise polynomial

with specified continuity constraints. [L, U ] is subdivided by a mesh ∆ consisting of points

L = t0 < t1 < t2 < · · · < tqn < tqn+1 = U . The spline is a polynomial of degree l − 1

within the subinterval [tj, tj+1), and the polynomials in the adjacent intervals have the same

derivatives up to l− 2 at the joint points. The spline for l = 4 is piecewise cubic polynomial

with second order continuous derivative. As a special case, the spline with l = 1 is a step

function discontinuous at each knot. Let t = (t1, t2, · · · , tqn) be a sequence of knots. The

M -spline is a family of basis spline, Mi, which is positive in (ti, ti+1), zero elsewhere, and is
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normalised to
∫

Mi(x)dx = 1. For ti ≤ x ≤ ti+1, Mi(x) is defined by the recursion

Mi(x|1, t) =
1

ti+1 − ti
, and 0 otherwise

Mi(x|l, t) =
l{(x− ti)Mi(x|l − 1, t) + (ti+l − x)Mi+1(x|l − 1, t)}

(l − 1)(ti+l − ti)

Further discussion of polynomial splines and M -splines can be found in Schumaker (1981)

and Ramsay (1988). In this article, we consider I-splines constructed by Ramsay (1988):

Ii(x|l, t) =
∫ x

L
Mi(u|l, t)du. A linear combination of Ii’s with nonnegative coefficients yields

a monotone nondecreasing function (Ramsay 1988, pp. 428).

Let qn = nν with 0 < ν < 1/2 being a positive integer such that max1≤i≤qn+1 |ti− ti−1| =

O(n−ν). Stone (1986) showed that when n is sufficiently large, any smooth function can be

approximated by a linear combination of polynomial spline functions with number of knots

chosen in this fashion. Therefore, we approximate the smooth monotone mean function Λ0(t)

by

qn∑
j=1

αjIj(t) and estimate the coefficients α = (α1, α2, · · · , αqn) through maximising the

approximated pseudolikelihood and likelihood functions, respectively.

Let α̂ps
p for p = 1, 2, · · · , qn denote the spline pseudolikelihood estimators that maximise

lps
n (α|D) =

n∑
i=1

Ki∑
j=1

[
N(i)(TKi,j) log

{
qn∑

p=1

αpIp(TKi,j)

}
−

qn∑
p=1

αpIp(TKi,j)

]
(3)

subject to the constraints αp ≥ 0 for p = 1, 2, · · · , qn. Similarly, let α̂p for p = 1, 2, · · · , qn

denote the spline likelihood estimators that maximise

ln(α|D) =
n∑

i=1

Ki∑
j=1

[
∆NKi,j log

{
qn∑

p=1

αp∆Ip(TKi,j)

}]
−

n∑
i=1

qn∑
p=1

αpIp(TKi,Ki
) (4)

with ∆Ip = Ip(TKi,j) − Ip(TKi,j−1) for p = 1, 2, . . . , qn, subject to the same constraints as

above.

We use the cubic spline to approximate the mean function Λ0(t). In fact, the two esti-

mators proposed by Wellner & Zhang (2000) can be viewed as the special spline of l = 1

that uses all the distinct observation times as knots. The estimators constructed here can,
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therefore, be treated as the extension of those proposed by Wellner & Zhang (2000) with

respect to the smoothness of estimators. However, the number of coefficients to be esti-

mated is reduced. As a result, the spline estimators are expected to be less computationally

demanding.

We note that both the spline pseudolikelihood and spline likelihood functions are con-

cave with respect to the unknown coefficients. So the spline likelihood estimation problem

is equivalent to a nonlinear convex programming problem subject to linear inequality con-

straints. Specifically, the spline estimation problems (3) and (4) can be formulated as the

linearly inequality constrained maximisation problem

max
α∈Θα

l(α|X) (5)

where Θα = {α : αp ≥ 0, p = 1, 2, · · · , qn}. Rosen (1960) proposed a now well-known

iteratively generalised gradient method for optimising an objective function with linear con-

straints. Rosen’s algorithm was formulated based on the Euclidean metric in the optimisa-

tion literature. Jamshidian (2004) developed a general algorithm based on the generalised

Euclidean metric ‖x‖ = xT Wx where W is a positive definite matrix and can vary from iter-

ation to iteration. Zhang & Jamshidian (2004) applied this generalised Rosen algorithm to

computing the nonparametric maximum likelihood estimator of failure function with various

types of censored data. Zhang & Jamshidian (2004) used W = −DH , the diagonal elements

of the negative Hessian matrix H, to avoid the possible storage problem in updating H for

a large-scale nonparametric maximum likelihood estimation problem.

In this article, we directly use the negative Hessian matrix H because the dimension

of unknown space is usually not large in our methods. The use of the full Hessian matrix

substantially reduces the number of iterations and thus save the computing time. The

detailed description of the computation method and algorithm coded in R can be obtained

from the first author.
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3 Asymptotic Results

We study the asymptotic properties of both the spline pseudolikelihood and spline likelihood

estimators with the same L2 metric d defined in Wellner & Zhang (2000); that is

d(Λ1, Λ2) = ‖Λ1 − Λ2‖2 =

{∫
|Λ1(t)− Λ2(t)|2dµ(t)

}1/2

where

µ(t) =
∞∑

k=1

pr(K = k)
k∑

j=1

pr(TK,j ≤ t|K = k)

for any Λ1, Λ2 ∈ F with F = {Λ : Λ is nondecresing. Λ(0) = 0}

We show the consistency and rate of convergence of both the spline pseudolikelihood and

spline likelihood estimators, based on the following regularity conditions on the true mean

function and the underlying distribution of observation times.

Condition 1. For some interval O[T ] = [σ, τ ] with σ > 0 and Λ0(σ) > 0, pr(∩K
j=1{TK,j ∈

[σ, τ ]}) = 1

Condition 2. There exists a positive integer M0 such that pr(K ≤ M0) = 1. That is, the

number of observations is finite.

Condition 3. The true mean function Λ0 is (r − 1)th bounded differentiable in O[T ] with

r ≥ 2. Moreover, the first derivative has a positive lower bound in O[T ]. That is, there

exists a constant C0 > 0 such that Λ′0(t) ≥ C0 for t ∈ O[T ].

Condition 4. E
{
eCN(t)

}
is uniformly bounded for t ∈ S[T ] = {t : 0 < t < τ} for some τ > 0.

The τ can be viewed as the termination time in a clinic follow-up study.

Condition 5. The observation times points are γ-separated. That is, there exists a γ > 0

such that pr(Tk,j − Tk,j−1 ≥ γ) = 1 for all j = 1, 2, · · · , K.

The conditions related to the observation schemes (Conditions 1, 2 and 5) are mild and

easily justified in view of applications in clinical trials. Condition 4 is true if the underlying

counting process is uniformly bounded or if it is a Poisson/Mixed Poisson process. The
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smoothness assumption of true mean function Λ0 (Condition 3) is standard in the nonpara-

metric smoothing literature.

We denote the spline pseudolikelihood estimator by Λ̂ps
n =

∑qn

j=1 α̂ps
j Ij(t) and the spline

likelihood estimator by Λ̂n =
∑qn

j=1 α̂jIj(t), respectively.

Theorem 1 (Consistency) Suppose Conditions 1-4 hold, then

d(Λ̂ps
n , Λ0) → 0 as n →∞.

in probability. In addition, if Condition 5 holds, then

d(Λ̂n, Λ0) → 0 as n →∞

in probability.

Theorem 2 (Rate of convergence) Suppose Conditions 1-4 hold, then

nr/(1+2r)d(Λ̂ps
n , Λ0) = Op(1)

In addition, if Condition 5 holds, then

nr/(1+2r)d(Λ̂n, Λ0) = Op(1)

The proofs of these theorems are sketched in appendix. Theorem 2 shows that the spline

estimators can have a higher convergence rate than their counterparts studied in Wellner &

Zhang (2000), because r/(1 + 2r) ≥ 1/3 when r ≥ 2.

4 Numerical Results

4.1 Simulation Studies

We conduct simulation studies to compare the statistical properties and computation com-

plexity among the spline pseudolikelihood/likelihood estimators and their counterparts stud-

ied in Wellner & Zhang (2000). Two Monte Carlo simulation studies designed in Zhang &
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Jamshidian (2004) are carried out here. For each simulation study, we generate n indepen-

dently and identically distributed observations Xi = (Ki, Ti, N(i)) for i = 1, 2, . . . , n. For

each i, Ki samples randomly from the discrete uniform distribution {1, 2, 3, 4, 5, 6}. Given

Ki, the random panel observation times Ti = (TKi,1, TKi,2, . . . , TKi,Ki
) are Ki ordered random

draws from Un(0,10) and rounded to the second decimal point. The two simulations differ in

the method of generating the panel counts N(i) = {N(i)(TKi,1), N(i)(TKi,2), . . . , N(i)(TKi,Ki
)},

given (Ki, Ti). They are described as follows:

Simulation 1. The panel counts are generated from Po(2t). That is,

N(i)(TKi,j)− N(i)(TKi,j−1) ∼ Po{2(TKi,j − TKi,j−1)} for j = 1, 2, . . . , Ki.

Simulation 2. The panel counts are generated from a mixed Poisson process. We first

generate a random sample α1, α2, . . . , αn ∼ {−0 · 4, 0, 0 · 4, 0} with pr(αi = −0 · 4)=pr(αi =

0 · 4)=1/4 and pr(αi = 0)=1/2 for i = 1, 2, . . . , n. Given αi, the panel counts for the ith

subject are generated according to Po{(2 + αi)t}. That is,

N(i)(TKi,j)− N(i)(TKi,j−1)|αi ∼ Po{(2 + αi)(TKi,j − TKi,j−1)} for j = 1, 2, . . . , Ki.

This counting process is not a Poisson process unconditionally since the mean function of the

process, E{N(i)(t)} = 2t, is not equal to the variance function of the process, var{N(i)(t)} =

2t + 0.08t2.

Cubic I-splines are used in the simulations. The number of knots qn is selected as cubic

root of the number of distinct observation times plus 1. We consider two methods for selecting

the knots. Let Tmin and Tmax be the two endpoints of the collection of total observation time

points in the data. Method 1 equally divides the interval [Tmin, Tmax] into qn +1 subintervals,

and the endpoints of the subintervals are chosen to be the knots. Method 2 is a data-driven

knot selection method: given the number of knots qn, the knots tj, j = 1, 2, · · · , qn, are

chosen to be the j/(qn + 1) × 100% - quantile of the collection of total observation time

points in the data.

In our studies, we generated 1000 Monte Carlo samples with n=100 and 200 for each case,
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respectively. We found that the two knots selection methods yielded very similar results.

Therefore, we only report the results based on the quantile knots selection method.

Fig.1 plots the four estimators with n=100 along with the true mean function Λ0(t) = 2t

in Simulation 1. It is clear that, while all these estimators converge to the true mean function,

the spline estimators appear closer to the true mean function than their counterparts. To

compare these estimators in detail, we calculate the estimates of the mean function at time

points t = 1 · 5, 2 · 0, 2 · 5, . . . , 9 · 5 and summarise the results in Tables 1 and 2 for n=100

and 200, respectively. From the tables, we can see that the biases of all these estimators are

negligible compared to the estimated values. The pointwise standard deviations and mean

square errors of the spline estimators are remarkably smaller than their counterparts. While

the spline likelihood estimator appears to be the most efficient estimator among the four, the

spline pseudolikelihood estimator performs almost as well as the nonparametric maximum

likelihood estimator. When sample size doubles, both the pointwise standard deviations and

mean square errors drop substantially which supports the asymptotic consistency of these

estimators.

In Simulation 2, we similarly plot the four estimators along with the true mean function

in Fig.2 for n=100 and summarise the Monte Carlo simulation results in Tables 3 and 4

for n=100 and 200, respectively. The figure and tables reveal the same pattern of the four

estimators as in Simulation 1. These simulation studies also reinforce the conclusion made

in Wellner & Zhang (2000) that the likelihood method based on Poisson process is robust

against the underlying counting process. However, the standard deviations and mean square

errors of theses estimators are elevated when the Poisson process model is misspecified from

the true underlying counting process.

We also compare the computing time among the four estimators and summarise the

results in Table 5. The nonparametric maximum pseudolikelihood estimator appears to be

the lest computationally demanding estimator. However it is lest efficient as shown in Tables

1-4. The spline likelihood estimator, while demonstrating its estimation efficiency through

the simulation studies, also shows the computation efficiency. Computing time for the spline
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likelihood estimator is less than 1/12 of that for its counterpart on average and the saving

of computing time for the spline likelihood estimator over its counterpart becomes more

significant when sample size increases, as shown in Table 5.

4.2 A Real Example: Bladder Tumour Trial

The proposed methods are illustrated using the bladder tumour example described in the

introduction. The data were extracted from the book by Andrew & Herzberg (1985). In this

randomised clinical trial, a total of 116 patients were randomly assigned into one of three

treatment groups, placebo (47), pyridoxine (31) and thiotepa (38). The number of follow-ups

and follow-up times varied greatly from patient to patient which gave arise a perfect example

of panel count data described in this article. The data set has been extensively studied in

the literatures; see for example, Byar et al. (1977), Byar (1980), Sun & Wei (2000), Zhang

(2002).

In these analyses, researchers were interested in the efficacy of two treatments: pyridoxine

pill and thiotepa installation in terms of suppressing the recurrence of bladder tumour. We

compute the spline pseudolikelihood and likelihood estimators of the cumulative mean func-

tion for three treatment groups. The spline estimators along with nonparametric estimators

proposed in Wellner & Zhang (2000) are plotted in Figs. 3 and 4. As shown in the figures,

the difference of the mean function between thiotepa group and placebo group is quite sub-

stantial. Having observed the difference between the treatments, we also noticed the big

discrepancy between the pseudolikelihood estimators and the likelihood estimators. This

may be due to the fact that the sample for each treatment is relatively small, in particular,

the observations at later times are scarce.

5 Discussion

Our studies show that the spline likelihood estimators outperform the conventional non-

parametric likelihood estimators in terms of finite-sample statistical efficiency. They are
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also easier to compute. These advantages motivate the use of monotone spline estimator

in applications involving the estimation of a monotone function while the conventional non-

parametric likelihood estimator of the function is difficult to compute.

In semiparametric regression problems, joint estimation of both nonparametric nuisance

parameter and parametric regression parameter is often a challenging task. For example,

in an unpublished technical report of Department of Statistics at University of Washington,

Wellner and Zhang considered estimation in the semiparametric proportional mean model

with panel count data, namely

E{N(t)|Z} = exp(β′0Z)Λ0(t), (6)

where Z is a vector of covariates and Λ0 is the baseline mean function. Although the

asymptotic properties of semiparametric maximum pseudolikelihood and maximum likeli-

hood estimators were studied and the normality of the estimator of β0 was established, the

asymptotic variances of these estimators are difficult to estimate directly. The bootstrap

inference procedure was implemented in their technical report with an enormous effort in

computation. Therefore, it is worth making further effort toward more computationally effi-

cient estimators. Spline estimators appear to be a possible candidate due to its advantages

aforementioned. The semiparametric model (6) can be reformulated through approximat-

ing the log Λ0(t) by a linear combination of normalized B-splines introduced by Schumaker

(1981),

E{N(t)|Z} = Λ0(t) exp(β′0Z) = exp

{
qn∑
1

αiBi(t) + β′0Z

}
subject to the constraint α1 < α2 < · · · < αqn . By Theorem 5·9 of Schumaker (1981), the

monotonicity of log Λ0(t) is guaranteed by the monotonicity of the coefficients α’s. The joint

estimation of α’s and β’s can be implemented in the same way as described in this article

and is expected to be a well-manageable task computationally.

Appendix

The proofs for the two asymptotic results are sketched in this section. The modern empirical

process theory is the major technical tool. The notations used in this section follow those
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given in van der Vaart & Wellner (1996) and Huang (1999). Here we only sketch the proofs

for the spline pseudolikelihood estimator, since the proofs for the spline likelihood estimator

are almost parallel with Condition 5 included.

Proof of Theorem 1. A pseudolikelihood function for Λ can be written as

Mn(Λ) = lps
n (Λ|D) =

n∑
i=1

Ki∑
j=1

{
N(i)(TKi,j) log Λ(TKi,j)− Λ(TKi,j)

}

Let Φ denote the collection of functions h on O[T ] whose (r − 1)th derivative h(r−1) for

r ≥ 1 exists and satisfies the Lipschitz conditions

|h(r−1)(s)− h(r−1)(t)| ≤ C|s− t| for s, t ∈ O[T ]

By Condition 3, the true mean function Λ0 ∈ Φ. Let ξ = t0 < t1 < · · · < tqn < tqn+1 = τ be

a partition of O[T ] = [ξ, τ ] into qn + 1 subintervals where qn = nν with 0 < ν < 1/2 and ϕn

be the set of polynomial spline functions on O[T ]. Condition 3 guarantees the assumptions

of Lemma A·5 of Huang (1999). Therefore for Λ0 ∈ Φ, there exists a Λn ∈ ϕn such that

‖Λn − Λ0‖∞ = O(n−νr + n−(1−ν)/2). So, for η > 0, sup
t∈O[T ]

|Λn(t) − Λ0(t)| ≤ η for large n.

Therefore, we can find Λn ∈ ϕn such that Λn > Λ0 and ‖Λn − Λ0‖∞ = O(n−νr + n−(1−ν)/2).

Choose a positive hn ∈ ϕn such that hn ≥ c(Λn − Λ0) and ‖hn‖2
2 = O(n−νr + n−(1−ν)/2).

Therefore, for any α > 0, ‖Λn−Λ0+αhn‖2
2 = O(n−νr +n−(1−ν)/2) and inf(Λn−Λ0+αhn) > 0

for sufficiently large n.

Let Hn(α) = Mn(Λn + αhn). The first and second derivatives of Hn are

H ′
n(α) =

n∑
i=1

Ki∑
j=1

{
N(i)(TKi,j)

Λn(TKi,j) + αhn(TKi,j)
− 1

}
hn(TKi,j)

and

H ′′
n(α) = −

n∑
i=1

Ki∑
j=1

N(i)(TKi,j)h
2
n(TKi,j)

{Λn(TKi,j) + αhn(TKi,j)}2
< 0

Thus H ′
n(α) is non-increasing function. Therefore, to prove Theorem 1, it is sufficient to

show that for some α = α0 > 0 such that H ′
n(α0) < 0 and H ′

n(−α0) > 0 in probability. Then

Λ̂ps
n must be between Λn − α0hn and Λn + α0hn in probability, so ‖Λ̂n − Λn‖2 ≤ α0‖hn‖2 in

probability.
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nH ′
n(α0) can be written as

Pn

K∑
j=1

{
N(i)(TK,j)

Λn + α0hn

− 1

}
hn = (Pn − P )

K∑
j=1

{
N(i)(TK,j)

Λn + α0hn

− 1

}
hn + P

K∑
j=1

{
N(i)(TK,j)

Λn + α0hn

− 1

}
hn

= In1 + In2

According to Lemma A·2 of Huang (1999), for η > 0 and any ε ≤ η,

log N[ ](ε, ϕn, L2(µ)) ≤ cqn log(η/ε) and J[ ](η, ϕn, L2(µ)) ≤ c0qn
1/2η

For each ε > 0 , since the bracket number of class ϕn is no more than (η/ε)cqn , there

exists a set of brackets {[ΛL
i , ΛR

i ] : i = 1, 2, · · · , (η/ε)cqn} such that for each Λ ∈ ϕn

ΛL
i (t) ≤ Λ(t) ≤ ΛR

i (t) for all t ∈ O[T ] and some i

with d2(ΛR
i , ΛL

i ) =
∫ {

ΛR
i (t)− ΛL

i (t)
}2

dµ(t) ≤ ε2.

For any η > 0, define class

Fη =

{
K∑

j=1

(
N(TK,j)

Λ
− 1

)
(Λ− Λn) : Λ ∈ ϕn and d(Λ, Λn) ≤ η

}
By Cauchy-Schwartz inequality and Conditions 2-4, we can show that Fη is a Donsker class.

Hence, In1 = Op(n
−1/2)

Define m(s) =
Λ0

Λ0 + s∆n

where ∆n = Λn−Λ0+α0hn, 0 ≤ s ≤ 1. By Taylor expansion,

m(s) = 1 +

(
−∆n

Λ0

)
s +

Λ0∆
2
n

(Λ0 + ξ∆n)3
s2 where ξ between 0 and 1

Since Λ0 and ∆n are bounded on O[T ], there exist constants c1 and c2 such that

c1E
K∑

j=1

∆2
n ≤ E

K∑
j=1

Λ0∆
2
n

(Λ0 + ξ∆n)2
≤ c2E

K∑
j=1

∆2
n

Therefore E
∑k

j=1
Λ0∆2

n

(Λ0+ξ∆n)2
= O(n−νr + n−(1−ν)/2). Hence,

I2n ≤ E

K∑
j=1

(−c1∆n + c2∆
2
n)hn

≤ −c1

2
E

K∑
j=1

∆2
n = −c1

2
p−1

n

14



where p−1
n = n−νr + n−(1−ν)/2. Since n−νr + n−(1−ν)/2 ≥ n−1/(1+2r) > n−1/2 for 0 < ν < 1/2,

therefore

H ′
n(α0) ≤ Op(n

−1/2)− cp−1
n < 0

in probability. Same augments can apply for H ′
n(−α0) > 0 in probability.

Proof of Theorem 2 . Let mΛ(x) =
∑K

j=1 {N(TK,j) log Λ(TK,j)− Λ(TK,j)} and define M(Λ) =

PmΛ(x) and Mn(Λ) = PnmΛ(x). Then the log pseudolikelihood can be written as nPnmΛ(x).

For any η > 0, define the class

Fη = {Λ|Λ ∈ ϕn, d(Λ, Λ0) ≤ η}

By Theorem 1, Λ̂ps
n ∈ Fη for any η > 0 and sufficiently large n.

Next, define the class

Mη = {mΛ(x)−mΛ0(x) : Λ ∈ Fη}

Using the results of Lemma A·2 of Huang (1999), we can easily establish

log N[ ](ε,Mη, || · ||P,B) ≤ cqn log(η/ε),

where ‖ · ‖P,B is Bernstein Norm defined to be ‖f‖P,B = {2P (e|f | − 1− |f |)}1/2. Moreover,

we have ||mΛ(X) −mΛ0(X)||2P,B ≤ Cη2 for any mΛ(X) −mΛ0(X) ∈ Mη using the same

arguments. Therefore, by Lemma 3·4·3 of van der Vaart & Wellner (1996), we obtain

EP ||n1/2(P− P )||Mη ≤ CJ[ ](η,Mη, || ||P,B)

{
1 +

J[ ](η,Mη, || · ||P,B)

η2n1/2

}
(A.1)

where

J[ ](η,Mη, || · ||P,B) =

∫ η

0

{1 + log N[ ](ε,F , || ||P,B)}1/2dε ≤ c0qn
1/2η

The right hand side of (A.1) yields φn(η) = C(qn
1/2η + qn/n

1/2). It is easy to see that φ(η)/η

is decreasing in η, and

r2
nφ(

1

rn

) = rnqn
1/2 + r2

nqn/n
1/2 ≤ n1/2

for rn = n(1−ν)/2 and 0 < ν < 1/2. Hence, n(1−ν)/2d(Λ̂ps
n , Λ0) = Op(1) by Theorem 3·2·5 of

van der Vaart & Wellner (1996). The choice of ν = 1/(1 + 2r) yields the rate of convergence

of r/(1 + 2r) which completes the proof.
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Figure 1. The four estimators of the mean function (Λ0(t) = 2t) with panel count data generated from the Poisson process.
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Figure 2. The four estimators of the mean function (Λ0(t) = 2t) with panel count data generated from the mixed Poisson

process.
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Table 1: Monte-Carlo bias, standard deviation, and mean square error based on 1000 repeated samples for
data generated from the Poisson process with sample size 100.

Standard Deviation Bias Square Root of MSE
Time Λ0(t) a b c d a b c d a b c d
1·5 3·0 0·452 0·397 0·305 0·231 -0·060 -0·048 -0·005 -0·006 0·456 0·400 0·305 0·231
2·0 4·0 0·526 0·417 0·334 0·262 -0·071 -0·038 -0·021 -0·016 0·531 0·419 0·335 0·262
2·5 5·0 0·570 0·452 0·338 0·270 -0·041 -0·022 -0·015 -0·012 0·571 0·453 0·338 0·270
3·0 6·0 0·623 0·461 0·396 0·299 -0·048 -0·022 -0·001 -0·003 0·625 0·462 0·396 0·299
3·5 7·0 0·656 0·480 0·427 0·321 -0·051 -0·035 0·010 0·001 0·658 0·481 0·427 0·321
4·0 8·0 0·688 0·474 0·424 0·323 -0·073 -0·049 0·009 -0·002 0·691 0·476 0·424 0·323
4·5 9·0 0·725 0·504 0·473 0·341 -0·074 -0·035 0·001 -0·007 0·728 0·505 0·473 0·341
5·0 10·0 0·730 0·516 0·522 0·365 -0·042 -0·017 -0·008 -0·012 0·732 0·516 0·522 0·365
5·5 11·0 0·786 0·526 0·521 0·371 -0·020 -0·055 -0·013 -0·012 0·786 0·529 0·521 0·372
6·0 12·0 0·812 0·542 0·553 0·386 -0·071 -0·055 -0·012 -0·009 0·815 0·544 0·553 0·386
6·5 13·0 0·826 0·545 0·610 0·411 -0·070 -0·035 -0·005 -0·006 0·829 0·546 0·617 0·411
7·0 14·0 0·829 0·559 0·599 0·420 -0·046 -0·047 0·007 -0·007 0·831 0·561 0·599 0·420
7·5 15·0 0·835 0·562 0·580 0·430 -0·066 -0·031 0·011 -0·010 0·838 0·562 0·580 0·430
8·0 16·0 0·846 0·575 0·632 0·453 -0·063 -0·059 -0·007 -0·016 0·849 0·578 0·632 0·454
8·5 17·0 0·902 0·609 0·674 0·466 -0·058 -0·078 -0·054 -0·024 0·903 0·614 0·677 0·466
9·0 18·0 0·933 0·622 0·719 0·504 -0·065 -0·073 -0·009 -0·025 0·935 0·627 0·725 0·504
9·5 19·0 1·047 0·662 0·807 0·550 -0·001 -0·064 -0·019 -0·015 1·047 0·665 0·807 0·550

a: Nonparametric pseudolikelihood estimator.

b: Nonparametric likelihood estimator.

c: Spline pseudolikelihood estimator.

d: Spline likelihood estimator.
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Table 2: Monte-Carlo bias, standard deviation, and mean square error based on 1000 repeated samples for
data generated from the Poisson process with sample size 200.

Standard Deviation Bias Square Root of MSE
Time Λ0(t) a b c d a b c d a b c d
1·5 3·0 0·388 0·314 0·232 0·182 -0·033 -0·024 -0·008 -0·009 0·389 0·315 0·232 0·182
2·0 4·0 0·435 0·340 0·240 0·190 -0·041 0·001 -0·006 -0·005 0·437 0·340 0·241 0·190
2·5 5·0 0·470 0·350 0·291 0·212 -0·022 -0·013 0·006 0·005 0·471 0·351 0·291 0·212
3·0 6·0 0·477 0·352 0·311 0·226 -0·017 -0·002 0·020 0·013 0·477 0·352 0·312 0·226
3·5 7·0 0·523 0·375 0·323 0·228 -0·012 0·026 0·025 0·014 0·523 0·376 0·324 0·228
4·0 8·0 0·541 0·370 0·361 0·244 -0·002 0·008 0·021 0·013 0·541 0·370 0·362 0·244
4·5 9·0 0·541 0·384 0·364 0·254 -0·017 -0·001 0·012 0·011 0·542 0·384 0·364 0·255
5·0 10·0 0·587 0·404 0·372 0·261 -0·027 0·003 0·005 0·012 0·588 0·404 0·372 0·261
5·5 11·0 0·589 0·410 0·414 0·278 -0·004 0·007 0·004 0·013 0·590 0·410 0·414 0·278
6·0 12·0 0·625 0·422 0·419 0·286 -0·001 0·012 0·011 0·013 0·625 0·422 0·419 0·287
6·5 13·0 0·606 0·435 0·406 0·290 0·018 0·019 0·022 0·012 0·606 0·435 0·406 0·290
7·0 14·0 0·647 0·446 0·447 0·307 0·024 0·017 0·029 0·011 0·647 0·446 0·448 0·307
7·5 15·0 0·672 0·459 0·460 0·317 -0·001 0·016 0·024 0·012 0·672 0·460 0·460 0·317
8·0 16·0 0·677 0·480 0·471 0·334 -0·034 0·009 0·005 0·016 0·678 0·480 0·471 0·334
8·5 17·0 0·725 0·491 0·526 0·358 -0·056 0·015 -0·029 0·017 0·728 0·492 0·526 0·358
9·0 18·0 0·716 0·498 0·536 0·367 -0·066 -0·005 -0·068 0·008 0·719 0·498 0·541 0·367
9·5 19·0 0·784 0·535 0·585 0·396 0·003 -0·015 -0·020 -0·001 0·784 0·535 0·586 0·396

a: Nonparametric pseudolikelihood estimator.

b: Nonparametric likelihood estimator.

c: Spline pseudolikelihood estimator.

d: Spline likelihood estimator.

21



Table 3: Monte-Carlo bias, standard deviation and mean square error based on 1000 repeated samples for
data generated from the mixed Poisson process with sample size 100.

Standard Deviation Bias Square Root of MSE
Time Λ0(t) a b c d a b c d a b c d
1·5 3·0 0·483 0·418 0·307 0·243 -0·054 -0·029 0·005 0·007 0·487 0·419 0·307 0·243
2·0 4·0 0·540 0·456 0·348 0·276 -0·057 -0·027 -0·012 -0·007 0·543 0·457 0·348 0·276
2·5 5·0 0·606 0·467 0·373 0·284 -0·095 -0·032 -0·010 -0·009 0·613 0·468 0·373 0·285
3·0 6·0 0·642 0·495 0·447 0·311 -0·064 -0·023 -0·005 -0·005 0·645 0·496 0·447 0·311
3·5 7·0 0·702 0·527 0·482 0·336 -0·062 -0·033 -0·009 -0·004 0·704 0·528 0·482 0·336
4·0 8·0 0·737 0·565 0·471 0·346 -0·073 -0·013 -0·024 -0·005 0·741 0·565 0·472 0·346
4·5 9·0 0·743 0·597 0·512 0·369 -0·103 -0·047 -0·040 -0·007 0·750 0·599 0·513 0·369
5·0 10·0 0·784 0·630 0·558 0·397 -0·123 -0·009 -0·044 -0·007 0·793 0·630 0·560 0·397
5·5 11·0 0·845 0·651 0·554 0·411 -0·098 -0·006 -0·033 -0·004 0·851 0·651 0·555 0·411
6·0 12·0 0·875 0·685 0·592 0·434 -0·075 -0·019 -0·010 -0·001 0·878 0·685 0·592 0·434
6·5 13·0 0·907 0·688 0·664 0·464 -0·037 -0·001 0·012 0·002 0·908 0·688 0·664 0·464
7·0 14·0 0·915 0·701 0·667 0·474 -0·050 -0·029 0·025 0·004 0·916 0·702 0·667 0·474
7·5 15·0 0·943 0·722 0·659 0·490 -0·022 -0·007 0·017 0·004 0·943 0·722 0·660 0·490
8·0 16·0 0·971 0·746 0·714 0·524 -0·066 -0·032 -0·014 -0·001 0·974 0·747 0·714 0·524
8·5 17·0 1·002 0·744 0·761 0·549 -0·056 -0·036 -0·070 -0·010 1·004 0·745 0·764 0·549
9·0 18·0 1·023 0·772 0·828 0·589 -0·077 -0·050 -0·104 -0·017 1·026 0·773 0·834 0·590
9·5 19·0 1·256 0·810 0·950 0·627 0·037 -0·033 -0·001 0·001 1·257 0·811 0·950 0·627

a: Nonparametric pseudolikelihood estimator.

b: Nonparametric likelihood estimator.

c: Spline pseudolikelihood estimator.

d: Spline likelihood estimator.
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Table 4: Monte-Carlo bias, standard deviation and mean square error based on 1000 repeated samples for
data generated from the mixed Poisson process with sample size 200.

Standard Deviation Bias Square Root of MSE
Time Λ0(t) a b c d a b c d a b c d
1·5 3·0 0·386 0·311 0·241 0·179 -0·024 -0·010 0·010 0·006 0·386 0·311 0·241 0·179
2·0 4·0 0·433 0·319 0·239 0·183 -0·019 0·003 0·016 0·009 0·434 0·319 0·240 0·183
2·5 5·0 0·463 0·342 0·284 0·204 -0·004 -0·001 0·024 0·012 0·463 0·342 0·285 0·204
3·0 6·0 0·512 0·371 0·307 0·222 -0·024 -0·005 0·022 0·011 0·513 0·371 0·309 0·223
3·5 7·0 0·519 0·366 0·320 0·231 -0·001 0·007 0·015 0·009 0·519 0·366 0·321 0·231
4·0 8·0 0·546 0·394 0·367 0·248 -0·027 0·010 0·011 0·010 0·547 0·394 0·367 0·249
4·5 9·0 0·581 0·422 0·393 0·260 -0·002 0·025 0·014 0·016 0·581 0·422 0·393 0·261
5·0 10·0 0·619 0·408 0·412 0·272 -0·029 0·026 0·017 0·020 0·619 0·409 0·412 0·273
5·5 11·0 0·648 0·446 0·448 0·291 -0·028 -0·004 0·013 0·020 0·649 0·446 0·448 0·292
6·0 12·0 0·657 0·442 0·460 0·303 -0·012 0·021 0·005 0·017 0·658 0·443 0·460 0·304
6·5 13·0 0·684 0·464 0·460 0·310 -0·023 0·009 0·006 0·014 0·684 0·464 0·460 0·310
7·0 14·0 0·710 0·492 0·500 0·329 -0·019 0·019 0·019 0·014 0·710 0·492 0·501 0·329
7·5 15·0 0·731 0·512 0·508 0·344 -0·001 0·020 0·040 0·016 0·731 0·513 0·509 0·345
8·0 16·0 0·774 0·516 0·517 0·359 0·023 0·024 0·052 0·022 0·774 0·516 0·520 0·360
8·5 17·0 0·758 0·546 0·581 0·382 0·018 0·024 0·034 0·028 0·759 0·546 0·582 0·383
9·0 18·0 0·794 0·559 0·613 0·408 0·022 0·036 -0·016 0·031 0·794 0·560 0·613 0·409
9·5 19·0 0·885 0·610 0·693 0·446 0·026 0·013 0·010 0·033 0·885 0·610 0·693 0·447

a: Nonparametric pseudolikelihood estimator.

b: Nonparametric likelihood estimator.

c: Spline pseudolikelihood estimator.

d: Spline likelihood estimator.
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Table 5: Comparison of computing time in seconds among the nonparametric estimators and spline estimators
of the mean function, based on the data generated from the Poisson process or mixed Poisson process with
sample size 100 or 200.

Poisson Process Mixed Poisson Process
Estimators n = 100 n = 200 n =100 n = 200
a 0.24 0.66 0.23 0.61
b 60.34 172.15 58.92 168.43
c 2.33 4.90 2.24 5.07
d 4.67 11.41 4.59 12.52

a: Nonparametric pseudolikelihood estimator.

b: Nonparametric likelihood estimator.

c: Spline pseudolikelihood estimator.

d: Spline likelihood estimator.
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Figure 3. Nonparametric and spline pseudolikelihood estimations of the mean functions for control group
and thiotepa group with the bladder tumour data.
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Figure 4. Nonparametric and spline likelihood estimations of the mean functions for control group and
thiotepa group with the bladder tumour data.
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