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1. INTRODUCTION

1.1. Ranked set sampling

McIntyre (1952) introduced the concept of ranked set sampling (RSS) as a new sampling
scheme for data collection. Due to its importance for a variety of applications in statis-
tics, it is republished in McIntyre (2005) to estimate the mean of Australian pasture and
forage yields. As claimed by McIntyre (1952, 2005), the mean of the RSS is an unbiased
estimator of the population mean. Also, the variance of the RSS mean is smaller than
that of the simple random sampling (SRS) with equal number of measurement elements.
This sampling scheme is useful when it is difficult to measure large number of elements
but visually (without inspection) ranking some of them is easier. For example, in McIn-
tyre’s experiment the yields of pasture plots can be assessed without the actual laborious
process of weighing and mowing the hay for a lots of plots. Moreover, the RSS scheme
is also highly applicable in instances where measuring a variable of interest is difficult
and risky to measure. For example, in studying some diseases such as the yellowing of
the body of an infant, one of the main steps is to measure the bilirubin level of the infant
by taking their blood samples. However, it is risky and excruciating to take the blood
samples. It is rather easy to rank the babies and take the measurement of the bilirubin
level on their urine samples (Paul and Thomas, 2017).

The RSS consists of the following steps:
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1. randomly select m sets each of size m elements from the population under study
(typically m is in the range 2 to 5);

2. the elements for each set in Step (1) are ranked visually or by any negligible cost
method that does not require actual measurements;

3. select and quantify the i th minimum from the i th set, i = 1,2, ..., m, to get a new
set of size m, which is called the ranked set sample;

4. repeat Steps (1)-(3) h times (cycles) until obtaining a sample of size n = mh.

The i th data point (measured unit) acquired in the j th cycle is denoted by Y j i = X j (i),
i = 1,2, . . . , m, and j = 1,2, . . . , h. This version of RSS is a balanced RSS, in the sense
that in each cycle the number of data points is fixed. The following matrices clarify the
procedure of RSS.

Step 1:











X11 X12 · · · X1m
X21 X22 · · · X2m

...
...

. . .
...

Xm1 Xm2 · · · Xmm











Step 2:













X1(1) X1(2) · · · X1(m)
X2(1) X2(2) · · · X2(m)

...
...

. . .
...

Xm(1) Xm(2) · · · Xm(m)













Step 3: {X1(1), X2(2), . . . , Xm(m)} Step 4:











Y11 Y12 · · · Y1m
Y21 Y22 · · · Y2m

...
...

. . .
...

Yh1 Yh2 · · · Yh m











Note that although h ×m2 elements are sampled, only h ×m of them are selected
for measurement. In case of perfect ranking (no error was made in the ranking mecha-
nism) the measured elements are called the order statistics and they are not ordered (see
Navarro et al., 2007, for some examples where order statistics are not ordered). In case
of imperfect ranking the measured elements are called the judgment order statistics.

Dell and Clutter (1972) and Takahasi and Wakimoto (1968) explained the mathemat-
ical theory behind the claims of McIntyre (1952, 2005) by showing that the efficiency of
the RSS mean with respect to SRS, defined by the ratio of the variances of the two sample
means, is bounded by 1 and (m+ 1)/2. Moreover, Dell and Clutter (1972) also proved
that the RSS mean is at least as efficient as the SRS mean even when there are ranking
errors. For more about RSS see Al-Saleh and Samuh (2008), Samuh and Al-Saleh (2011),
Al-Nasser and Al-Omari (2015), Al-Omari and Haq (2015), Al-Omari (2016), Amro and
Samuh (2017), and Samuh (2017).

In the literature, some authors estimate the parameters of specific distributions using
RSS and some of its modifications. Bhoj (1997) obtained the estimates of the location
and scale parameters of the extreme value distribution using RSS. Abu-Dayyeh et al.
(2004) proposed some estimators for estimating the location and the scale parameters of
the logistic distribution using SRS, RSS and some of its other modifications. Parameter
estimation for the generalized logistic distribution is studied within the context of RSS
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by Khamnei and Abusaleh (2017). Esemen and Gürler (2017) investigated the method
of maximum likelihood of the shape and scale parameters of the generalized Rayleigh
distribution within the context of RSS. For more results and references, see Lam et al.
(1994), Bhoj and Ahsanullah (1996), Chacko and Thomas (2008), Al-Saleh and Diab
(2009), Sarikavanij et al. (2014), and Samuh and Qtait (2015).

The purpose of this paper is to study the maximum likelihood estimation of the
parameters concerning the new Weibull-Pareto distribution within the context of SRS,
RSS, median RSS (MRSS), and extreme RSS (ERSS).

The organization of the paper is the following. The new Weibull-Pareto distribution
is introduced in Section 2. Maximum likelihood estimation and Fisher information are
discussed in Section 3. Interval estimates for the parameters are constructed in Section 4.
A simulation study is carried out in Section 5. A real data application is presented in
Section 6. Finally, Section 7 concludes the paper.

2. THE NEW WEIBULL-PARETO DISTRIBUTION

The new Weibull-Pareto (NWP) distribution is defined by Nasiru and Luguterah (2015)
as a generalization of the Pareto distribution. It is of great interest and is popularly used
in analyzing lifetime data. For example, it is used by Nasiru and Luguterah (2015) to
model the exceedances of flood peaks (in m3/s ) of the Wheaton River near Carcross in
Yukon Territory, Canada. Aljarrah et al. (2015) used the NWP distribution to model
the remission times (in months) of a random sample of 128 bladder cancer patients.

The probability density function (pdf) of the NWP distribution, with shape param-
eter γ and scale parameters β and λ, is given by

f (x;β,γ ,λ) =
βγ

λ

� x
λ

�γ−1
e−β(

x
λ )

γ

, x > 0, β,γ ,λ > 0. (1)

The corresponding cumulative distribution function (cdf) is given by

F (x;β,γ ,λ) = 1− e−β(
x
λ )

γ

. (2)

The mean of the NWP distribution is

µ= E(X ) = λβ−1/γ Γ

�

1+
1
γ

�

(3)

with variance defined as

σ2 =Var(X ) = λ2β−2/γ

�

Γ

�

γ + 2
γ

�

− Γ
�

1+
1
γ

�2�

(4)

The pdf curves and their corresponding cdf curves of the NWP distribution for dif-
ferent values ofβ, γ , and λ are shown in Figure 1. For more details about the statistical
properties of the distribution see Nasiru and Luguterah (2015).
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Figure 1 – The pdf curves (left panel) and their corresponding cdf curves (right panel) of the NWP
distribution for different values of β, γ , and λ.
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3. MAXIMUM LIKELIHOOD ESTIMATION AND FISHER INFORMATION

In this section, the maximum likelihood estimation of the shape parameter γ and scale
parameters β and λ for NWP distribution based on SRS, RSS, MRSS, and ERSS is in-
vestigated.

3.1. Using SRS

Suppose X1,X2, . . . ,Xn be a random sample of size n selected from the NWP distribution
f (x;β,γ ,λ), where the values of β, γ , and λ are unknown. The likelihood function
LSRS (β,γ ,λ) is given by

LSRS (β,γ ,λ) =
n
∏

i=1

f (xi ;β,γ ,λ)

=
βnγ n∏n

i=1

� xi
λ

�

γ e−β
∑n

i=1(
xi
λ )γ

∏n
i=1 xi

. (5)

Thus, the log likelihood function lSRS (β,γ ,λ) is

lSRS (β,γ ,λ) = log LSRS (β,γ ,λ)

= n log(β)+ n log(γ )− nγ log(λ)+ γ
n
∑

i=1

log (xi )

−βλ−γ
�

n
∑

i=1

xγi

�

−
n
∑

i=1

log (xi ) . (6)

Differentiating the log likelihood function with respect to β, γ , and λ, respectively,
yields

∂ lSRS (β,γ ,λ)
∂ β

=
n
β
−λ−γ

�

n
∑

i=1

xγi

�

, (7)

∂ lSRS (β,γ ,λ)
∂ γ

=
n
γ
− n log(λ)+

n
∑

i=1

log (xi )−βλ
−γ
�

n
∑

i=1

xγi log (xi )
�

+βλ−γ log(λ)
�

n
∑

i=1

xγi

�

, (8)

and
∂ lSRS (β,γ ,λ)

∂ λ
=βγλ−γ−1

n
∑

i=1

xγi −
γn
λ

. (9)
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The MLE of β as a function of γ and λ, say β̂(γ ,λ), can be obtained as

β̂(γ ,λ) =
nλγ

∑n
i=1 xγi

, (10)

and the MLE of λ as a function of β and γ , say λ̂(β,γ ), can be obtained as

λ̂(β,γ ) =
�

β
∑n

i=1 xγi
n

�1/γ

. (11)

The MLE of γ cannot be written in explicit form. So, estimates for γ can be obtained by
using numerical methods. The mle2 function in the bbmle package in R (R Core Team,
2018) is used.

The Fisher information (FI) number is used to measure the amount of information
that an observable sample carries about the parameter(s). The FI number for the param-
eter θ is defined as

F I (θ) =−E
�

∂ 2 log L(θ)
∂ θ2

�

.

For a random sample X1,X2, . . . ,Xn from the NWP distribution, the FI numbers of
β, γ , and λ are, respectively, given by

F ISRS (β) =−E
�

∂ 2 lSRS (β,γ ,λ)
∂ β2

�

=
n
β2

, (12)

F ISRS (λ) =−E
�

∂ 2 lSRS (β,γ ,λ)
∂ λ2

�

=
nγ 2

λ2
, (13)

F ISRS (γ ) =−E
�

∂ 2 lSRS (β,γ ,λ)
∂ γ 2

�

=
n
�

6 log(β)(log(β)+ 2C − 2)+ 6(C − 1)2+π2
�

6γ 2
, (14)

where C =−Γ ′(1) is the Euler’s constant. The observed FI numbers are evaluated at the
maximum likelihood estimates.

3.2. Using RSS

Suppose {Y j i , j = 1,2, . . . , h, i = 1,2, . . . , m} be a RSS from an NWP distribution, where
h is the number of cycles and m is the set size. It can be seen from the structure of RSS
that the data are all mutually independent and, in addition, for each i = 1,2, . . . , m the
data are identically distributed. The distribution of the i th data point, for each j =
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1,2, . . . , h, is the same as the distribution of the i th order statistic of the random sample
X1,X2, . . . ,Xm , that is

fY j i
(y) = fX(i)

(y) =
m!

(i − 1)!(m− i)!
f (y) (F (y))i−1 (1− F (y))m−i

=
m!βγλ−γ yγ−1

�

1− eβλ
−γ (−yγ )

�i
e−βλ

−γ (m−i)yγ

(i − 1)!(m− i)!
�

eβλ−γ yγ − 1
� . (15)

The likelihood function of RSS {Y j i , j = 1,2, . . . , h, i = 1,2, . . . , m} is given by

LRSS (β,γ ,λ) =
m
∏

i=1

h
∏

j=1

fY j i
(y j i )

=
m
∏

i=1

h
∏

j=1

m!βγλ−γ yγ−1
j i

�

1− eβλ
−γ
�

−yγj i

��i
e−βλ

−γ (m−i)yγj i

(i − 1)!(m− i)!
�

eβλ
−γ yγj i − 1

�

=
βmhγmhλγ (−mh)∏m

i=1
∏h

j=1

�

1− e−βλ
−γ yγi j

�i

∏m
i=1
∏h

j=1

�

eβλ
−γ yγi j − 1

�

×
m
∏

i=1

h
∏

j=1

yγ−1
i j e−βλ

−γ∑m
i=1

∑h
j=1(m−i)yγi j . (16)

Thus, the log likelihood function is

lRSS (β,γ ,λ) =mh log(β)− γmh log(λ)+mh log(γ )

−
m
∑

i=1

h
∑

j=1

log
�

eβλ
−γ yγj i − 1

�

+
m
∑

i=1

h
∑

j=1

(γ − 1) log(y j i )

+
m
∑

i=1

h
∑

j=1

i log
�

1− e−βλ
−γ yγj i

�

−βλ−γ
 

m
∑

i=1

h
∑

j=1

(m− i)yγj i

!

. (17)

Differentiating lRSS (β,γ ,λ) with respect to β, γ , and λ, respectively, we get

∂ lRSS (β,γ ,λ)
∂ β

=
mh
β
−

m
∑

i=1

h
∑

j=1

λ−γ yγj i

�

eβλ
−γ yγj i − i

�

eβλ
−γ yγj i − 1

−λ−γ
m
∑

i=1

h
∑

j=1

(m− i)yγj i , (18)
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∂ lRSS (β,γ ,λ)
∂ γ

=
mh
γ
−mh log(λ)+

m
∑

i=1

h
∑

j=1

log(y j i )

+βλ−γ
m
∑

i=1

h
∑

j=1

(m− i)yγj i (log(λ)− log(y j i ))

+
m
∑

i=1

h
∑

j=1

βλ−γ yγj i (log(λ)− log(y j i ))
�

eβλ
−γ yγj i − i

�

eβλ
−γ yγj i − 1

, (19)

∂ lRSS (β,γ ,λ)
∂ λ

=−
γmh
λ
+βγλ−γ−1

m
∑

i=1

h
∑

j=1

(m− i)yγj i

+
m
∑

i=1

h
∑

j=1

βγλ−γ−1yγj i

�

eβλ
−γ yγj i − i

�

eβλ
−γ yγj i − 1

. (20)

The solutions of these equations give the MLEs of the parametersβ, γ and λ. How-
ever, the solutions are not in closed forms, and hence the estimates for β, γ and λ, can
be obtained by solving the equations numerically. Let us denote them by β̂RSS , γ̂RSS

and λ̂RSS , respectively.

3.3. Using ERSS

ERSS was proposed by Samawi et al. (1996). The procedure of the ERSS is described as
follows.

1. Randomly select m sets of size m elements each from the study population. These
may be denoted as set 1 = {Z∗11, Z∗12, . . . , Z∗1m}, set 2 = {Z∗21, Z∗22, . . . , Z∗2m}, and so
on till the last set, set m = {Z∗m1, Z∗m2, . . . , Z∗mm}. It is assumed that the largest
and lowest elements in each set can be determined virtually or by any negligible
cost method. This is of course, a simple and practical approach.

2. If m is even, measure the lowest ranked element in set 1. Repeat this procedure
for set 2 till set (m/2). Represent the measured elements as Z1, Z2, . . . , Z(m/2).
Furthermore, measure the largest ranked element in set (m/2+ 1). Repeat this
procedure for set (m/2+2) till the last set, set m. Represent the measured elements
as Z(m/2+1), Z(m/2+2), . . . , Zm .

3. If m is odd, measure the lowest ranked element in set 1. Repeat this procedure for
set 2 till set ((m−1)/2). Represent the measured elements as Z1, Z2, . . . , Z((m−1)/2).
Furthermore, measure the largest ranked element in set ((m+ 1)/2). Repeat this
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procedure for set ((m+3)/2) till set (m−1). Represent the measured elements as
Z((m+1)/2), Z((m+3)/2), . . . , Z(m−1). Elements in the last set can be measured in two
different ways:

• select the average of the measures of the lowest and the largest ranked ele-
ments, or

• measure the median ranked element, say Zm . In this paper, we consider this
way. The acquired sample, {Z1, Z2, . . . , Zm}, is called an ERSS of size m.

4. Independently repeat the steps h cycles, if needed, to acquire an ERSS of size n =
h ×m.

To this end, the ERSS scheme produces a data set as follows

Z= {Z j i}=











Z11 Z12 · · · Z1m
Z21 Z22 · · · Z2m

...
...

. . .
...

Zh1 Zh2 · · · Zh m











.

Accordingly, the likelihood function of the parameters depends on whether m is odd or
even. Let us denote the pdf of the i th order statistic by gi (z j i ). For even set size m, the
likelihood function of ERSS {Z j i , j = 1,2, . . . , h, i = 1,2, . . . , m} is given by

LERSSe
(β,γ ,λ) =

m
2
∏

i=1

h
∏

j=1

g1(z j i )
m
∏

i= m
2 +1

h
∏

j=1

gm(z j i )

=

m
2
∏

i=1

h
∏

j=1

mβγλ−γ zγ−1
j i e−mβλ−γ zγj i

×
m
∏

i= m
2 +1

h
∏

j=1

mβγλ−γ zγ−1
j i

�

1− e−βλ
−γ zγj i

�m

eβλ
−γ zγj i − 1

=
�

mβγλ−γ
�h m

m
∏

i=1

h
∏

j=1

zγ−1
j i

m
2
∏

i=1

h
∏

j=1

e−mβλ−γ zγj i

×
m
∏

i= m
2 +1

h
∏

j=1

�

1− e−βλ
−γ zγj i

�m

eβλ
−γ zγj i − 1

. (21)
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For odd set size m, the likelihood function is

LERSSo
(β,γ ,λ) =

m−1
2
∏

i=1

h
∏

j=1

g1(z j i )
m−1
∏

i= m+1
2

h
∏

j=1

gm(z j i )
m
∏

i=m

h
∏

j=1

g m+1
2
(z j i )

=

m−1
2
∏

i=1

h
∏

j=1

mβγλ−γ zγ−1
j i e−mβλ−γ zγj i

×
m−1
∏

i= m+1
2

h
∏

j=1

mβγλ−γ zγ−1
j i

�

1− e−βλ
−γ zγj i

�m

eβλ
−γ zγj i − 1

×
m
∏

i=m

h
∏

j=1

βγm!λ−γ zγ−1
j i e−

1
2β(m−1)λ−γ zγj i

�

1− eβλ
−γ
�

−zγj i

�
�

m+1
2

Γ
�

m+1
2

�2
�

eβλ
−γ zγj i − 1

�

=
m!h mh(m−1) (βγλ−γ )h m

Γ
�

m+1
2

�2h

m
∏

i=1

h
∏

j=1

zγ−1
j i

m−1
2
∏

i=1

h
∏

j=1

e−mβλ−γ zγj i

×
m−1
∏

i= m+1
2

h
∏

j=1

�

1− e−βλ
−γ zγj i

�m

eβλ
−γ zγj i − 1

×
m
∏

i=m

h
∏

j=1

e−
1
2β(m−1)λ−γ zγj i

�

1− eβλ
−γ
�

−zγj i

�
�

m+1
2

�

eβλ
−γ zγj i − 1

� . (22)

As there are no closed form of the MLEs under even and odd set size m, the MLEs
β̂ERSS , γ̂ERSS and λ̂ERSS are obtained numerically.

3.4. Using MRSS

MRSS was proposed by Muttlak (1997). The procedure of the MRSS is described as
follows.

1. Randomly select m random samples, each of size m elements, from a target pop-
ulation.

2. The elements of each random sample in Step 1 are ranked visually with regards to
the variable of interest.

3. From each sample in Step 2, if the set size m is odd select the [(m+1)/2]-th small-
est rank element i.e the median of each sample. While if the set size m is even select
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from the first m/2 samples the (m/2)-th smallest rank element and from the sec-
ond m/2 samples the [(m + 2)/2]-th smallest rank element. This step yields m
sample elements which is the median RSS.

4. Repeat Steps 1-3 h cycles until obtaining a sample of size n = mh.

Suppose X1,X2, . . . ,Xn be a random sample of size n selected from the NWP dis-
tribution f (x;β,γ ,λ). Let V = {V j i , j = 1,2, . . . , h, i = 1,2, . . . , m} be a MRSS; that
is

V j i =











X( m+1
2 )

if m is odd , i = 1, . . . , m & j = 1, . . . , h
X( m

2 )
if m is even , i = 1, . . . , m

2 & j = 1, . . . , h
X( m+2

2 )
if m is even , i = m+2

2 , . . . , m & j = 1, . . . , h.

The pdf of V j i is

gV j i
(v) =















g m+1
2
(v j i ) = fX

( m+1
2 )
(v) if m is odd , i = 1, . . . , m & j = 1, . . . , h

g m
2
(v j i ) = fX( m

2 )
(v) if m is even , i = 1, . . . , m

2 & j = 1, . . . , h

g m+2
2
(v j i ) = fX

( m+2
2 )
(v) if m is even , i = m+2

2 , . . . , m & j = 1, . . . , h.

The likelihood function of the parameters depends on whether m is odd or even. For
even set size m, the likelihood function of MRSS {V j i , j = 1,2, . . . , h, i = 1,2, . . . , m} is
given by

LM RSSe
(β,γ ,λ) =

m
2
∏

i=1

h
∏

j=1

g m
2
(v j i )

m
∏

i= m
2 +1

h
∏

j=1

g m+2
2
(v j i )

=

m
2
∏

i=1

h
∏

j=1

βγm!λ−γ vγ−1
j i e−

1
2βmλ−γ vγj i

�

1− eβλ
−γ
�

−vγj i

�
�m/2

Γ
� m

2 + 1
�

Γ
� m

2

�

�

eβλ
−γ vγj i − 1

�

×
m
∏

i= m
2 +1

h
∏

j=1

βγm!λ−γ vγ−1
j i e−

1
2βmλ−γ vγj i

�

1− eβλ
−γ
�

−vγj i

�
�m/2

Γ
� m

2 + 1
�

Γ
� m

2

�

=
�

m!βγλ−γ

Γ
� m

2 + 1
�

Γ
� m

2

�

�h m m/2
∏

i=1

h
∏

j=1

1
�

eβλ
−γ vγj i − 1

�

×
m
∏

i=1

h
∏

j=1

e−
1
2βmλ−γ vγj i

�

1− eβλ
−γ
�

−vγj i

�
�m/2

. (23)
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For odd set size m, the likelihood function is

LM RSSo
(β,γ ,λ) =

m
∏

i=1

h
∏

j=1

g m+1
2
(v j i )

=
m
∏

i=1

h
∏

j=1

βγm!λ−γ vγ−1
j i e−

1
2β(m−1)λ−γ vγj i

�

1− eβλ
−γ
�

−vγj i

�
�

m+1
2

Γ
�

m+1
2

�2
�

eβλ
−γ vγj i − 1

�

=





m!βγλ−γ

Γ
�

m+1
2

�2





h m
m
∏

i=1

h
∏

j=1

vγ−1
j i e−

1
2β(m−1)λ−γ vγj i
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Again, there are no closed form of the MLEs under even and odd set size m, the
MLEs β̂M RSS , γ̂M RSS and λ̂M RSS are obtained numerically.

The comparison between different estimators of a specific parameter θ can be done
using the asymptotic efficiency (see Basu, 1956). The asymptotic efficiency of θ̂1 with
respect to θ̂2 for estimating θ is defined by

Aeff(θ̂1; θ̂2) = lim
n→∞

eff(θ̂1; θ̂2) =
F I1(θ)
F I2(θ)

.

Since the FI numbers ofβ, γ , and λ cannot be obtained in closed form under RSS, ERSS,
and MRSS, their values will be obtained through a simulation study.

4. INTERVAL ESTIMATES

Let X1, . . . ,Xn be a random sample from f (x;θ), where θ is an unknown quantity. A
confidence interval for the parameter θ, with confidence coefficient 1−α, is an interval
with random endpoints [L(X1, . . . ,Xn), U (X1, . . . ,Xn)]. It is given by

P (L(X1, . . . ,Xn)≤ θ≤U (X1, . . . ,Xn)) = 1−α.

The interval [L(X1, . . . ,Xn), U (X1, . . . ,Xn)] is the well-known 100(1− α)% confidence
interval for θ. Moreover, let θ̂ be the MLE of θ. It is well known that, under some mild
regularity conditions (see Davison, 2008, p. 118), the MLE has the following properties:

1. θ̂ is asymptotically consistent;

2. θ̂ is asymptotically unbiased;

3. the sampling distribution of θ̂ is asymptotically normal with its variance obtained
from the inverse Fisher information number of sample size 1 at the unknown
parameter θ; that is, θ̂M LE →N

�

θ, F I−1(θ)
�

as n→∞.
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Accordingly, the approximate 100(1−α)% confidence limits for θ̂ of θ can be con-
structed as

P



−z α
2
≤ θ̂−θ
q

F I−1(θ̂)
≤ z α

2



= 1−α,

where zα is the αth upper percentile of the standard normal distribution.
Therefore, the approximate 100(1− α)% confidence limits for the parameters β, γ

and λ of the NWP distribution are given, respectively, by

P
�

β̂− z α
2

Ç

F I−1(β̂)≤β≤ β̂+ z α
2

Ç

F I−1(β̂)
�

= 1−α,

P
�

γ̂ − z α
2

Ç

F I−1(γ̂ )≤ γ ≤ γ̂ + z α
2

Ç

F I−1(γ̂ )
�

= 1−α,

P
�

λ̂− z α
2

Ç

F I−1(λ̂)≤ λ≤ λ̂+ z α
2

Ç

F I−1(λ̂)
�

= 1−α.

5. SIMULATION STUDY

To investigate the properties of the proposed MLEs of the parametersβ, γ and λ of the
NWP distribution a simulation study is conducted. Monte Carlo simulation is applied
for different sample sizes, m = {4,5} and h = {10,50,100}, for the parameter values
(β = 1.5,γ = 1,λ = 0.5) and (β = 0.5,γ = 2,λ = 1.5). Biases and MSEs of the MLEs
of β, γ and λ are computed over 10000 replications under SRS, RSS, ERSS, and MRSS,
where

Bias(θ̂) = E(θ̂−θ),

and
MSE(θ̂) = E(θ̂−θ)2.

The results are shown in Tables 1 and 2. It can be seen from these results that esti-
mates ofβ, γ and λ based on RSS, ERSS, and MRSS have smaller biases and MSEs than
the corresponding estimates based on SRS. Biases and MSEs in RSS, ERSS, and MRSS
decrease as set sizes and/or number of cycle increase. Moreover, one can see from Ta-
bles 1 and 2 that the MLEs derived by RSS, ERSS, and MRSS are more efficient than
SRS estimators. Furthermore, a 95% asymptotic confidence interval of β, γ and λ un-
der SRS, RSS, ERSS, and MRSS are calculated and the results are displayed in Tables 3
and 4. It can be concluded that the widths of the intervals constructed by RSS, ERSS,
and MRSS are narrower than the one constructed by SRS.
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TABLE 3
A 95% asymptotic confidence interval for (β= 1.5,γ = 1,λ= 0.5) under SRS, RSS, ERSS, and

MRSS.

SRS RSS
Parameter Interval Width Interval Width
β (1.426, 1.685) 0.259 (1.444, 1.643) 0.198
γ (0.936, 1.071) 0.135 (0.950, 1.054) 0.104
λ (0.466, 0.570) 0.104 (0.477, 0.552) 0.075

ERSS MRSS
Parameter Interval Width Interval Width
β (1.443, 1.646) 0.204 (1.442, 1.650) 0.208
γ (0.953, 1.050) 0.097 (0.938, 1.068) 0.130
λ (0.477, 0.552) 0.076 (0.473, 0.556) 0.083

TABLE 4
A 95% asymptotic confidence interval for (β= 0.5,γ = 2,λ= 1.5) under SRS, RSS, ERSS, and

MRSS.

SRS RSS
Parameter Interval Width Interval Width
β (0.445, 0.617) 0.173 (0.464, 0.585) 0.122
γ (1.871, 2.141) 0.270 (1.898, 2.110) 0.213
λ (1.440, 1.652) 0.212 (1.452, 1.622) 0.170

ERSS MRSS
Parameter Interval Width Interval Width
β (0.460, 0.593) 0.133 (0.467, 0.579) 0.112
γ (1.904, 2.102) 0.198 (1.875, 2.135) 0.260
λ (1.450, 1.630) 0.180 (1.454, 1.614) 0.160
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6. REAL DATA APPLICATION

In this section, a real-life data set is analyzed for the purpose of illustration to show the
usefulness of the RSS, MRSS, and ERSS schemes in reducing the MSEs of the estimators
comparing with the traditional SRS scheme. Data set includes the 72 exceedances of
flood peaks (in m3/s ) of the Wheaton River near Carcross in Yukon Territory, Canada,
for the year 1958-1984, rounded to one decimal place (Choulakian and Stephens, 2001).
The observations are given in Table 5.

TABLE 5
Exceedances (in m3/s ) of Wheaton river flood data.

1.7 2.2 14.4 1.1 0.4 20.6 5.3 0.7 1.4 18.7 8.5 25.5
11.6 14.1 22.1 1.1 0.6 2.2 39.0 0.3 15.0 11.0 7.3 22.9
0.9 1.7 7.0 20.1 0.4 2.8 14.1 9.9 5.6 30.8 13.3 4.2
25.5 3.4 11.9 21.5 1.5 2.5 27.4 1.0 27.1 20.2 16.8 5.3
1.9 10.4 13.0 10.7 12.0 30.0 9.3 3.6 2.5 27.6 14.4 36.4
1.7 2.7 37.6 64.0 1.7 9.7 0.1 27.5 1.1 2.5 0.6 27.0

To assess whether this data set is well-modeled by a NWP distribution, Kolmogorov-
Smirnov test is applied. The MLEs of the parameters β,γ ,λ and the p-value of the
Kolmogorov-Smirnov test are 0.238,0.883,2.24 and 0.3526, respectively. The p-value is
not significant, and thus, the data can be modeled by the NWP distribution.

For purposes of comparison, a SRS of size 15 is drawn from this data set, and in
RSS and its modifications m = 3 and h = 5 are chosen. The NWP distribution is fitted
to each of these samples (SRS, RSS, MRSS, and ERSS). For each of them, the MLEs,
the Akaike information criterion (AIC), and Bayesian information criterion (BIC) are
evaluated and the results are reported in Table 6. According to the values of AIC and
BIC, data obtained by RSS is the best data fitted by the NWP distribution.

TABLE 6
The MLEs, -2LL, AIC, and BIC values for Exceedances of Wheaton river flood data under SRS, RSS,

MRSS, and ERSS.

Sampling Parameter Estimates (β̂, γ̂ , λ̂) -2LL AIC BIC
SRS (0.199, 0.886, 2.487) -56.629 119.258 121.382
RSS (0.311, 0.776, 2.334) -51.498 108.996 111.120
MRSS (0.064, 1.696, 3.408) -53.418 112.837 114.961
ERSS (0.269, 0.843, 2.411) -52.515 111.030 113.154

7. CONCLUDING REMARKS AND FURTHER WORK

In this paper, maximum likelihood estimation for estimating the unknown parameters
of new Weibull Pareto distribution is studied in the RSS framework and some of its
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modifications. Since solutions of these estimators have no closed forms, the new ob-
tained estimators are compared via a simulation study with the conventional estimators
obtained by SRS. Two criteria are used for comparison, the mean squared errors and the
bias values. It is found that the biases and MSEs of the estimators under RSS, ERSS, and
MRSS are smaller than the corresponding estimators obtained by SRS. Thus, estimation
based on RSS scheme and its modification are more efficient than estimation under the
SRS scheme. Also, to evaluate the precision of the estimators, confidence intervals for
the unknown parameters are constructed. It is found that the estimators obtained by
RSS, ERSS, and MRSS are more precise than the corresponding estimators obtained by
SRS.

Finally, it is worth mentioning that in this paper perfect RSS is investigated, and it is
of great interest to study how information can be lost due to imperfect ranking. Thus,
this study can be extended to include imperfect RSS schemes provided that a multivariate
(or bivariate) version of the NWP distribution must be derived, however this is left as a
future work.
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SUMMARY

The method of maximum likelihood estimation based on ranked set sampling (RSS) and some of
its modifications is used to estimate the unknown parameters of the new Weibull-Pareto distri-
bution. The estimators are compared with the conventional estimators based on simple random
sampling (SRS). The biases, mean squared errors, and confidence intervals are used to the com-
parison. The effect of the set size and number of cycles of the RSS schemes are addressed. Monte
Carlo simulation is carried out by using R. The results showed that the RSS estimators are more
efficient than their competitors using SRS.

Keywords: New Weibull-Pareto distribution; Fisher information; Maximum likelihood estima-
tion; Ranked set sampling.


