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Finite order autoregressive models for time series are often

used for prediction and other inferences. Given the order of the

model, the parameters of the models can be estimated by least

squares, maximum likelihood, or the Yule-Walker method. The

basic problem is estimating the order of the model. A number of

statisticians have examined this problem. The most recent and

widely accepted method was proposed by Akaike (1969, 1970, 1974),

which has been shown to give quite accurate estimates for simulated

data.

In this dissertation, the problem of autoregressive order esti-

mation is placed in a Bayesian framework. This is done with the

intent of illustrating how the Bayesian approach brings the numerous

aspects of the problem together into a coherent structure which is

both complementary to presently used methods and intuitively satisfy-

ing. A joint prior probability density is proposed for the order, the



partial autocorrelation coefficients and the variance, and the marginal

posterior probability distribution for the order, given the data, is

obtained. It is noted that the value with maximum posterior probabil-

ity is the Bayes estimate of the order with respect to a particular loss

function. The asymptotic posterior distribution of the order is also

given.

In conclusion, Wolfer's sunspot data as well as simulated data

corresponding to several autoregressive models are analyzed accord-

ing to Akaike's method and the Bayesian method proposed in this

dissertation. Both methods are observed to perform quite well,

although the Bayesian method was clearly superior in most cases.
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ESTIMATION OF THE ORDER OF AN AUTOREGRESSIVE
TIME SERIES--A BAYESIAN APPROACH

I. INTRODUCTION

1. The Autoregressive Model- -Preliminaries

An autoregressive process {xt} is a linear stochastic

process generated by a weighted sum of a finite number of the previ-

ous X's plus a random shock Et. The model for such a process

may be written:

Xt = µ + a
1(Xt- 1-p.)

+ a2 (Xt
- 2

) + + ap(X
t -p

-11) +
t

(1. 1. 1)

for t = 0, ±1, ±2, ,

where al, a
2

... a are the weight parameters, 11 is either

E(Xt) if the process is stationary or merely a reference point for the

level of the process if non-stationary, and
{Et}

is a white noise

sequence. That is, the et are uncorrelated random variables, each

with mean zero and finite variance o-
2. The process defined by

(1. 1. 1) is called an autoregressive process of order p. Such a

process will henceforth be called an AR(p) process. It will be

assumed that II = 0 in the following discussions.

A stochastic process is said to be stationary if its probability

structure is unaffected by a shift in the time origin. Stationary



AR(p) processes satisfy the difference equations

yk = al yk-1 + a2 yk-2 + + k > 0

2

(1. 1. 2)

where yk = E[XtXt+k] is the k-lag autocovariance. By dividing

(1. 1.2) by yo = E[Xt2 ], one has

pk = a
1
pk-1 + a2pk-2 + + appk-p, k > 0 (1. 1. 3)

where pk = ykiyo is the k-lag autocorrelation. By substituting

k = 1, 2, p into (1.1.3), one obtains a set of linear equations for

al' a2' ap in terms of pl, p 2,
..., p . These p equations

are usually referred to as the Yule-Walker equations:

PI a2PI
+... +

1-

+a + . . . + a
pP2 alP1

P p
a l p

p -1
a

2
p
p -2 ap (1. 1. 4)

An AR(p) process will be stationary if certain conditions on the

a s are satisfied. Let the model (1. 1. 1) be written as

(1-a 1B-a2
B

2 -...-apBP)(Xt) = a(B)(Xt) = Et (1. 1. 5)

where B is the backward shift operator, defined by BkXt Xt-k

for integer k. Equation (1. 1. 1) has a stationary solution {xt}



where X t involves only past and present shocks, s < t}, if

and only if the roots of the polynomial equation a(x) = 0 all lie

outside the unit circle in the complex plane (Box and Jenkins [7]).

This translates into the conditions, for example,

when p = 1, -1 < a
1

< 1,

when p = 2, a2 + a
1

< 1,

az - a
1

< 1,

and 1 a2 1 < 1,

and when

and

P- 3, a
1

+ a2 + a3 < 1,

-al a2 a3 <

a
3

(a3-al) - a
2

< 1,

I a3 1 < 1.

As p increases, the stationarity conditions rapidly become even

more complicated.

One way to get around the difficulty of insuring stationarity by

the conditions given above is to parameterize the model in terms of

the partial autocorrelations. Let 9k be defined as the partial

autocorrelation between Xs and X s+k eliminating linear regres-

sions on Xs+1 ,...,Xs+k-1'

k = 1, 2, . Then an AR(p)

where s is any integer and

is characterized by having

3

for all k > p (Ramsey [18]). It was shown by Barndorff-Nielsen and

Schou [5] that there is a one-to-one mapping from (al, . . . , a )' to



((pi, , )1 which is both ways continuously differentiable so that

all AR(p) models may be smoothly parameterized by

(9 1'
)'. The stationarity conditions in terms of the (pis

are simply that - 1 < 9k < 1 , k = 1, 2, p.

Durbin [10] proposed a procedure for sequentially solving the

Yule-Walker equations (1.1.4) for the

the p Is. Let app
k

The relevant equations are (see [18]):

a's and (pis in terms of

denote the kth a in an AR(p) model.

(1) 91 al, 1 P1

2 2
(2) 6.1 1 91

k
A 2

(3) 9k+1 = cek+1,k+1 k+1 k, 3 k+1-j k
j=1

(4) a = a - (p a
k+1,3 k,j k+1 k,k+1-j'

(5) o-2 = o-
2(1-(p2

)
k+1 k k+1

j = 1, , k

4

(1. 1.6)

Then from (1. 1.6), one may solve for the a's strictly in terms of

the (pis. For example,

al, 1 91
by (1),

a2, 2 92
by (3),

a = a
2, 1 1, 1 - 92al,

1

by (4) and substitution,
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a3, 3

a3, 1

a3, 2

by (3),93

a2, 1 93a2, 2

91 9192 9293

a2, 2 93a2, 1

= 92 93(91-9192)

and

by (4) and substitution.

Therefore, the AR(1) model can be expressed as

Xt 91Xt-1 4- Et '

the AR(2) model as

X t = 9 1(1-9
t - 1 + 92x t-2 4. Et

and the AR(3) model as

Xt (91.1)192-92993)Xt-1 + (92-9193+919293)Xt-2 4- 93X + Et-3 t

By parameterizing the model in terms of the cpts, one gains

simplicity for the stationarity conditions but loses it in the expression

of the model.

Now suppose the white noise sequence {Et} of the AR(p)

process {Xt} is Gaussian as well as uncorrelated, and thus it is a

sequence of normal, independent and identically distributed random



variables with mean zero and variance o-
2. The exact probability

density of n consecutive observations from an AR(p) process is

then (Box and Jenkins [7]):

where

and

f
13

(xn I a
13

, o-
2)

= (2Trcr2)-n
/21

M
1/2exp{-H

13

(a
13

) /2o-
2}

Lcn (3C1,

(ap
M

P
=

Hp -p

=1, p

D =p

*Am

x2, " 3C11)%

,
p,

ap, z' p)1'

{Y }
-1 2 j= 1, 2,.

) = D o

(1, a , a a ),
p, 1 p,

Dll -D12 -D13

-D12 D22 D23

-DI, p+1
D2,

p+1
D3,

p+1

13,

p+1

D2, p+1

p+1, p+1

D. = D. = x.x. + x. x. + + x x-iji 1 j 1+1 j+1 n+1 -j n+1

1In terms of the cp's, 1M I
has the uncomplicated form:

P

P
1M

1/2
= II (1-92.)i/213 i=1

6

(1. I. 7)

(1. 1.8)



When parameterized with the (pis, H (a ) is an expression ofP P
nested quadratics in the cp's involving the D.. 's. Let

fp n I cp
p

, o-
2)

= (2Tro-2)-n/21M
13

1/2exp{ -K
P

(cp ) /2o-
2}

denote the joint probability density of n observations given

and cr
2. For example, letting p = 2,

D11 -D12 -D13

H
2

(a
2

) = [1, a2,1 , 2,2 ] -D12 D22 D23

-D13 D23 D33

lam

= K )
2 2

= {1, ( 1 2 cp2]

D11 -D12 -D13

-D12 D22 D23

-D13 D23 D33

1

a2,1

a2,2

e-

7

(1. 1. 9)

= (D33 -2D 23 1
+D22912 )92 2(D

13
-(D

12 +D 23 )rp
1

-FD 22 (P12 )492

(D11-2D12V1+D22V12 )'

which is a quadratic in rp2 with coefficients which are quadratic

in

Let I (a o-I x ) denote the log likelihood function so that13 13 n

I
13

(a
13

, o- n ) = -(n/2) In cr 2 + (1/2) In IM
13

-H
13

(a
13

)/(2o- ). (1.1.10)



Maximum likelihood estimates (m. 1. e. 's) are obtained for

v2, ,a ,,a by solving the equations
p, 1 p, p, p

81 /8a- = -n/o- + H (a) /cr 3 = 0
P

8

(1. 1.11)

/aa = M. + 2
{D . -a D

j
- -a D

j
} = 0,

J J 1,3+1 p, 2, +1 p, p p+1, +1

for j = 1,2, , p, (1. 1. 12)

awhereM. = {(1 /2)1n1 M I }Ma . Equation (1.1.11) yields the
JP P,

maximum likelihood estimator for o-
2 of

"2 A
Ci = I-1(a) /n. (1. 1. 13)

Unfortunately, the equations of (1. 1. 12) are not easily solved since

the M. are very complex functions of the a's.

One approximation to the exact m.l. e. 's of the a's results

from ignoring the term of f (a, a- x ) involving I izpl because

H
13

(a
13

) dominates In M
13

for sufficiently large samples (Box and

Jenkins [7]). Then the equations of (1. 1. 12) become

A
d D ap = p, 1p (1. 1. 14)

where d (
D pp -D12' 13' l, p+1)i' Qp, 1

is the same as
13

without the first row and first column. Then

a = (D ) - ldp p, 1 p (1. 1. 15)



9

yields what are generally called the least squares estimates of a .

Another approximation can be obtained by first taking expecta-

tions in expression (1. 1. 12) and multiplying by z
0- . One obtains

M
.cr2 + (n-j)yj (n-j-1)ap, 1 3

y. -1 -... - (n-j-p)a
P JP

y.
-P

= 0.
,

(1. 1.16)

If one then multiplies (1. 1. 2) by n (replacing k by j) and

subtracts this from (1. 1. 16), one obtains

m.0- 2 = jy. - (j+1)a
p, 1 3

y. -1 (j+P)a
P, P JY -PJ

(1. 1. 17)

A
Then substituting

Y1 3-1 '1 D /(11-i-i) for Y1' '1i+1, 3+1 J-1
in

(1. 1. 16) to estimate M., one obtains a set of p equations which

can be written in the same matrix form as (1. 1. 14):

*
d = D ap p, 1p
a
A * - 1 *

= (D ) dpp p, 1

where D. . = nD. ./{n-a-1)-(j-1)}. These estimates are commonly
1,3 1,3

called "approximate maximum likelihood" estimates.

A third solution, which approximates the exact m. 1. e. 's of the

when the sample size n is moderate or large, is as follows.a s

Let



n-k

ck 1 in xtxt+k
t=1

10

(1. 1.20)

Then for k = nck is a close approximation to D... Sub-
13

stituting
nc 1

for D.. in the equations of (1. 1. 14) and
13

dividing both sides by nc
0

, one obtains the Yule - Walker equations

with p replaced by rk = ck/co. (Note, according to Box and

Jenkins [7] rk is "the most satisfactory estimate of for

moderate to large samples. ) The Yule-Walker estimates of the a S

are then obtained from

Aa
= R

1) 1)

where r'I)

R =1)

-1 r
1)

= (r

1

rl

r2 ''''' r

rl

1

rp-2

), and

r p -1

P- 2

(1. 1. 21)

A
or one may use Durbin's procedure (1.1.6) to solve for the a s

sequentially with rk replacing p

To illustrate the differences in the three estimates, let p = 1.

The least squares estimate is
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a
1, 1

= D /1::$22

The "approximate maximum likelihood" estimate is

a
1, 1

= (n-2 )D
12

/[(n- 1)D22] .

The Yule-Walker estimate is

al, 1 cl'co r1 = D 12/D11

When n is moderate or large, the differences in the estimates will

be small. This is generally true for AR processes (Box and

Jenkins [7]).

To estimate gyp., j = 1, 2, .. ,p one would use one of the above

three approximation methods to obtain estimates of a. .,
J

j = 1, 2, . . p (see equations (1. 1. 6)).

These three approximations to the exact maximum likelihood

estimates, given the order p, are widely accepted. It is the esti-

mation of the order p which is of primary interest here. The fol-

lowing section gives a historical review of the problem.

2. Review of Order Estimation of the Autoregressive Model

Some of the earliest procedures for estimating the order of an

autoregressive process were proposed by Quenouille [17] and Bartlett
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and Diananda [21]. Both procedures involve large sample goodness-of-

fit tests of the null hypothesis that a time series can be represented

by an AR(p) model with independent residuals against alternatives

of AR(p+q) models. The tests are based on a sequence of forms

which are linear functions of the sample autocorrelations, r..

Under the null hypothesis, the forms are asymptotically independent,

Normal (0, 1) random variables. For the Quenouille test, the

sequence of forms may be expressed as

Qt = (n-t)
/z(var(Xt) /var(Et ))Ht

2r
t+p

t = 1,2,3, ... ,

and for the Bartlett-Diananda test as

(1.2. 1)

BD t = (n-t) 1 /2 (var(Xt)/var(Et ))H -tH
t
rt , t = 1,2,3, , (1.2.2)

where Ht is the linear operator a(B) defined in (1. 1.5),

H -t a(B
-1).

Bartlett and Diananda pointed out that the Quenouille test might

be more useful because whereas the asymptotic distribution of Q is

unaltered by replacing the a.'s with efficient estimates

Aa. = a. + 0
P

(n-1 /2),
j 1,2, . , p, that of BD is not. Walker

J

[21] derives the asymptotic power functions for the two test statistics

above. He shows that although neither procedure dominates the other,

a modification of the Q test results in a test which is always at
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least as powerful as the BD test. The asymptotic distributions for

the two tests is also given when the a., j = 1, 2, .. , p are unspeci-

fied in the null hypothesis. He then generalizes these results to the

case where the sequence of Et has a finite dependence. Walker

concludes by comparing the likelihood ratio for obtaining large sample

tests with the Quenouille tests.

Whittle [22] proposed using an AR(p) model for 0 < p < K

to approximate the model of any purely non-deterministic process

{zt}, where K is prespecified. His test statistic for discriminat-

ing between an AR(p) model and an AR(p+q), where K = p+q,

is

A2 A2W = n[1-(1-cpp+1)... (1-9 p+q )] (1.2.3)

where A, is the least squares estimate of 9.. The statistic W

has an approximate x2 distribution with q degrees of freedom.

He notes that the value of K must be chosen with care since too

small a value may not allow an adequate fit of the data and too large

a value with respect to n results in greater deviation in the

behavior of the test statistic from a X random variable.

Hannan [12] considers the same situation as Whittle except there

is no pre specified maximum order K. He recommends the test

statistic



n A 2
F

P,
= R

2
(p+ql p) (n-p-q) /(q[1-R (p+q1p)] ),

14

(1.2.4)

A 2 , A2 A2 n2
where 1 - R (p+qip) = o- /cr and

ir
is obtained from (1. 1.13)

p-Fq p k

using least squares estimates liz. The statistic F has an
13,9

2asymptotic distribution of a X random variable with q degrees

of freedom.

Box and Jenkins [7] suggest an informal procedure for identify-

ing the appropriate model for an AR process. It begins with

examining the first 20 or so sample autocorrelations and partial auto-

correlations. The theoretical autocorrelations of AR processes

tail off to zero, whereas the theoretical partial autocorrelations, k

are zero for k greater than the order p. The approximate

standard error for estimates cpk, where k is greater than the
A A

hypothesized order p, is o-(9k) = 1 /n1
/2. Also z = coA /O-(/,'p ) has,

k k

approximately, a standard normal distribution under the hypothesis

that the order is some value p < k. One might then take, as a pre-

liminary estimate for the order, the value where cApk for k > j

lies within say two standard errors of zero, i. e. , within the interval

(-2/n1/2,2/n1/2). One then estimates the autoregression coefficients

ai, , a,
,

by one of the three asymptotically equivalent

methods given in Section I. 1, and a "portmanteau" lack of fit test is

applied to the residuals. Suppose one has the first K estimated
Aautocorrelations for the residuals r.(e), from fitting a model with1



order j. Then if the model is appropriate,

Q=

K

r.

i=1

15

(1.2.5)

is approximately distributed as X
2 (K-D If the model is inappropri-

ate, the average values of Q will be inflated. If the initial model is

found inadequate according to the test, an examination of the residuals

is recommended for an indication of how to modify the model to obtain

a better fit.

Anderson [4] advocates the following multiple decision approach.

The minimum order m and maximum order p are pre specified.

The null hypothesis Hi, (i = m, m+1, . , p), specifies that i is

the correct order. A significance level is assigned to each null

hypothesis in such a way that the probabilities of rejection are mono-

tonically non-decreasing so that the probability of rejecting a more

restricted null hypothesis when it is true is not less than that of

rejecting a less restricted one when it is true. The sample space is

then partitioned into (p -m +l) similar regions such that if the sample

points fall in region i, H. is accepted.

Akaike [1, 2] advocates an entirely decision theoretic approach.

Models of orders p = 1, 2, L are to be fitted by least squares

methods. Let R denote the mean square residuals for order p,

p = 1, 2, , L. Then the future prediction error for the model of



order p is

FPE
)Rp n-p-k p

16

p = 1, 2, , L, (1. 2. 6)

where k parameters are estimated in detrending the data. The

value p corresponding to the minimum FPE is then selected as

the order for the process. Jones [13] demonstrated that Akaike's

FPE criterion performs very well in the simulations of a number of

models. Akaike [3] later developed a more general information

criterion for detecting deviations of the estimated parameters from

the true values based on maximum likelihood estimates.

This more general information criterion is referred to as the

AIC, Akaike's information criterion. For fitting stationary

Gaussian autoregressive time series, the order estimate based on the

MC is asymptotically identical to the estimate obtained by the mini-

mum FPE procedure. Shibata [20] obtained the asymptotic distri-

bution of the order of regresbion selected by the AIC for stationary

autoregressive time series. He also evaluated the asymptotic quad-

ratic risks of estimates of the regression parameters when one uses

Akaike's method. Schwarz [19] examines the problem of selecting one

of a number of models of different dimensions by finding its Bayes

solution and evaluating the leading terms of its asymptotic expansion.

He compares his results with Akaike's criterion and concludes that



Akaike's cannot be asymptotically optimal, if one can agree with his

(Schwarz's) underlying assumption.

Parzen [16] takes the point of view that for a general time

series, the autoregressive representation is infinite, (aco(B)X(t)

in (1.1.5)), and that the problem is to find an order p such that

Icr

13

(B) estimates the true linear operator ctoo(B) closely enough.

The criterion for choosing the optimal order is to find the value

which minimizes the criterion autoregressive function (CAT p)

17

= Et

which involves the estimation of the theoretical infinite order variance

cr002 . When the procedure was applied to low order, finite autoregres-

sive time series, the results agreed very closely with Akaike's FPE

criterion.

The most recent method of autoregressive time series order

estimation is one proposed by McClave [15]. He redefines the order

of an autoregressive model as the number of non-zero a's in the

model (1. 1. 1). For example, the model

Xt alXt-1 al0Xt-10 + Et t = 0,±1,±2,...

would be identified as having order two, maximum lag ten. Using

his subset regression technique (McClave [14]), one is to find the best

fitting model of "order" p = 1, 2, K, with maximum lag up to

and including K, and calculate the statistics
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A AZ AZ AZ
M = (n-p-1)(cr-a-p+1 )/(o-p+1) p = 0, 1, . , K-1

pP, 1

2 iwhere n
cr is the usual estimated residual variance from the fitted

model of "order" p. Then for a given a, one determines d

such that Pr[Mp,
1

> dp] = a where Mp,
1

is the maximum order

statistic in a sequence of (K-p) independent x2(1) random vari-

ables. Finally,
A is chosen as

A n
P = mint.P:M < d , 0 < p < K).

p, 1 p - -

3. Organization of the Thesis

In Chapter II, a Bayesian approach to the estimation of the

order of autoregressive time series is presented in a format similar

to Halpern's Bayesian approach to order estimation in polynomial

regression (Halpern [11]). In Section 2, a joint prior density for the

order, the partial autocorrelations, and the white noise series vari-

ance is given. In Section 3, the marginal posterior probability density

for the order p is derived. Section 3 also has a discussion of the

asymptotic behavior of the marginal posterior probability density of p.

And finally,. a loss function is defined and the corresponding Bayes

estimate for p is given.
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Chapter III presents a comparison of the Bayesian method of

Chapter II with Akaike's FPE criterion for estimating the orders

of several autoregressive processes using computer simulations.

Wolfer's sunspot data are also analyzed by these methods.
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II. A BAYESIAN APPROACH TO ORDER ESTIMATION
OF AUTOREGRESSIVE TIME SERIES

1. Introduction

In the Bayesian approach to estimation, the parameters of a

model, 0, are regarded as random variables with marginal

probability density function fe(0), called the prior probability

density, with respect to some dominating measure v . Cox and

Hinkley [9] point out that this prior density can represent some prior

information about the frequency of occurrence of the parameter

values, or it can be a representation of "what is rational to believe"

about the parameter values, given a situation of ignorance, or it may

simply reflect one's subjective opinion of the relative likelihood of the

various parameter values. The joint density of the parameters 0

is combined with the joint density of the data x to yield a joint con-

ditional density for 0 given x, called the joint posterior density

for 0 given x. If a loss function is defined, the Bayes estimate of

0 is then derived to be the value 8 which minimizes the Bayes

risk (expected loss) with respect to the posterior density.

The methods of order estimation of the autoregressive time

series incorporating the partial autocorrelation function and partial

variance are widely recognized and accepted. In this thesis, the prob-

lem of order estimation of the AR time series is approached from
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the Bayesian point of view. This is done with the intent of illustrating

how the Bayesian approach brings the numerous aspects of the prob-

lem together into a coherent structure which is both complementary

to presently used methods and intuitively satisfying.

2. Joint Prior Density of the Order p, the Partial Auto-
correlation, cp, and the White Noise Variance, (TL

Let IT, denote the prior probability that the order of a
J

stationary AR time series is j (j = 0, 1, 2, ... , M), such that
M

Tr. = 1, where M is a finite number less than n, the number
.1

j=0
of observations. That is,

g
P

(j) = Tr., j = 0, 1, ..., M (2. 2. 1)

is the marginal prior density for the order, p, with respect to

counting measure. Let gp, .(j,/m) denote the following joint prior

density of the order p and the partial autocorrelations Em with

respect to (counting measure X Lebesgue measure):

g 4,0, Em
P,

where

m
2-3 n 6((pk), E (-1, 1)m, j = 0, 1, ... , m

k=j+1

elsewhere (2. 2. 2)
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M
TI 5((pk) E 1,

k=M+1

and 8( ) denotes the Dirac delta function (see Churchill [8]). This

generalized function satisfies the expression:

f(x)8(x-a)dx = f(a) (2.2.3)

for any integrable function f continuous at a, where R is any

open set containing zero.

The joint marginal prior density of the order p with the (pis,

as given in (2. 2. 2), allows for a formal way of combining conditional

densities for the cp's, given the order, with the marginal prior

probabilities for the order. For example, when j = 0, one obtains

the product of the degenerate density with mass 1 at E = 0
M M

and Tro, the prior probability that p = 0. When j = 1, one

obtains the product of the uniform density over (-1, 1) for cp
1

(where cp2 = . = cpm= 0 almost surely), and Trl, the prior

probability that p = 1. Continuing in this manner, eventually one

obtains, for j = M, the product of the uniform density over

(-1, 1)M for 4.4 and TT ,
M

the prior probability that p = M.

That g behaves like a density with respect to (counting measure
P,

X Lebesgue measure) is easily demonstrated:



j=0

1

-1

Tr. = 1.

j=0

9
gp, EM)d (PM4M-1 ...d

1

-Tr2

M
H 5(k)

k=j+1

1 d
CPJ 1

dcpmcly9 . .

23

Note the very uncomplicated domain of the v's in g
P,

the form of the domain does not depend on the value of M. Recall

from Chapter I, Section 1, how the boundaries of stationarity for the

a's changed drastically with the order. For example when p = 1,

the condition on al is -1 < a
1

< 1. However, when p = 2, the

condition on al (a2, 1 in present notation) is -2 < a
1

< 2. The

joint region for (a
2, 1,

a
2, 2)

is triangular. For higher order models

the stationarity regions for the a's become extremely complicated

to describe which makes defining the limits of integrations over these

regions extremely difficult. Furthermore, a uniform density for the

a's of a higher order model does not reduce to a uniform density for

the a's of lower order models and so one cannot define consistent
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uniform prior densities on the a's. The Bayesian approach to order

estimation of autoregressive time series is intractable using the

model parameterized with the a's. It was not until the development

of the partial autocorrelations (the (p's) parameterization of the

AR(p) model by Barndorff-Nielsen and Schou [5] and the characteri-

zation of the partial autocorrelation function by Ramsey [18] that the

Bayesian approach to the order estimation problem became tractable.

To represent prior vagueness about the variance, we choose

g -2(0--2) cc (0-
-2

)1
/2

o-
-2 > 0, zero elsewhere (2.2.4)

o-

to be the marginal formal prior density for cr,
-2. Note that we take

2
o- to be a priori independent of the order and the (pls.

The joint formal prior density with respect to (counting measure

X Lebesgue measure) for the order P, the vector of partial auto-

correlations 44 and the inverse of the white noise variance, o-

is then

g 2
p, cr

0_-2)
Em,

M
II 6(9k) (o-

-2)1 /2,
2_ E (-1,1)M,

k=j+1
k_

j = 0,1, M, cr--2 > 0

, elsewhere (2.2.5)

-2
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3. Marginal Posterior Probability Density of the Order p
Given the Data X-n

Let
-xn

(x1' , xn)I be a vector of n consecutive observa-

tions from a stationary AR(p) time series with p unknown and

with Gaussian white noise sequence Recall from Chapter I,

Section 1, that the exact probability density with respect to Lebesgue

measure on X given p, and o-
-2 is f (x 12. )

as-n P n P

given in (1. 1. 9). By multiplying fm(x tEm, o--2) and the joint

g -2(j' g-z)
131

given in (2. 2. 5) above,' one obtains the joint probability density of the

data and the parameters with respect to (counting measure X

formal prior density of the parameters as

-
-2,Lebesgue measure), which is denoted by f

M
, )

X, p,

[Note that if the true order is p < M, then (P p+1 =... M= 0

and so fm(- (r -2) = fp(x yp, 0-2).

With respect to estimating the order p, the variance o-

is a nuisance parameter. The marginal joint density of the data X ,n
the order p and the partial autocorrelations, is obtained by

2

-2the following integration with respect to g, :

oo
-2 2

fx, Em) = f , , Cr )do--
0 X, p, Cr M

(2. 3. 1)

- M M 2
G II ( H (1-9. )1 /2 [2-1K (E )]n j M M

..1c=+1 i=0

1

j
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for x
xi

e Rri, j = 0,1, ... , M, c (-1,1)m, where

M
Gn = (2Tr)-n/2r(yn), yn = (n+3)/2, 9

0
E 0, II s(co E 1 , and

k=M+1

KM M ) is defined as in (1.1.9).

The marginal joint density of the data
1Cn

and the order p

with respect to (Lebesgue measure X counting measure), f p(,X, p n
is found by integrating f,

2:19 PP
(xn j, 2m) with respect to over

the region ( -1, 1) . The marginal density of X alone withn
respect to Lebesgue measure, denoted fX n), is found by inte-

grating f (x j) with respect to p over {0, 1, . . . , M}, i.e.
X, p n

summing fX, j)
over j = 0,1, , M. Then the posterior

density with respect to counting measure of the order p given the

data Xn
is (as shown in equation (2.3.2) on page 27): where

M
cp

0
E 0, IT 6(9 ) E 1, and yn = (n+3) /2. The first expression

k=M+1

for iipil<.(jlxn) follows from the definition, the second from (2. 3. 1)

and from dividing numerator and denominator by Gn = (2Tr) -n /2 r(yri).

Let I, denote the numerator of (2.3.2) for j = 0,1, , M.

Notice that the denominator of (2. 3. 2) is I., so that
J

j=0

TrP1X(i 1;)
is clearly a density function with respect to counting

measure. Furthermore, to find an explicit expression for

X (j I x ), one need only evaluate I. for j = 0, ..., M.



1

-1
nplX(i

1

S
1=-0

1

1

1

f
(x , M M)thp ..d

-1 m M. 91

1

s
1

fx, p, 2-M)d9M &pi
-

1 M
Tr.2 n 6((p

-1
k)

k=j4-1 _.,i=0 1

x [2-1K (2, )1m m ]ndcom . . d91

z i /2-1
Tri24 6(cpkirri (1 9 .)

-1 _k=i+1 4.0

x [2 -1
Km(1\4)] ndc9m ..d91

for j = 0,1, ..., M.

S.
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(2.3.2)

Recall that to obtain the Yule-Walker estimates of the a's

and cp s for the

were replaced by

AR(p) model the D..'s in equations (1. 1.14)
13

xkxk+li

To simplify the evaluation of the I.'s, s11-3 will replace D..
13

in the function K.( v). For moderate to large n, the difference



between D.. and S is slight. Then, according to (1. 1. 7)
13

and (1.1. 9),

where

and

K.(E.) = H.(a.) = a' .S.a (1+0 ( n-1)), (Anderson [4]),
3 J 3 1, 3-3-1, j p

S. =

= (1, aj, , aj,

SO -S1 -S2 -S.
- S1 SO S1 Sj-1

S. S. S
3.

So
3 J-1 -2

It then follows that the I.'s can be expressed as follows:

I =
0

1. e 1 r_hd

,) 'TOL 6(9k][n (1-9i2)i/2J-1 -1 k=1 i=0

x [2 -1
K

M
(/

M
)] nclv &pi

= [ Il (1 0)1121[2-1K (0 )]
710 M M

by definition of the Dirac delta function

28

(2. 3. 3)



and

1 1
2

I. = .51 ... Tr.2-3 11 (cp
k
][ II (1 - . )

.
- 1 -1 3 j(=j+1 1=0

-y
X [2 - 1Km(fm)] &pi

.51

_y,
TT

.2-3[11
(1-cp2. )5121 [2 -1K.(v, )] .dcp

J 1
- 1 -1 3 i=0

Let I. be defined by

1 1 2i/21
I ..=',51 7.2-3 11 (1-9. )

-1 -1 4=0

29

- .Yn
[2 K.(2..)1 dcp. .dcp (2.3.4)

J J J 1

-1where K.(.) = H.(a.) = a' .S.a . Then I. = I.(1+0 (n )).
3 3 3 3 1,3-3-1, j 3 3 P

In order to evaluate cf., induction will be used, and so, it is
,-..

J. ti

necessary to express K.
3+1

(/.
+1

) in terms of K.(/.). The following
J 3

lemma does this.

Lemma 2.1.

K. ) = K.(E.)(1+ ) 2L.(2..)cp. , j = 1, 2, ... , M-1,
3+1 3+1 J J 923+1 J J 3+1

where

K.(0.) = H.(a.) = a' S.a
J j -3 -1, j-j-1, j

and



Li(2i) = = + aj, i aj, j+l-ksk-i -

i=1 k=1

Proof: For j = 0, 1, 2, , M-1

K (2. ) = H . (a ) =
3.

S a
j+1 j+1 3+1 -3+1 -1, +1-j+1-1, j+1

i=1

.S,1 j+1-i

Recall from (1. 1. 6) that = aj
j

and
+1 +1, +1

a = a. - 9. a. for i = 1, 2, ... , j. Then a'
j+1, 1 3,1 3+1 3, 3+1-1 -1, j+1

be expressed as follows:

where

and

El, j+1 g9j+13Aj

A! =
a' 0--1, j

-a' 1
j-0,

a = (1, a , , a. )1,-1, j j, 1 j, 3

-a
0,

= (0, -a. .,
1

, -a r.j

Let A. and Si+i be partitioned in the following manner:

A! =
a'

-a-0, j 1

1

Sj+1
S. s.

-3+1

._IF 1 I SO
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can



where

= (-Si+1,Si

1

, , S1).

Then

Kj +1( 3+1 )

= [1, 9. ]A!S A
3+1 3j+1 j

[1, cpj+1]

=

a' S.a
j

a' S (-a .
j

)+a' r;, k 1

1-1, j7-1, -1, i-j 0, 3 1, J1-
Li/ v

1-a .S.a .+13'. a S +2El'il a +(fiir' S (-a ))0,37-1,3 3+1-1,j 1 0 j+1-1,j 0,j j 0,j

1

So3+1_,

[1, 9j +1]

Now

and

1 -Al2

A21 A22 (Pj+1-

A = .S.a =14.(a.) = K At.),11 1,37-1, j 3 7 J J

v
A = (-a' .)S.(-4 .) + s'. (-4 .) + (-a' .)s. + S

22 0,3J0,3 3+1 0,3 0,j 0

= S
0

- 2 Laj,kSk+
k=1

= H.(a.) = 1{.(/.) ,

J J

1=1 k=1
j, ia.

3, k
S

I i-k1

31
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Al2 A = -a0, a + s' a
12 21 0, jj-1, j j+1-1,

= - + 2 a. S. +
Si+1 3,k 3+1k

k=1

= = -L
J 7 J J

k=1 i=1
j, 1

cr
j, j+1-0

Therefore,

Kj+1(j+1) = [1,

= K..)(1+(p
J

1

J

Kj(Ej) -L.(E.)
J J

-L.(E.)
J J J 3

1

) 21-.(2..)49.3+13

1

3+1_

N
In the proof for the general form of I., K3.

+1
(E3+1 ) is

expressed as

2
K. (E. ) = K.(V.)[(9. -1-.(E.)/K.(co.))3+1 3+1 v.-3 j+1 3

by completing the square in the expression in Lemma 2.1. In the fol-

lowing lemma one finds that the Yule-Walker estimate of is
(I) j+1

obtained by evaluating L.(E.)/K.(E.) at A the Yule-Walker esti-
J J J J

mates of (p1, . . . ,

Lemma 2.2. If K.(cp) and L.(E.) are as defined in Lemma
J 7 J J

A
2.1, and ;1, , .93+1

1 (P3+1
then

are the Yule-Walker estimates of



L,(ip.7 ) = S0

__. i
A A A

Pj+1- aj,kPj+l-k '

k=1

3 A2
idj C(ij

) = S
0

11 (1 -9 )
i =1

and so

and

SO

A A ,v
j+1

= L. ((p ) IK .(z.),

33

for j = 0, 1, ... .

Proof: Let j = 0. Then

A
L (/49 ) = G (a ) = S

0 0 0 0
S1

K ((p ) = H (a ) = S
0 0 0 0

S0

A rs' A A
L

0
(
9 0

) /K
0

(9
0

) = S1 /S
0

=
9 ,

where 9
A

0
= aA

0
== 0. Therefore, the lemma is true for j = 0.

Let j = 1.

L
1

( f(1)
1
) = G ( /^ )=S +a2 S - 2a S

1 1
S2 air

0 1, 1 1

SO[if:'12-421, 1-21, 111.'311'

since p
A

k
= S

k
/SO ,
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Then
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\ A A
= S0 [P2 -al, 1

p1.' ,

A
since a = p

1, 1 1

K1(91) = H
1
(al) = SO - 2S

1
cp

1
+ S

09 1

= s
0 1
[1-;] ,

A Asince (pi a1,1- S1 /SO

L ((p ) 1 kj ( = l\ 11[1 A2]
1 1 2 1, 1P1 91

/(Pz according to (1.1.6).

Therefore, the lemma is true for j = 1.

Assume that the lemma is true for an arbitrary order j:

[
A AA

Li(23) SO P3+1- aj, kPj+1-k '

k=1

rj A A2S0 (1-9. )
0 i=1

and so

j+1
= L.(2.) /g.(2.) .JJ JJ

Now consider the (j+1) case:



L3. ) = Gj (<:e3. )
+1 j+1 +1 +1

j+1 j+1
A A

= Sj+2 + ./ iaj+1, j +2-kS 1 k-i 1
1 1

i=1 k=1

-2
j+1

k=1

A

aj+1, k5j+2-k

j +1
-

A A A
= S0 . +

0
p32 aj+1, j+1, j+2-kP I k-il

i=1 k=1

j+1
A A

-
2

aj+1, kpj+2-k
k=1

+1

= S p. p. ,
0 3+2 j+1, k J+2-k

k=1

since p
A

k = Sk /SO and /c; .S . = S Alsop, 1 k-3. 1 k
i=1

A2Kj+I(ii+i) = Ki(2i)(1+9i+i)

f"' A r A2
+1

= K.(T41- , since
9)

2Li()/(pj+1

j+1
A2=SO n (1-9. )

i=1

Then

cp

i+1
= L. ) /1Z.JJ JJ

by substitution.
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j+1

L3. 4. )/1.r. (ci; ) = /Pj+2 loo

+1 3+1 3+1 j+1 j+1, j+2-k_
i=1

/ (1-9.n2

=
j+2

k =1

by (1. 1. 6).

Therefore, the lemma is true for all j, by induction. U
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The evaluation of each L involves a j-fold integral. At each

step, one has an integral of the form found in the following lemma.

Throughout, when we have sequences of variables {x
n

} and

and we write x v , we mean that xn = y
n (1+0(n -1)) asn 'n

{Yn}

n 00 and that the order is "in probability" when the sequences are

random sequences.

Lemma 2.3: If K(9) = A(1+(P ) 2Bcp, where 1BI < A,

A > 0, and if g(co), continuous on [-1, 1], has a Taylor series

expansion which converges on (-1, 1), then

-Yr, 1 /2 2 -Yn+1 /2 -vn
g(9)(K(9)) dcp = [2.rr /(2.yni-1)]

(1-990)
A g(cpo)

x [1+0(n-1)]

where yn = (n+3) /2 and cp = B /A.
0

\InProofs Let h(9) = [K(9)] . Then



and
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-(Y +1)
hi(v) = -Nn[KI(V)] n K'(9),

-(Yn+2) n+1)
h"(v) = Nn(yri+1)[10,P)] [I0(P)]

2
- Nn[K(49)] 1<"(V)

Note that h(9) has a maximum where 111(9) = 0, which is where

9 = B /A = cp
0

. Then let h(cp) be written as

h((p) = A
"n

{(9-v0)
2

+1-4902 }

-lin

Note also that h( 9) has inflection points where h ( cp ) = 0, which

is where

(cp - cp
0

)2 = (1-9 0 )/(2.yn
+1).

Now let z be defined by:

Then

(cP = [(1 - 90) 1(2N nil /2z.

K(9) = A(1-cp0)[1+z2 /(2.yn+1)]

and so

2h(cP) = A (1-9 )
-1( n[1+z

2
/(2-yn+1)] n

0

"n Nn 2 n -1/2
= A (1-(p ) ([1+z In] )

0
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since Zyn + 1 = n + 4 = n for large n. Then

since

So

-V 2

h(9) n -z /290/ e

lim [1+xin]n = ex
n--' 00

1 /2 -Nn 2 \In
h(99) (2Tr) A (1-90) i(z),

where 1(z) = (21r) -1
exp{ -z

2/2} is the standard normal probability

density function. Then

where

1
bn

g(9)h(9)d9 Qn g(9
0

+Xnz)1(z)dz,
-1 an

-.Y -.Y

Qn (2Tr)

1/2
A

n
(1-Q02 )

n
Xn

r
Xn = ((l-cp

0

2 )/(Zyn+1)11/2

an = -(1+Q
0

) ,

bn = (1-9
0

)/Xn .

Now using a Taylor expansion with remainder term,
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g(90+Xnz) °P0) gr(9&Xnz gn()Xn2z
2

/21

where -Xnz < < 90+Xnz , and so

b b

g(cp
0

+Xnz)1 (z)dz = n[g(w0)+g (cp
0 nz+g "g)Xn2z

2
(z)dz

a a
n n

bn

= g(9
0
)[Cbn)- I(an)] +J g 1((p

0
)Xn (z)dz

an

bn

g" g)Xn2z2i(z)dz,
an

where ) is the standard normal cumulative distribution function.

As n increases, the first term becomes

lira g((p
0

)[flbn )- /'( a n)] = lim g(9
o AC[1-9 0

][1-c020
]1

[n+4]
1 /2)

n-1)0 n-00
2 /2 1 /2

-
o][1 ol [n+4] )]

g(490)[)-c-c(9]

0490)

If one multiplies the second term by n and allows n to increase,

one obtains



b

lim ne(9
0

)knzi(z)dz
n-00 an

b
1/2 n= lim 09 9020)(1-) n(n+4)

-1 /2 (z)dz
n ~ 00 an

gi(90)(1 -90)
11z

c
-1

for some c, since

and

b
n

lim I I zri (z)dz,
00 an

.
an = -(1+q)

0
)(1-coo)

2 -1 /2
(n+4)

1 /2 = d n1
/2

.bn = (1-v )(1-9o2 )
-1 /2(n+4) 1 /2 = e n 1 /2

0

and so

Izi = c.n1/2

2 1 /2 -1= 090)(1-90) c Bin S 01 z I zi(z)dz+S
bn

Izi zi(z)dz
n-00[ a 0

n -

00
2 1/2 -1

0

gl(90)(1-(p0) c [s izizi(z)dz+tr I z I zn(z)dzi
-00 0

2
gi(90)(1-990)

1 /2c -1 {-1 /2+ 1 /2],

=0

00

since zZri(z)dz = 1,
_co

40



and so the second term is o(n-1
). If one also multiplies the third

term by n and allows n to increase, one obtains

b
r

limLnX2 n/2S g n()z (z)dz
an

iE= (1-92)/2- OW lim n/(n+4).. lim.
0

sbbn

n-'00
-
n-00 an

2
oo

=(1-9)gfl()/2.[1].[S z (Z)dd
_03

2
1 0)g

-1a constant, and so the third term is 0(n ). Therefore

S g(V)(K(9)) nd9 = Qng(q)
0

)[1+0(n-
1

)]

-1

+1/2 -y
= [arr /(2.yn+1)]

1 /2
(1-902

n
) A ng(90)

x [1+0(n-1)]. 0

Now with the use of these lemmas, one can evaluate the L 's

of (2.3.4).

Theorem 2.4. Let

for j = 0,1, , M.

41
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Then

I. =

where

i = 1,

since

-Yn i
(S /2) 7.2-.127/(2y n+1)1/

A

0
a, 0, rp.

A is the Yule-Walker

, M, Yh = (n+3) /2

Proof: Let j = 0. Then

and S0

d9

[2-1'ficm(-0)1

0
by

-y
TI (1 ) n [1+0(n

-i=0

estimate for (p

n

=
2x..

i=1

[mn 0-92)1
i=o

-Y
, by (2. 2. 3)

substitution into (2.3.4).

1
)J,

There-

1
C 2-orn

IO

_
J-1n0

i=1

1,4x [2- K
M ( 1M)]

= Tr 1 11 (1-02)1/2[M
0 i=o

= 7 [s /2] n

K
M

(0 M) = HM (0M
) = S

fore, the theorem is true for j = 0.

Let j = 1. Then

1 1. S1
M 14 Z

ir 2
-1

II 8(=
1

T1 (1-9. )[
-1 -1 i=2 (P

= 0 1



-1+yn 1/2
Tr12

(1-912 ) [K1
-1

)] )1 &pi by (2.2.3)

43

=
12

Y
-1+ 1ny (1-92)1/2[S (1+92) - 2S

1 1
] d9

1
by substitution

1 0 1-1

Tr12

-1+y
n

(2Tr)
1/2(S

0
)

-Y +1/2
X [(1-(S

1
/SO)2]

n (2yn+1)
-1 /2 [(1-[S

1
/S

0
]
2,)]. /2+0(n -

)]

by Lemma 2.3

-Yn -1
-Y +1

= (So /2) Tr 12 [2Tr/(2y +1)] 1/2 n
1

(1-9 ) [1+0(n-1)] ,

since S1 /SO is the Yule-Walker estimate for cp
1

. Therefore, the

theorem is true for j = 1.

Assume the theorem is true for any arbitrary

consider I.

el j+1
9

1 -1
Ij+1 j ' (1- )

1
71.3+12 i=0

-1' nX [2 K 9. 9....d91j+1 +1
) J d

3
d

j,

-(j
2 i/1

= Tr +12 [I1(1-.) K.(9.)1
j+1 J-1 -1 i=0

and then

Yn
X
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Then
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1 -Y
x S (1-92. )(j+1)/2[1+(Pf+1-2''''Pj-Fi(T-in 4)+1[

-1 '3+1

d9
5. .41

(P. (V.) = L.(E.)/k.(E.)JJ JJ

Ij+1 =
11.j+1

2-
/2 .51 S 1

-1 - 1 i=0 1

i/2II (1-v. )
1

-y +0+2)/2
-Yn 2X [10E.)] [1-5. ((P.)] n

-1
.[1+0(n .thp

J J j+1 3 1

by Lemma 2. 3,

(j +1)+Y j -y +(i+1)/2
= Trj+12 n[27/(2yn +1)](j+1)/2

p7(1-) n
i=0

1

(n.)] -Yn +(j +2)/2 -1[1+0(n Li

by Lemma 2.3 and the inductive assumption,

= 7
j+1

2 -(j+1) (so/2) -Yn[27/(2,1 "p+1)/2

j +1
x n (1-cp. )

[
i= 1

A2.
-yn+(i+1)/2

since C-641(pj) = =

the theorem is true for j = 0, 1, , and assuming it is true for

arbitrary j, it is also true for j+1, and so true for all j, by

[1+0(n-1)],

by Lemma 2.2. Therefore,

induction.
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Now then, according to (2. 3. 2), the posterior probability of the

order given the data is:

I.

TrPIX(jixn ) M
j = 0, 1, M

I
k

k=0

IT. -2 j[2TrA2v +1,p/2 in (1-/(tp2.)"n+(i+1)/2
J n 1

i=0
M

, (2.3.5)
/2 k -y +(i+1) /2

7i
k

2
-k

[2TrA2-y
n

+1)j1c n ( nl-fNp2.)
1

k=0
i=0

The Bayes estimator of a parameter 8 depends on the choice

of a loss function. Once the loss function is defined, the Bayes

estimator is that which minimizes the Bayes risk with respect to that

loss function. Consider then the following loss function:

L(a, p) = 1, if a p, zero otherwise (2.3. 6)

It is well-known that, in general, the Bayes risk, r(rr, 6) is defined

by

r(Tr, 6) =S F(6(x), x)dp.x
X

where F (a, x) = J L(a, 0)f(x; 0)d-rr(0), f(x; 0) is the density of X
0

given 0, H. is a a--finite measure dominating the probability
x
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measure of the random variable X, 7(0) is the prior probability

distribution for 8, and X and ® are the domains of X and

0, respectively. Then r(Tr, 6) is minimized by minimizing

F(6(x), x). In the present situation, one has:

F(k, xn
M

L(k, j)f(x ; j)Tri

j=0

M
L(k, j)[f(x ,j)/Tri]rrj

j=0

M
L(k,

j=0

L

jk

for some k E {0, 1, ,

If k is chosen to be the integer between zero and M such that

Ik is a maximum, the F(k, x71 ) is minimized, and so such a k is

the Bayes estimator of the order p. Since the posterior probability

that the order of the time series is j is the ratio of I, to the

sum of the L's, this Bayes estimator is the order with the maxi-'
mum posterior probability. The following theorem shows that as

increases, the cumulative posterior probability of the order p

approaches a cumulative probability distribution which assigns all the
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probability to the correct order

Theorem 2.5. Let M be the upper bound for the order p

of a stationary autoregressive time series and Tr p X (31x ) be the

marginal posterior probability that the order of the time series is j,

where

Tr.2-i[27/(2yn+1)]-.1 /2
II (1 A2)-Yn+(i+1)/2

Tr I (31x )=
i=0

p X n M -y +(i+1)/2
k k/2

Tr k2 [27 /(2,, +in rr

"
Ac. n

)

k=0
i=0

A
for j 0, 1, and d where 9 E 0, is the Yule-Walker

91.

estimate of (pi for i = 1, 2, . M, Tr k
> 0, k = 0, 1, M, is

the prior probability that the order is k, and Yn = (n+3)/2. Then

if Jn
is the random variable with cumulative distribution function

11 (jlx ) =
PI2S

the sequence

i=0

{Jn} converges in probability to the random variable

J with cumulative distribution function.

n (j)
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That is, the probability that J = p is 1.

Proof: Let i < p, and consider the following limits in

distribution:

lim
n-00 P P

(n+4).--
/2 n _/,;21-- (n-1+2) /2

1 =0

(n+4)-i/2 A2)- (n- f +2)/2-(n-1+2)/2
II

1=0

= lirn (n+4) (P-0/2 IIP
A (n-+2) /2

n
(1 -cp

2
)

1

- =i+1 1

= 0 ,

A
since the Yule-Walker estimates converge in distribution to

P (see Anderson [4]), and 0 <

/2Then letting Tk = Trk(n/L)
It

0 < lirn x )
°° I

= lirn
n-1- co

T (n+4)k/2 A2 -(n-1+2)/2
II (1-91)

f =0
k=0

19 I1
< 1, for I = 0, 1, ...,p.

T.1 (n+4) II (1-cp
i A2 -(n-1+2)/2

f =0

< lirn
n_.00T (n+4)-p/2 P A2 -(n-i+2)/2

(1-cp )

1=0

T.(n+4)-i/2 i (1-9A2 -(n-1+2)/2
II )

1=0

= 0,
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since T. /T
p

is a finite constant and the limit involving n is

zero, as shown above. Therefore,

lira = 0, for i < p.
n-'00 1"1.

Now let i > p and consider the following limit:

lira
n-"00 2p 1

(n +4) (1!2)(n-1 +2) /2

1=0

(n+4)
-i/2

II (1-9nAZ
)
-(n-1+2)/2

1

I=0

4

i-P) /2 A2 -(n-1+2)/2
= lirn (n+4) (1-0)

n' oo 1 =p+1

= 0,

since the Yule-Walker estimate (p
1

converges to (pi in distribu-

tion and (p a 0 for 1 = p+1, p+2, , (Ramsey [18]). Then

0 < lirn Tr pIX (il x )n
n-' cc)

= lim
ri- k AZ -(n-i+2)/2

T
k

(n+4)M k /2
11 (1-91)

1 =0
k=0

i- /2 i Z -(n-1+2)/2
T.1

.e
(n+4) 11 (1 -

A
)

1 =0



= lirnn'

= 0 ,

T.(n+4) /2 i n2 -(n-1+2) /2

1=0

T (n+4)-p/2 11
P (1-9A2 -(n-i+2)/2

1=0
)

since T. IT is a finite constant and the limit involving n is
1 p

zero, as shown above. Therefore,

lim Tri(i13_En) = 0, for i > p.
E. I t-1

Now, for any n,

npix(ml x
i=0

and so

TT I = 1 ,
p I X

lira > n (il x ) = 1.
pl X -n

.
1=0

Then

p-1

lira liranplX(Plx 1n-°0 n-**()3[i=0

= 1 - lira

= 1,

pIX -n

Tr )
-r1

M
Tr I (ilx

1312.0 -11
i=p+1

50
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since the limits of the probabilities,

i p, as shown above.

Therefore, for j < p,

lim , (j I x =

co
pl X n

n

and for j > p

lira
n" coi=0

= 0 = Ff (j),

lim 11_ix(j lim
n'co i=0

That is,

lim
co

= 1 = (j)

Trp x (i I _nx )' are all zero for

Tr I

1312.0 TTn

Tr
13

)
111

ripi x(iix ) 113(j) for j = 0, 1, , m.

Therefore, by definition, {Jn} converges in distribution to J. In

P(J=p) = 1, {J n}addition, since converges to J in probability.

Therefore, for large n, the maximum posterior probability

for the order of the autoregressive time series will correspond to the

correct order P.
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III. COMPARISON OF THE BAYESIAN APPROACH TO ORDER
ESTIMATION WITH AKAIKE'S FPE CRITERION

1. Introduction

In this chapter, Akaike's FPE criterion for choosing the order

of a stationary autoregressive time series is compared to the Bayes

estimate obtained in Chapter II. First Wolfer's sunspot data will be

analyzed by the two methods. Then the two approaches will be applied

to some computer simulated stationary autoregressive time series.

2. Wolfer's Sunspot Data

Wolfer's sunspot data consists of the average number of sun-

spots observed in 176 consecutive years, beginning in 1749. The

data can be found in Anderson's book [4] among other places. It is a

well accepted fact that the square root of this sunspot data, corrected

for the mean, is best fitted by an autoregressive model of order two.

A graph of the transformed sunspot data is found in Figure 3.1.

Recall that both Akaike's method and the Bayesian method

require the choice of a maximum order M. Let M = 15. Since the

square roots of the observations are corrected for the mean, which

had to be estimated, Akaike's FPE. for the model of order j is:
3

A2
FPE. = (n+j+1) /(n-j - 1) o-. , j = 0,1, .. . , M (3.2.1)
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Figure 3.1. Wolfer's sunspot data--average number of sunspots
from 1749 to 1924 (mean-corrected square roots).
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where n = 176, the number of observations, the estimated predic-

tion variance for order j is

"2 A2
cr. (S

0
/n) 11 (1- . )

i=0 C°3.

A
E 0, 92i is the Yule-Walker estimate for cp., i = 1, 2, .. , M,

and

n

50 = x.
2

i=1

Akaike's estimate of the order of an autoregressive time series is

the value k, where FPEk is the minimum, 0 < k < M.

For the Bayes estimate of the order, let Tr. = 1/16,

j = 0,1, ..., 15, indicating uniform prior uncertainty about the order

p. Then the posterior probability that the order is p is estimated

by

T.(n+4)-i /2 i1 (1- ie) -(n-i+2) /2
J i.

1rP I X (i I )111) M
i=0

k
/ Tk(n+4)-k/2 n (1..9)A2 -(n_i+2) /2

k=0
i=0

j= 0, 1, , M = 15,

(3. 2. 2)



where Tk = TT
k

(TT /2)k /2),
Trk = 1 /(M+1) = 1 /16 Aand cpi is as

defined above, k = 0,1, ... , M=15. For the loss function defined in

Section 2.3, the Bayes estimate is the integer k such that

Tr 1_(k I x ) is a maximum, 0< k < M=15.
p i L-% n

The results of the analysis of the transformed sunspot data by

the two methods is given in Table 3. 1. Note that FPE, is an abso-
J

lute minimum for j = 9, however it dropped to 0.1961 for
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j = 2

and hovers between 0.19 and 0.20 for order 2 through 15. The

posterior probability Tr
pi X

(j1 x ) is a distinct maximum for j = 2.n
Therefore, both methods support the widely accepted second order

for the transformed sunspot data, although a strict interpretation of

Akaike's method would lead to order nine.

3. Computer Simulations

The two methods are now applied to computer simulations of

time series corresponding to the following three models:

Model I: Xt = .3X t-1 + et ,

Model II: Xt = . 8X t- 1
+ Et , and

Model III: Xt = .5Xt 1
- .5Xt-2 + et ,

with 100 time series of sizes n = 50 and n = 100, for each

model. Note that both Models I and II have order p = 1 but the



Table 3.1. Wolfer's sunspot data -- Akaike's FPE criterion and the Bayesian posterior
probabilities for the order p.

j: 1 2 3 4 5 6 7

FPE. 1.0114 .3381 .1961 .1959 .1980 .1998 .1990 .1958

Trp IX(j I )n)
.0000 .0000 .7677 .2070 .0204 .0024 .0008 .0008

8 9 10 11 12 13 14 15

FPE. .1944 .1909 .1925 .1940 .1962 .1984 .1984 .2006
J

1TPIX(ii2En)
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000



coefficient of Xt-1 is more extreme in Model II. Model III has
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order p = 2. The coefficients of X
t - 1

and Xt2 are both

moderate. The results of the estimation of the orders of each time

series by the two methods are summarized in Table 3.2.

As one might expect, the order of Model I is more often under-

estimated than that of Model II, since the absolute value of (p1 is

smaller in Model I than in Model II. For the smaller time series,

n = 50, the Bayesian approach was slightly worse than Akaike's in

estimating the order of Model I, in that it failed more often to identify

the order as 1. Note, however, the Bayesian approach tends to

underestimate in this model, whereas the Akaike method tends to

overestimate the order in all the models. For the larger time series,

n = 100, both estimation procedures are more accurate, but the

Bayesian method appears superior.

Table 3.3 shows the maximum and minimum posterior probabil-

ities that j is the order for these computer simulations. From that

table, one can see the increase in number of observations from 50

to 100 has a substantial effect on the posterior probability distribu-

tion of the order. With minor exceptions, the maximum and minimum

probabilities for the correct order both increase and the maximum

and minimum probabilities both decrease for the incorrect orders.

Therefore, it can be seen in the analysis of both the sunspot

data and the computer simulations that the Bayesian procedure



Table 3.2. Comparison of Akaike's FPE criterion and the Bayesian method.

Model n 0 1 2 3 4 5 6 7 8 9 10

I 50 Akaike 25 55 9 5 2 1 3 0 0 0 0

Bayes 52 44 4 0 0 0 0 0 0 0 0

100 Akaike 5 66 15 6 3 2 0 3 0 0 0

Bayes 28 67 5 0 0 0 0 0 0 0 0

II 50 Akaike 0 77 16 3 3 1 0 0 0 0 0

Bayes 0 94 5 1 0 0 0 0 0 0 0

100 Akaike 0 79 12 2 2 1 1 1 1 1 0

Bayes 0 96 2 2 0 0 0 0 0 0 0

III 50 Akaike 0 2 81 7 6 1 1 1 0 0 1

Bayes 2 2 93 2 1 0 0 0 0 0 0

100 Akaike 0 0 67 12 9 7 3 0 1 0 1

Bayes 0 0 94 6 0 0 0 0 0 0 0
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Table 3.3. Minimum and maximum posterior probabilities
for the order in computer simulations.

n
50 100

Model min max min max

I

II

III

0 .0008 .8252 .0000 .8356
1 .0107 .8203 .1242 .8720
2 .0248 .7480 .0175 .7369
3 .0042 .2135 .0050 .1714
4 .0008 .0702 .0007 .0479
5 .0002 .1031 .0001 .1423
6 .0000 .0501 .0000 .0264
7 .0000 .0126 .0000 .0106
8 .0000 .0021 .0000 .0014
9 .0000 .0006 .0000 .0003

10 .0000 .0002 .0000 .0000

0 .0000 .1004 .0000 .0000
1 .0411 .8275 .1551 .8757
2 .0830 .7812 .0211 .5954
3 .0241 .3353 .0132 .6816
4 .0043 .2959 .0017 .1236
5 .0007 .0594 .0002 .0278
6 .0001 .0160 .0000 .0082
7 .0000 .0065 .0000 .0018
8 .0000 .0012 .0000 .0005
9 .0000 .0003 .0000 .0002

10 .0000 .0001 .0000 .0000

0 .0000 .5818 .0000 .0344
1 .0000 .5526 .0000 .2083
2 .0520 .8293 .0998 .8756
3 .0361 .4940 .0826 .7585
4 .0084 .5493 .0127 .2253
5 .0014 .1060 .0018 .3021
6 .0002 .0427 .0002 .0386
7 .0000 .0119 .0000 .0049
8 .0000 .0022 .0000 .0022
9 .0000 .0004 .0000 .0020

10 .0000 .0001 .0000 .0003
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outlined in Chapter II compares favorably with Akaike's FPE

procedure for large time series. For moderate to small time series

(n = 50) with the autoregressive parameter close to zero, as in

Model I, the Bayesian procedure tends to underestimate the order of

the model. A comparison of the maximum and minimum posterior

probabilities of the orders 0 through 10 for all three models

when n is increased from 50 to 100 indicate that the posterior

probabilities for incorrect orders are decreasing and the posterior

probabilities for the correct orders are increasing as the asymptotic

theory predicts.
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