
Estimation of the Neutrality Index

Nina Stoletzki1 and Adam Eyre-Walker*,1

1Centre for the Study of Evolution, School of Life Sciences, University of Sussex, Brighton, United Kingdom

*Corresponding author: E-mail: a.c.eyre-walker@sussex.ac.uk.

Associate editor: Dan Graur

Abstract

The McDonald–Kreitman (MK) test is a simple and widely used test of selection in which the numbers of nonsilent and
silent substitutions (Dn and Ds) are compared with the numbers of nonsilent and silent polymorphisms (Pn and Ps). The
neutrality index (NI 5 DsPn/DnPs), the odds ratio (OR) of the MK table, measures the direction and degree of departure
from neutral evolution. The mean of NI values across genes is often taken to summarize patterns of selection in a species.
Here, we show that this leads to statistical bias in both simulated and real data to the extent that species, which show
a pattern of adaptive evolution, can apparently be subject to weak purifying selection and vice versa. We show that this
bias can be removed by using a variant of the Cochran—Mantel–Haenszel procedure for estimating a weighted average
OR. We also show that several point estimators of NI are statistically biased even when cutoff values are employed. We
therefore suggest that a new statistic be used to study patterns of selection when data are sparse, the direction of selection:
DoS 5 Dn/(Dn þ Ds) � Pn/(Pn þ Ps).
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Introduction
Understanding the nature of natural selection on DNA
sequences is one of the central goals of molecular evolu-
tion. The McDonald–Kreitman (MK) test of selection
(McDonald and Kreitman 1991) compares the numbers
of nonsilent (Pn) and silent (Ps) polymorphisms to the
numbers of nonsilent (Dn) and silent (Ds) substitutions
per locus. When silent and nonsilent substitutions are in-
terspersed, and therefore share a common genealogy or
genealogies and sampling scheme, one may perform a sim-
ple test of independence on the 2 � 2 contingency table
to test for a deviation from neutrality. Under strict neu-
trality, where mutations are either strongly deleterious or
neutral, we expect the two ratios, Pn/Ps and Dn/Ds to be
the same. The direction and degree of departure from
neutrality can then be quantified using the neutrality in-
dex (NI; Rand and Kann 1996), the odds ratio (OR) of the
MK contingency table. NI is defined as (Pn/Ps)/(Dn/Ds),
however, the inverse of the NI has also been used (e.g.,
Tachida 2000; Presgraves 2005). Under the assumption
that silent mutations are neutral, NI . 1 indicates an ex-
cess of amino acid polymorphisms (as expected when
there are slightly deleterious mutations), and NI , 1
indicates an excess of nonsilent divergence (as expected
under positive selection). Typically, the MK test is applied
to protein-coding data, but it can be applied to any two
categories of sites that are interspersed, such as protein
and nonprotein-binding sites in a regulatory element
(e.g., Jenkins et al. 1995).

There are, however, problems with using ORs such as NI:
First, being a ratio of two ratios, NI tends to be biased and
to have a large variance, especially when numbers of obser-
vations are small. Additionally, NI is undefined when either
Dn or Ps is 0. A mean NI estimate is often obtained by

averaging NI after the exclusion of genes for which NI is
undefined or after removing genes that do not have suffi-
cient numbers of substitutions or polymorphisms (see, e.g.,
Bazin et al. 2006; Meiklejohn et al. 2007; Hughes et al. 2008).
Such an average will be biased, and the loss of genes can be
severe; for example, in a recent analysis of NI values in bac-
teria, Hughes et al. (2008) had to exclude one-third of all
genes due to undefined NI values. Here, we demonstrate
the biases that can arise in the estimation of NI in both
real and simulated data.

Materials and Methods

Data
We analyzed Dn, Ds, Pn, and Ps values from a number of
studies: 1) 115 genes for which we have polymorphism
data from Drosophila simulans and divergence between
D. simulans and D. yakuba (Welch 2006), 2) 98 genes
for which we have polymorphism data from D. melanogaster
and divergence from the ancestor of D. melanogaster–
D. simulans to D. melanogaster (Presgraves 2005), 3) 410
genes for which we have polymorphism data from both
Escherichia coli and Salmonella enterica and divergence
between the two species (Charlesworth and Eyre-Walker
2006), and 4) 11,624 genes for which we have polymor-
phism data from humans and divergence between humans
and chimpanzees (Bustamante et al. 2005).

Simulations
To investigate the effect of complete linkage on the bias in
estimates of the NI, that is, when there is no recombination,
we randomly generated the total length of a genealogy by
sampling from a set of exponential distributions; that is, the
time for m branches to coalesce to m � 1 branches is
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exponentially distributed with a mean of h/(m(m � 1),
where h is a constant. If we scale our trees so the average
total length is 1, then if the total length of a randomly
generated tree is k, the number of nonsynonymous and
synonymous polymorphisms are Poisson distribution with
means of kE(Pn) and kE(Ps), respectively.

Results and Discussion

Summary Estimators
The bias that can arise by simply averaging NI values, after
excluding undefined values, is illustrated in table 1.
Here, each pair of MK tables shares the same NI value,
NITrue 5 E(Ds) E(Pn)/(E(Dn) E(Ps)), where E(x) refers to
the expected value of x (i.e., the mean value for a sample
of infinite size). If we assume free recombination and no
epistasis, then Ps, Ds, Pn, and Dn are independently and Pois-
son distributed and we can calculate the expected value
of NI excluding cases in which NI is undefined, NIsimple

as follows:

E½NIsimple�5 E½Ds�E½Pn�
PN

x5 1 Zðx; E½Dn�Þ1=x
PN

x5 1 Zðx; E½Dn�Þ
PN

x5 1 Zðx; E½Ps�Þ1=x
PN

x5 1 Zðx; E½Ps�Þ
;

ð1Þ

where

Zðx; lÞ5 e� llx

x!

is the Poisson distribution. Note that the denominators in
equation (1) can be simplified to 1 � e�E½Dn� and
1 � e�E½Ps�, respectively.

We find that NIsimple is substantially above or below
NITrue due to the exclusion of genes and small sample bias.
There is sufficient bias in these examples for the left-hand
tables to indicate positive selection, whereas the right-hand
tables indicate negative selection. This means that two
species subject to the same levels of positive and negative
selection can have different mean NI values simply because
one species has more or less polymorphism or substi-

tution data per gene than the other. Such a bias is clearly
undesirable.

The bias in NIsimple arises from two sources: first, the ex-
clusion of genes where NI is undefined and second, from
a tendency for the average value of a ratio to overestimate
the true value (even when the denominator is relatively
large). The two sources of bias can also be illustrated as
follows (table 1). We can estimate the expected value of
NI for the restricted set of genes that have a defined NI,
NIR, estimated as E[Ds] E[Pn]/(E[Dn] E[Ps]), when Dn .

0 and Ps . 0. NIR is considerably below the true NI for
all genes, illustrating that excluding genes with undefined
NI tends to reduce the estimate of NI. This is because ex-
cluding genes with either undefined Ds/Dn or with unde-
fined Pn/Ps excludes potentially large NI values. However,
NIsimple is greater than NIR in each case, illustrating that
even for genes for which NI is defined, NIsimple tends to
be an overestimate due to the skew in the distribution
of a ratio.

The bias can be more formally quantified as follows. NI is
the product of two independent ratios, and if we assume
free recombination, the numerator and denominator are
independent of each other. We therefore need only con-
sider the bias inherent in the estimation of 1/x to under-
stand the biases in NI. This can be calculated as follows. The
expected value of a statistic subject to a cutoff value z,
below which values are excluded, is

E½fðxÞ�5
PN

x5 z Zðx; E½Dn�ÞfðxÞPN
x5 z Zðx; E½Dn�Þ

ð2Þ

from which the bias can be quantified as follows:

B5
E½fðxÞ�
fðE½x�Þ :

In the case of 1/x this means setting z 5 1 and dividing
the expected value of 1/x by 1/E[x]. This is plotted against
E[x] in figure 1. When E[x] is small, E[1/x] underestimates
1/E[x] due to the loss of cases when x 5 0 and 1/x is unde-
fined. However, E[1/x] increases and becomes greater than
1/E[x] for large E[x] due to the skew in the distribution of

Table 1. Example MK Tables. Tables Contain the Expected Numbers of Dn, Ds, Pn, and Ps. The Mean of NITG Is Given with the Standard Error;
These Were Obtained by Generating 100 Data Sets of 100 Contingency Tables Using the Expected Numbers. The NITG Value in Parentheses Is
for Simulations in Which the NI Is Lognormally Distributed with a Variance Parameter of One.

NITrue 5 1
(a) Polymorphism Divergence NIsimple 5 0.83 (b) Polymorphism Divergence NIsimple 51.53
Silent 2 1 NIR 5 0.55 Silent 4 4 NIR 5 0.85
Nonsilent 1 1 NITG 5 1.00 6 0.01 Nonsilent 2 2 NITG 5 0.98 6 0.02

(NITG 5 1.06 6 0.03) (NITG 5 1.03 6 0.02)
NITrue 51.5
(c) Polymorphism Divergence NIsimple 5 0.88 (d) Polymorphism Divergence NIsimple 5 2.49
Silent 1 1.5 NIR 5 0.60 Silent 5 7.5 NIR 5 1.48
Nonsilent 1 1 NITG 5 1.53 6 0.04 Nonsilent 5 5 NITG 5 1.51 6 0.01

(NITG 5 1.48 6 0.04) (NITG 5 1.51 6 0.02)
NITrue 5 0.75
(e) Polymorphism Divergence NIsimple 5 0.44 (f) Polymorphism Divergence NIsimple 5 1.30
Silent 1 0.75 NIR 5 0.30 Silent 4 3 NIR 5 0.72
Nonsilent 1 1 NITG 5 0.77 6 0.02 Nonsilent 4 4 NITG 5 0.73 6 0.01

(NITG 5 0.79 6 0.03) (NITG 5 0.78 6 0.01)
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1/x; so 1/x is on average an overestimate of 1/E[x] even with
very large sample sizes.

The above results were obtained assuming free recom-
bination but remain qualitatively unaffected if there is
complete linkage. With no recombination, the distribu-
tions of Pn and Ps become complex because they depend
both upon the sampling variance, due to the fact we have
sampled of sequences of finite length, and the variance due
to the coalescence; however, this latter source of variation
covaries between Pn and Ps (i.e., they share the same gene-
alogy) with the effect that this becomes largely irrelevant
(results not shown).

The problem of estimating an OR and potential ap-
proaches to deal with them has received much attention
in the statistical literature (see, e.g., Cochran 1954; Haldane
1956; Mantel and Haenszel 1959; Jewell 1984, 1986). It is not
appropriate to simply sum contingency tables because of
Simpson’s paradox (Simpson 1951); summing two contin-
gency tables with the same OR can yield a contingency ta-
ble with a different OR (see, e.g., Shapiro et al. 2007). A
popular method of obtaining the mean OR is to use the
Mantel and Haenszel (1959) procedure, which is a particular
instance of a general method suggested by Cochran (1954;
henceforth, the Cochran-Mantel-Haenszel [CMH] proce-
dure) in which a weighted average OR is computed. The clas-
sic CMH procedure has previously been applied to the
summary of MK tables (Bartolomé et al. 2005; Maside
and Charlesworth 2007). However, Greenland (1982) has
pointed out that the CMH method may yield a biased
estimate of the OR when there is heterogeneity in the
OR between the tables being combined. Because we might
reasonably expect NI to vary between genes—either because
they have different proportions of slightly deleterious muta-
tions or advantageous substitutions—we need an estimator
that takes the heterogeneity into account. It is important
to note that tests of heterogeneity in the OR are generally
weak (Jones et al. 1989; O’Gorman et al. 1990). Consequently,
ORs may still be heterogeneous, even if no significant het-
erogeneity is detected, and the CMH estimate of the OR may
therefore be biased. Fortunately, a very simple variant of the

CMH method yields an unbiased estimate of the mean NI,
when there is heterogeneity, under most conditions (Tarone
1981; Greenland 1982):

NITG 5

P
DsiPni=ðPsi þ DsiÞP
PsiDni=ðPsi þ DsiÞ

; ð3Þ

where the index refers to ith gene. To illustrate the power of
this estimator to overcome the biases inherent in simply av-
eraging NI values, we generated 100 data sets of 100 contin-
gency tables based on the expected values for Ps, Ds, Pn, and
Dn for each of the cases in table 1. NITG is almost exactly
equal to and not significantly different to NITrue. This is even
the case if we simulate data in which NI varies substantially
between genes; for the examples in table 1, we allowed NI to
be lognormally distributed with a variance parameter of one;
this means that the 5% of genes with the lowest NI have at
least a 30-fold lower NI than the 5% of genes with the highest
NI. The results from these simulations are given in table 1
and show that NITG is almost completely unbiased even with
very substantial variation in NI. Any residual bias can be re-
moved by increasing the sample size of genes (results not
shown).

In common with other CMH type estimators, NITG is
expected to give an unbiased estimate of NI even if there
is very little data for each gene, so long as the overall sam-
ple size is substantial (the sum of Dn, Ds, Pn, and Ps is of
the order of 100s), and there are no systematic (i.e., not
due to sampling error) correlations between NI and any
of the cells within the MK table. However, if there are
systematic correlations NITG will be biased; for example,
NITG will be biased toward the NI of genes with many
synonymous polymorphisms if there is a positive corre-
lation between NITrue and E[Ps]. There is unfortunately no
obvious solution to this problem but it is unlikely to be
a major problem because NITrue and E[Ps] are not generally
correlated (T. Gossman and A. Eyre-Walker, unpublished
results).

To investigate the bias of NI in real data, we took published
data sets of Dn, Ds, Pn, and Ps from Drosophila (Presgraves
2005; Welch 2006), enteric bacteria (Charlesworth and
Eyre-Walker 2006), and hominids (Bustamante et al.
2005). Because we do not know NITrue, we estimate it using
NITG. However, NITG can be biased if there is insufficient data
across all genes. To investigate whether there is sufficient
data, we divided each data set into four groups, estimated
NITG for each and then calculated the mean. We repeated
this 1,000 times. We find that mean NITG for the subsamples
are similar to NITG for the whole data set (Drosophila-
Presgraves NITG 5 0.833, mean NITG(subsample) 5 0.905;
Drosophila-Welch NITG 50.601, mean NITG(subsample) 5

0.614; E. coli NITG 5 0.826, mean NITG(subsample) 5 0.827;
S. enterica NITG 5 1.609, mean NITG(subsample) 5 1.615;
and humans NITG 51.594, mean NITG(subsample) 5 1.596). This
suggests that the sample size is sufficient and NITG is likely to
be an unbiased estimate ofNITrue.

As expected, the mean of NI across genes, excluding
those with undefined values, NIsimple, is larger than NITG

(table 2). This overestimate can be substantial and may
be misleading (table 2). In both E. coli and Drosophila, NITG
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FIG. 1. The bias associated with NIsimple. Figure shows E[1/x]/(1/E[x])
as a function of E[x] for different cutoff values, z, below which cases
are excluded; from left to right z 5 1, 2, and 5. The straight line
indicates the situation of no bias.
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indicates adaptive evolution, as others have inferred before
(Charlesworth and Eyre-Walker 2006; Welch 2006), while
taking the simple average of NI, excluding undefined NI val-
ues, suggests slightly deleterious mutations dominate in E.
coli and one of the Drosophila data sets; the other Drosoph-
ila data set shows a neutral pattern. In the Salmonella and
hominid data sets, NIsimple is qualitatively similar to NITG

but it is much larger in value.

Adaptive Evolution
It is possible to estimate the proportion of nonsynonymous
substitutions that are adaptive, a, as 1-NI (Charlesworth
1993; Fay et al. 2001; Smith and Eyre-Walker 2002). Using
NITG to estimate a has the advantage over the method of
Fay et al. (2001) of avoiding Simpson’s paradox and advan-
tages over the maximum likelihood (ML) methods of
Bierne and Eyre-Walker (2004) and Welch (2006) because
it is much faster to compute; the rapid computation makes
it practical for analyzing the large data sets now available.
Confidence intervals and standard errors can be estimated
using bootstrapping, which makes no assumptions about
the underlying distributions of Dn, Ds, Pn, and Ps.

For comparison, we estimated NI, using the ML method
of Bierne and Eyre-Walker (2004) to estimate a, NIBEW

(table 2), and using the method of Fay et al. (2001; NIFWW)
in which the values of Dn, Ds, Pn, and Ps are summed across
genes. As expected the ML estimate of NI is very similar to
NITG. Although contingency tables should generally not be
summed because the sum of two tables with the same OR
can yield a table with a different OR (Simpson 1951; see also
Shapiro et al. 2007), the method of Fay et al. (2001) yields
qualitatively similar answers for real data to NITG and NIBEW

(table 2).

Heterogeneity
An added advantage of the CMH framework is the ability to
test for heterogeneity in NI using Woolf’s test for homoge-
neity of log ORs (Woolf 1955; Selvin 2004). Although
Woolf’s test does make assumptions about the distribu-
tions of variables in the MK table. Interestingly, when
we apply Woolf’s test of heterogeneity (as in Sokal and
Rohlf 1995 with a continuity correction) to the data sets
that we have analyzed, we detect significant heterogeneity

in the D. simulans–D. yakuba data set. For the other data
sets used in this study, no significant heterogeneity can be
detected; this is perhaps not surprising because tests of het-
erogeneity have little power, particularly when data are
sparse, and the other data sets generally have fewer obser-
vations per gene (Jones et al. 1989; O’Gorman et al. 1990;
Paul and Donner 1992). The presence of significant hetero-
geneity in the D. simulans–D. yakuba data set is surprising
given that Welch (2006) has previously tested this same
data set for heterogeneity in a, the proportion of adaptive
nonsynonymous substitutions. Because a 5 1 � NI, this
amounts to a test of heterogeneity in NI. The difference
may be because Welch (2006) used a ML method to esti-
mate a and constrained a to be positive (i.e., NI , 1) in
testing for heterogeneity. Alternatively, the lack of power
in the ML method may be due to the number of param-
eters that have to be estimated.

Point Estimators
NITG allows one to estimate an average NI estimate across
genes; however, sometimes a point estimate of the NI may
be needed; for example, if one is interested in correlates of
NI, such as the rate of recombination. Clearly, NIsimple is not
an appropriate statistic because it is biased when Dn and Ps

are small. It may therefore be tempting to set a cutoff value
and only consider those contingency tables with larger val-
ues. Yet, this does not remove the bias; the bias changes
and shifts to higher expected values of the variables subject
to the cutoff (fig. 1). This occurs for the following reason.
Imagine that we have a gene for which the expected value
of Ps is 5 (i.e., if we were to sample this gene repeatedly over
a long period of time, the mean value of Ps would be 5). If
we apply a cutoff of 5, many times the gene will have an
observed value of Ps that is lower than 5 and hence be ex-
cluded from the analysis; only when the observed value is
greater or equal to 5 will the gene be included, but this will
lead to low NI values on average because we are only con-
sidering cases for this gene when Ps is relatively large.

Several modifications have been proposed to reduce the
bias in the estimation of the OR either on the log or on the
original scale; two examples are Jewell’s estimator of the OR
(Jewell 1986) and Haldane’s estimator of the log OR
(Haldane 1956). For NI, these become, respectively

Table 2. Estimates of Mean NI for Real Data Sets.

Polymorphism Divergence
Number of
Genes

Number of
Genes with
Defined NI Mean Dn Mean Ds Mean Pn Mean Ps NITG NIsimple NIBEW NIFWW Reference

Drosophila
simulans D. yakuba 115 100 32 64 3.8 15 0.60 0.96 0.59 0.51 Welch (2006)

D. melanogaster Ancestora 98 62 4.7 9.2 3.1 8.7 0.83 2.03 0.97 0.71 Presgraves (2005)
Escherichia coli Salmonella

enterica
410 394 16 210 2.0 32 0.83 2.01 0.82 0.85 Charlesworth and

Eyre-Walker (2006)
S. enterica E. coli 410 386 16 210 2.0 17 1.59 4.11 1.62 1.63 Charlesworth and

Eyre-Walker (2006)
Human Chimpanzee 11,624 4,389 1.8 2.9 1.2 1.4 1.59 1.82 b 1.51 Bustamante

et al. (2005)

a Ancestor of D. melanogaster and D. simulans.
b NIBEW failed to converge for the hominid data set.
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NIJewell 5
DsPn

ðDn þ 1ÞðPs þ 1Þ ð4Þ

and

LNIHaldane 5 Logð ð2Ds þ 1Þð2Pn þ 1Þ
ð2Dn þ 1Þð2Ps þ 1Þ Þ: ð5Þ

A variant of Haldane’s estimator has also been employed
in which one is added to each cell in the 2 � 2 contingency
table: that is,

LNILaplace 5 Logð ðDs þ 1ÞðPn þ 1Þ
ðDn þ 1ÞðPs þ 1Þ Þ ð6Þ

(Presgraves 2005; Li et al. 2008; Slotte et al. 2010); because the
addition of one is a Laplace correction (see also Presgraves
2005), we refer to this as LNILaplace. All three statistics have
the advantage that no gene will be excluded because of un-
defined values, and LNIHaldane and LNILaplace have the added
advantage that they are symmetrical in the sense that genes
with NI 5 0.5 and NI 5 2 are equidistant from NI 5 1 when
logs are taken.

However, all these point estimators of the NI are ex-
pected to be biased when there is little data. If we assume
free recombination and no epistasis, then the sampling er-
rors of Ps, Ds, Pn, and Dn are independent and hence to
understand the biases in NIJewell, we only need consider
the bias associated with 1/(Dn þ 1) and 1/(Ps þ 1) and
hence 1/(x þ 1). The bias can be calculated using equation
(2). The expected value of 1/(x þ 1) is an underestimate of
the true value, 1/E[x], until x . 4 after which it becomes
essentially unbiased (fig. 2). However, just as with 1/x (fig.
1), excluding cases of x below a certain cutoff does not help
the bias in 1/(x þ 1); the bias simply shifts to higher ex-
pected values of x (fig. 2).

The biases in LNIHaldane and LNILaplace are less easy to
quantify because no single term can be singled out for anal-
ysis; the bias depends upon all the cells in the contingency
table simultaneously. Therefore, to investigate the matter

further, we simulated data under realistic parameter values
using the mean values of Dn, Ds, Pn, and Ps from each of the
data sets analyzed in table 2. For all genes, we assumed that
the expected values of Dn and Ds were equal to the average
values of Dn and Ds, but that the expected values of Pn and
Ps were equal to average values of Pn and Ps multiplied by
factor 2x, where x varied between �3 and 3; thus, each sim-
ulated gene had the same expected value of Log(NI) but
different levels of polymorphism, which varied between
8-fold lower and 8-fold higher than the mean to estimate
Log(NI). For each combination of expected values of Dn, Ds,
Pn, and Ps, we generated 1,000 simulated genes assuming
Dn, Ds, Pn, and Ps were Poisson distributed and calculated
Log(NI) according to equations (4 and 5).

For all cases, we found that Log(NI), as estimated by
LNIHaldane and LNILaplace, was a biased estimate of Log(NI)
and that the bias depended on the level of polymorphism.
For most data sets, except the hominids, Log(NI) was over-
estimated and this bias decreased as polymorphism levels
increased; typically, polymorphisms needed to be between
4- and 8-fold higher than the mean levels to obtain an
unbiased estimate (fig. 3a). In hominids Log(NI) was
initially overestimated and then underestimated as the
level of polymorphism increased (fig. 3b). In both cases,
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FIG. 3. The bias associated with LNIHaldane, LNILaplace, and DoS based
on the observed values of Dn, Ds, Pn, and Ps in (a) Drosophila using
polymorphism data from Drosophila melanogaster and the di-
vergence between D. melanogaster and the ancestor of that species
and D. simulans and (b) hominids using the polymorphism data
from humans and the divergence between humans and chimpan-
zees. Lines from short dashes to long are: LNIHaldane, LNILaplace, and
DoS. Also illustrated by solid lines are the true values of Log(NI) and
DoS.

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

E[x]

sai
B

FIG. 2. The bias associated with NIJewell. Figure shows E[1/(x þ 1)]/
(1/E[x]) as a function of E[x] for different cutoff values, z, below
which cases are excluded; from left to right z 5 0, 1, 2, and 5. The
straight line indicates the situation of no bias.
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the estimate of Log(NI) was negatively correlated to the
level of polymorphism. Typically, LNIHaldane performed
slightly better than LNILaplace.

The fact that point estimates of NI or Log(NI) are biased,
with a bias that depends upon sample size, suggests that we
may have to use other statistics to investigate whether pat-
terns of selection vary between genes within a genome.
A possible solution is to use a statistic, which we call
the direction of selection (DoS):

DoS5
Dn

Dn þ Ds
� Pn

Pn þ Ps
: ð7Þ

This is the difference between the proportion of substitutions
and polymorphisms that are nonsynonymous. DoS measures
the direction and extent of selection; DoS is positive when there
is evidence of adaptive evolution, is zero if there is only neutral
evolution, and is negative when there are slightly deleterious
mutations segregating. It will be unbiased because it is the dif-
ference between two proportions. This lack of bias can be il-
lustrated by calculating the mean DoS for the simulated
data in table 1. In each case, DoS is unbiased, even though some
genes are excluded because there are either no polymorphisms
or substitutions (table 3). We also calculated the mean DoS for
the simulated data in figure 3; again DoS appears to show no
bias (fig. 3). However, it should be appreciated that DoS and NI
are not equal and so two genes can have the same NI value but
different DoS values and vice versa. DoS is calculated using the
numbers of nonsilent and silent substitutions and polymor-
phisms per gene; the statistic is biased if the numbers are cal-
culated per nonsynonymous (N) and synonymous (S) site,
respectively. As N and S do not cancel out for DoS, as they
do for NI, there might be some situations in which a correlation
between DoS and some other variable is caused by variation in
N/S across genes. However, whether variation in N/S matters
depends on how N and S are calculated and the cause of the
variation. In general, if the variation in N/S is caused by variation
in the pattern of mutation, then it may be responsible for a cor-
relation between DoS and some other variable.

To illustrate the use of DoS, let us reconsider the work of
Presgraves (2005). He showed that the log of the fixation

index, FI, where FI 5 1/NI, was positively correlated to
the rate of recombination when comparing the numbers
of nonsynonymous and synonymous substitutions along
the D. melanogaster lineage since D .melanogaster split from
D. simulans to numbers of nonsynonymous and synony-
mous polymorphisms in D. melanogaster for 98 genes. Pre-
sgraves was well aware of the potential biases in using
statistics such as NI, and used both Log(FI), and Log(FI) with
one added as a continuity correction to each cell to reduce
the biases. However, as figure 3 shows, Log(FI) is expected to
be positively correlated to overall levels of polymorphism
simply because of statistical bias. It is therefore possible that
the positive correlation between Log(FI) and recombination
is induced by a correlation between levels of diversity, and
hence Ps, and the rate of recombination (Begun and
Aquadro 1992; Begun et al. 2007), and a correlation between
the bias in Log(FI) and the level of diversity in the genes.
However, we find that DoS is positively correlated to recom-
bination rate using the same data (r 5 0.23, P 5 0.033)
(fig. 4); this correlation becomes much more significant if
we weight the DoS estimates by a quantity related to the
reciprocal of the variance of DoS, 1/(1/(Dn þ Ds) þ 1/
(Pn þ Ps)), giving more weight to genes with more informa-
tion (r5 0.41, P, 0.0001). This suggests that genes with high
rates of recombination tend to have more adaptive evolution
or a smaller proportion of slightly deleterious mutations.

It is sometimes of interest to determine whether the var-
iation that is observed in NI is largely a consequence of var-
iation in Dn/Ds or Pn/Ps (Presgraves 2005; Hughes et al.
2008). For example, Hughes et al. (2008) have shown that
bacteria, which have many genes with NI , 1, tend to show
an excess of genes with low Pn/Ps rather than high Dn/Ds.

Table 3. The Mean Value of DoS for Data Simulated Using the
Expected Values Given in Table 1.

True DoS Mean DoS (standarad error)

1a 0 20.001 (0.005)
1b 0 20.004 (0.003)
1c 20.1 20.100 (0.005)
1d 20.1 20.092 (0.005)
1e 0.07 0.077 (0.007)
1f 0.07 0.067 (0.003)

Table 4. Spearman Correlations Between NIsimple and Pn/Ps and between DoS and Pn/(Pn þ Ps).

Polymorphism Divergence
NIsimple versus

Pn/Ps

NIsimple1 versus
Pn2/Ps2

NIsimple1 versus
Pn1/Ps1

DoS1 versus
Pn2/(Pn2 1 Ps2)

DoS1 versus
Pn1/(Pn1 1 Ps1)

Drosophila simulans D. yakuba 0.75 0.36** 0.81 20.01 NS 20.38
D. melanogaster Ancestor 0.56 0.12 NS 0.52 0.15 NS 20.50
Escherichia coli Salmonella enterica 0.91 0.21** 0.95 20.04 NS 20.81
S. enterica E. coli 0.89 0.07 NS 0.95 20.07 NS 20.94
Human Chimpanzee 0.73 0.20** 0.84 0.01 NS 20.80

NOTE.—**P , 0.01; NS 5 not significant.

0.000 0.001 0.002 0.003 0.004 0.005

0.5

0.0

0.5
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Recombination rate

FIG. 4. The correlation between DoS and recombination rate in
Drosophila.
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They therefore argue that NI , 1 is not symptomatic of
adaptive evolution and that the MK framework for detect-
ing adaptive evolution is misleading. However, there is non-
independence between NI and Pn/Ps and Dn/Ds, which is
likely to set up correlations of the sort reported by Hughes
et al. (2008) just through sampling error; that is, error in the
estimate of Pn/Ps will induce a positive correlation between
NI and Pn/Ps. This is easily demonstrated using the data
from table 2: NIsimple is strongly correlated to Pn/Ps in all
data sets (table 4). The correlations would be judged to
be highly significant under the null hypothesis that the
two variables are independent, which they are not. How-
ever, we can remove the nonindependence by splitting
Pn and Ps into two independent halves by randomly resam-
pling them from a hypergeometric distribution (unfortu-
nately the data set of Hughes et al. is not available in
a form that allows this to be performed): That is, we ran-
domly distribute Ps between two bins without replacement
to yield Ps1 and Ps2 5 Ps � Ps1. Note that this is similar to the
method suggested by Piganeau and Eyre-Walker (2009),
who suggested sampling from a binomial distribution;
the binomial closely approximates the hypergeometric in
most instances, but the hypergeometric is the correct dis-
tribution to use. We then calculate NIsimple with one pair of
Pn and Ps values and Pn/Ps with the other: for example,
NIsimple1 5 Ds Pn1/(Dn Ps1) versus Pn2/Ps2. If we do this, then
the correlation between NIsimple and Pn/Ps becomes much
weaker for all data sets (table 4); furthermore, we can show
that this is not due to the decrease in the sample size be-
cause there is still a strong correlation between NIsimple1 and
Pn1/Ps1 (table 4). However, there is still a substantial corre-
lation between NIsimple1 and Pn2/Ps2 for some species. This
might be due to a statistical bias because genes with little
polymorphism will tend to show bias in both NIsimple and
Pn/Ps in the same direction or a genuine correlation be-
tween these two variables. To investigate this, we tested
whether DoS1 was correlated to Pn2/(Pn2 þ Ps2) and Pn1/
(Pn1 þ Ps1). There is no significant correlation to the former,
suggesting that any correlations between NIsimple1 and Pn2/
Ps2 are likely to be due to statistical bias. It is likewise pos-
sible to induce a negative correlation between Dn/Ds and NI.

Conclusion
Averaging NI values across genes and excluding genes from
the analysis can result in biased overall estimates and may
thus lead to incorrect inferences about the nature of selec-
tion. The solution is to use the weighted summary statistic
NITG that performs well whether NI is homogeneous or
heterogeneous across genes. There are occasions when
a point estimator of NI is required; for example, to test
whether NI is correlated with some other quantity. If
the numbers of substitutions and polymorphisms are suf-
ficient, we recommend LNIHaldane, when data are relatively
plentiful because of its relatively symmetrical distribution.
However, when data are sparse (i.e., any cell , 5), then we
suggest that patterns of selection be investigated using
DoS. We have implemented NITG, Woolf’s test of homoge-

neity and DoS, within the Distribution of Fitness Effects
(DoFE) package available at http://www.lifesci.susx.ac.uk/
home/Adam_Eyre-Walker/.
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