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Summary

The ROC (Receiver Operating Characteristic) curve is the most commonly used statistical tool for
describing the discriminatory accuracy of a diagnostic test. Classical estimation of the ROC curve
relies on data from a simple random sample from the target population. In practice, estimation is
often complicated due to not all subjects undergoing a definitive assessment of disease status
(verification). Estimation of the ROC curve based on data only from subjects with verified disease
status may be badly biased. In this work we investigate the properties of the doubly robust (DR)
method for estimating the ROC curve under verification bias originally developed by Rotnitzky et
al. (2006) for estimating the area under the ROC curve. The DR method can be applied for
continuous scaled tests and allows for a non ignorable process of selection to verification. We
develop the estimator's asymptotic distribution and examine its finite sample properties via a
simulation study. We exemplify the DR procedure for estimation of ROC curves with data
collected on patients undergoing electron beam computer tomography, a diagnostic test for
calcification of the arteries.
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1 Introduction

The ROC (Receiver Operating Characteristic) curve is the most commonly used summary
measure for describing the discriminatory accuracy of a diagnostic test in distinguishing
between diseased and healthy individuals. Ideally, the estimation of the ROC curve relies on
a random sample from the target population comprised of healthy and diseased subjects.
However, often in practice, not all subjects undergo the definitive assessment of disease
since the verification procedure is expensive, invasive or both. This results in some
individuals having missing information on their disease status. The decision to send a patient
to verification is often based on the test result and other patient characteristics. As noted by
many authors (Begg and Greenes 1983; Zhou, 1994, 1998a) estimators of the ROC curve
and other summary measures of test performance based on data from patients with verified
disease status only may be badly biased. This bias is usually referred to as verification bias.
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The methods developed in the literature for correcting verification bias are usually based on
the following assumptions that limit their usefulness in applications. First, most currently
available methods assume that the diagnostic test's scale is ordinal (Begg and Greenes, 1983;
Gray et al., 1984; Baker, 1995; Toledano and Gatsonis 1996; Zhou, 1996, 1998a,b,c;
Rodenberg and Zhou, 2000). Yet many important emerging tests are measured on a
continuous scale. Second, with the exception of few articles which only deal with
dichotomous diagnostic tests (e.g. Baker, 1995; Zhou, 1993, 1994; Kosinski and Barnhart,
2003), currently available methods assume that the decision to send a patient to verification
is conditionally independent of the true disease status of the patient given the test results and
possibly other observed covariates (see Alonzo and Pepe, 2005, for continuous scales), or
equivalently, that the missing disease status is missing at random (MAR) (Rubin,1976).
However, usually the doctor's decision to send a patient to verification will be based on his/
her detailed information on the patient's health, which can hardly ever be accurately
summarized by the test result and other measured covariates. The aforementioned methods
can yield biased estimates in this case because the assumption of MAR data no longer holds
since non-response and true disease status are dependent even after adjusting for measured
variables. In such a case, the missing process on the disease status is known as non-
ignorable.

As an example, consider a study run by the Nuclear Imaging Group at Cedars Sinai Medical
Center discussed by Rotnitzky et al. (2006). A diagnostic test for coronary artery disease,
electron beam computed tomography (EBCT) (Braun et al., 1996), was performed on 5130
males, of which only 379 of these had disease status checked with the more expensive Dual
Isotope Myocardial Perfusion Single Photon Emission Computed Tomography (SPECT)
test. Of the verified subjects only 28 were found to be diseased. The EBCT distribution of
non-verified subjects is markedly skewed to the right (when compared to the verified
subjects) indicating that subjects with lower values of the marker are less likely than others
to be verified. It is indeed very likely that doctors based their decision to send a patient to
have a SPECT test not just on the values of the EBCT marker, but on other clinical variables
not available for data analysis.

Rotnitzky et al. (2006) discuss an alternative estimation approach in the context of the
estimation of the Area under the ROC curve (AUC). Their approach can be used with either
continuous or ordinal markers and is especially suitable for conducting sensitivity analysis
to different degrees of residual association between selection to verification and true disease
status after adjusting for the markers and other measured explanatory variables. In Section 2
we review Rotnitzky et al. approach for correcting for verification bias, extend this method
to the estimation of the ROC curve and obtain the asymptotic properties of our estimator. In
Section 3 we discuss a few extensions. In Section 4 we report the results of a simulation
study. In Section 5 we apply the proposed methods to the EBCT data and conclude with a
discussion in Section 6.

2 Adjusting for Verification Bias

Suppose that on each subject i of a random sample of n patients, we measure a diagnostic
test result Yi which can be continuous or ordinal, and a covariate vector Vi of health and
demographic variables. Let Xi be the indicator of true disease status of patient i, Xi = 1 if
patient i has the disease of concern, and Xi = 0 otherwise. Suppose that Xi is missing in a
subset of the study participants because not all subjects undergo the definitive assessment of
disease. Let Ri = 1 if patient i is sent to verification (i.e. if Xi is observed) and Ri = 0
otherwise. The vectors (Xi, Yi, Vi, Ri), i = 1, ..., n are independent identically distributed
(i.i.d) copies of a random vector (X, Y, V, R). Under our model the observed data are
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comprised of n i.i.d copies Oi of the random vector O = (R, c (R, X, Y, V)) where c (1, X, Y,
V) = (X, Y, V) and c (0, X, Y, V) = (Y, V).

Suppose that a subject i were to be classified as diseased if Ti = I (Yi > c) is equal to 1 and
as non-diseased if Ti = 0, for a given constant c. The sensitivity, Se(c) = Pr(Y > c|X = 1),
and specificity, Sp(c) = Pr(Y < c|X = 0), would then be the probability of diagnosing a
diseased and a healthy person correctly, respectively. For notational convenience, in what
follows the c will on occasions be dropped. The theoretical ROC curve is the plot of
sensitivity against 1-specificity for all possible values of c. Consequently estimation of the
ROC curve follows immediately from estimation of the θ(c) = (Se(c), Sp(c)) pairs.
Supposing that all patients are verified (i.e.  Ri = 1), the empirical estimator

(2.1)

is consistent for θ(c). If not all subjects undergo verification, i.e. if Ri is not 1 for all i, but
the process of selection to verification is completely random, i.e. if Ri and Xi are

independent, then  calculated from verified subjects only remains consistent for θ(c).
However, if Ri and Xi are correlated, then this naive estimator will lead to inconsistent
estimates of θ.

The key issue that complicates the analysis is that both Se(c) and Sp(c) are unidentified from
the observed data Oi, i = 1, ..., n. That is, there exist many curves Se(c) and Sp(c), c ∈ R,
compatible with the distribution of Oi, so that even in the ideal situation in which the
distribution of the observed data were perfectly known, there would remain uncertainty
about the true ROC curve. To identify the ROC curve and associated summary measures one
needs to make untestable assumptions, i.e. assumptions that cannot be rejected by any
statistical test no matter how large n is. Rotnitzky et al. (2006) argued that the area under the
ROC curve is identified under the following untestable assumption,

(2.2)

where q (Y, V) is an arbitrary specified (i.e. known) function and h (Y, V) is an arbitrary but
unknown function. Indeed, this assumption suffices also to identify θ(c) for any fixed c.

Application of Bayes rule shows that (2.2) holds for some h (Y, V) if and only if

(2.3)

where c (Y, V) = E {exp (q (Y, V) X) |R = 1, Y, V} (Rotnitzky et al., 2006). The function q
(Y, V) measures the degree of the residual association between R and X within levels of Y
and V. For example, the choice q (Y, V) = −1 indicates that the residual association is
constant within levels of (Y, V) and such that among subjects with identical values of (Y,
V), the odds of being sent to verification is exp (1) = 2.71 times larger for diseased subjects
than for non-diseased subjects. The choice q (Y, V) = 0 for all V and Y corresponds to the
assumption that the missing disease status is missing at random. In general, when q (Y, V) ≠
0, the selection process is said to be non-ignorable.
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We refer to the model that assumes just (2.2) with specified q (Y, V) and h (Y, V) unknown

(or equivalently equation (2.3) with specified q (Y, V)) as model . Arguing as in
Scharfstein et al. (1999), it can be shown that imposing a given choice of q does not restrict

the observed data distribution. That is, model  is a non-parametric model for the
distribution of O. Since all values of the selection bias parameter determine the same model
for the observed data distribution, the selection bias parameter is untestable, because any q
will perfectly fit the observed data. Following Robins et al. (2000) we therefore recommend
conducting inference about θ(c) by repeating the estimation under different plausible
choices for the selection bias function q as a form of sensitivity analysis to different degrees
of selection bias. This raises the question of how to choose the selection bias functions in
practice. We suggest that one chooses a collection of simple selection bias functions indexed
by one or two parameters β that are to be varied in a sensitivity analysis, with values of the
parameters equal to zero corresponding to the function q = 0. For example, the choice q (Y,
V) = β is tantamount to assuming that the odds of verification of diseased vs non-diseased
subjects is constant across all values of the marker and the auxiliary V and equal to exp (–β).
This is the choice used in our simulation study in Section 4. One could consider the choice q
(Y, V) = β0 + β1Y if the investigator believed that the odds of verification of diseased vs
non-diseased subjects is modified by the values of Y, this modification being monotone in
Y.

The identity (2.3) implies that

Consequently, writing Se(c) as E {E (X|Y, V, R) T} / E {E (X|Y, V, R)} and Sp(c) as E {[1

– E (X|Y, V, R)] (1 – T)} / E {[1 – E (X|Y, V, R)]} we obtain that under model 

(2.4)

and

(2.5)

Likewise, letting π (Y, V) denote the quantity (1 + exp {h (Y, V) + q (Y, V) X})−1, the

identity (2.2) implies that P (R = 1|X, Y, V) = π (Y, V). Consequently, under modelg ,
Se(c) and Sp(c) can be expressed also as

(2.6)

Model  implicitly assumes that all subjects have a positive probability of being
selected for verification regardless of the values of their test results and covariates. See
Rotnitzky et al. (2006) for a discussion of the possibility of relaxing this condition. For
technical reasons related to the finiteness of the variance of the estimators that we will
propose later, we further need to assume that
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(2.7)

Unfortunately, though sufficient for identification, model  is insufficient for estimation
of θ(c) due to the curse of dimensionality. Specifically, expressions (2.4), (2.5) and (2.6)

imply that if one were to estimate θ(c) under model , one would need to non-
parametrically estimate either the function h (Y, V) or the conditional expectation E (X|Y,
V, R = 1) using smoothing techniques, a practically unfeasible task when the dimension of V
is large. Nevertheless, the expressions (2.4), (2.5) and (2.6) suggest two alternative
dimension reducing strategies for estimating θ(c).

The first option is to assume that the unknown function h (Y, V) follows a parametric model

(2.8)

where h (Y, V; γ) is smooth in γ and γ0 is an unknown ph × 1 finite dimensional parameter.
Assumption (2.8) and assumption (2.2) with specified q (Y, V) define a semiparametric

model for the observed data which for ease of reference we refer to as . Note that this
model imposes just a, possibly non-linear, logistic regression model on the selection
probabilities with offset q (Y, V) X. Expressions (2.6) imply that one can obtain a consistent
and asymptotically normal estimator estimator of θ(c), throughout referred to as inverse
probability weighted (IPW) estimator, under model B (q) by replacing Xi in (2.1) with

 Xi, where π (Y, V; γ) = (1 + exp {h (Y, V; γ) + q (Y, V) X})−1 and  is a

consistent estimator of γ0. Unfortunately, even though under model , R follows a

logistic regression on Y, X and V, we cannot find  from a standard logistic regression fit
with offset because the offset q (Y, V) X is not observed when R = 0. Instead, following

Rotnitzky et al. (2006) we can compute  as the solution to

(2.9)

where  and u (Y, V) is an arbitrary, user specified,
column vector function of the same dimension as γ. The choice of u impacts the efficiency
with which we estimate γ. Using the theoretical results in Rotnitzky and Robins (1997), it
can be shown that if u (Y, V) is equal to

(2.10)

then the solution  of (2.9) has asymptotic variance equal to the semiparametric variance

bound for estimators of γ under model . Note, in particular, that for the choice q (Y,

V) = 0, B (γ; u) reduces to  which, at γ0, is equal to
the score, i.e. the derivative of the log-likelihood for γ, in the logistic regression model logit
P (R = 1|Y, V) = –h (Y, V; γ).

A second option is to assume that E (X|Y, V, R = 1) = Pr (X = 1|R = 1, Y, V) follows a
parametric model

(2.11)
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where m (Y, V; μ) is a known function, smooth in μ, and μ0 is an unknown pm × 1
parameter vector. Assumption (2.11) is a model for the disease probabilities among the
verified subjects. The model defined by (2.3) with specified q (Y, V) and (2.11) is a

semiparametric model for the law of the observed data which we will denote with .

The Semi-Parametric Maximum Likelihood (SPML) estimator of θ(c) under model  is

obtained by replacing each Xi in (2.1) with , where

with Pr (X = 1|R = 1, Y, V; μ) = exp {m (Y, V; μ)} / [1 + exp {m (Y, V; μ)}], and  solves
the score equations

with .

Neither option is entirely satisfactory because option 1 results in inconsistent estimation if

model  is incorrect and option 2 results in inconsistent estimation if model  is
misspecified. There is yet a third option which provides an estimator consistent for θ(c)

under either model  or model  but not necessarily both. Specifically, define

where

Let  be the estimator of θ obtained by replacing each Xi in (2.1) with . That is,

The estimator  is said to be double-robust because, as stated in Theorem 1 below, it is

consistent and asymptotically normal for θ so long as model , condition (2.7) and one
of the models (2.11) or (2.8) holds, but not necessarily both. The key to the consistency of

 lies in the fact that if model  holds then, if model (2.11) additionally holds,

or if model (2.8) additionally holds,
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In contrast to the first two estimators IPW and SPML, the double-robust estimator  gives
the analyst two chances, instead of only one, to get nearly correct inference. Of course, there
can be an efficiency price to using the DR estimator. If the disease regression model (2.11)
is correct both the DR estimator and the SPML estimator will be consistent but the DR
estimator will generally have larger (asymptotic) variance. Clearly, the efficiency gains over

 are obtained at the cost of potential severe bias.

An interesting remark is that, invoking the theoretical results of Rotnitzky and Robins, 1997,

it can be shown that if we use uopt (Y, V) to compute  then the  that uses this  is

locally semiparametric efficient under model  at the local model . This means

that, if both models  and  are correct,  has asymptotic variance that attains the

semiparametric variance bound for estimators bof θ(c) under model . This  is
unfeasible because to compute uopt (Y, V) we need to know γ0 and, when qB(Y, V) ≠ 0, we
also need the conditional probabilities P (X = 1|R = 1, Y, V). However, a feasible double-

robust estimator that retains the local efficiency properties of the unfeasible  can be

obtained with the following two-stage algorithm. At the first stage we compute  and a

preliminary estimator  that solves (2.9) using any u (Y, V). We then calculate the function

 (Y, V) defined like uopt (Y, V) in (2.10) but with  replacing γ0 and with the

bexpectations in the numerator and denominator computed under P (X = 1|R = 1, Y, V; ).

At the second stage, we compute  solving (2.9) with u replaced by  and finally compute

 using this . This remark raises the interesting point of how much efficiency is gained

by the two-stage locally efficient  compared to the single stage  computed using  and

the preliminary . Our simulation study in Section 4 explores this issue using the natural,

easy to compute, choice of u (Y, V) = ∂h (Y, V; γ) /∂γ for the preliminary estimator . For
this choice, the theoretical results of Rotnitzky and Robins, 1997, imply that the single stage
and the two-stage estimators are equally asymptotically efficient if q (Y, V) = 0 but the two-
stage estimator has strictly smaller asymptotic variance if q (Y, V) ≠ 0. For ease of

reference, we call the single stage estimator  that uses  with u (Y, V) = ∂h (Y, V; γ) /

∂γ the DR1 estimator and we call the two-stage estimator  using this  as the
preliminary estimator of γ, the DR2 estimator.

Alonzo and Pepe (AP), 2005, derived a locally-efficient double-robust estimator that, except

for a minor difference in the computation of , is computed identically to our DR2 estimator
in the case q = 0. Note that when q = 0, the function uopt (Y, V) reduces to

. The distinction in the computation of  between our

procedure and that of AP is that our  solves (2.9) with u (Y, V) replaced by

 while AP's  solves (2.9) but with u (Y, V) replaced by
the function u (Y, V; γ) = π (Y, V; γ) × ∂h (Y, V; γ) / ∂γ, depending on the unknown γ. It
is easy to show that both estimators of γ are asymptotically equivalent and efficient.
Consequently, when q = 0, our DR2 estimator is asymptotically equivalent to AP's estimator
of θ.

The following Theorem whose proof is sketched in the Appendix establishes the asymptotic

properties of the estimator  computed using any fixed function u (Y, V) . In particular, it
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establishes the double-robustness property of . It also provides a consistent variance

estimator when model , condition (2.7) and either model (2.11) or model (2.8) holds.
Further details can be found in Fluss (2006). To state the theorem define θ1 = Se (c) and θ2
= Sp (c), κ = E (X),

where γ* and μ* are the probability limits of  and . Note that under standard regularity
conditions for L-estimators (see for example, van der Vaart (1998)), γ* = γ0 when model
(2.8) holds and μ* = μ0 when model (2.11) holds.

Theorem 1 Suppose that model  and (2.7) hold. Under standard regularity conditions
for L-estimators, if model (2.8) and (2.7) hold or if model (2.11) holds,

, where Ω = Cov(M). Ω can be consistently estimated with

 where

2.1 Illustrative Example

To illustrate our double-robust estimator of the ROC curve we used simulated data
following the model used by Rotnitzky et al. (2006) in their simulation study. We first
generated for each of n=200 subjects a binary disease indicator X ∼ Bernoulli(0.3), such that
approximately 30% of subjects were diseased. We further simulated a continuous marker Y
from the model Y|X = x ∼ N (0.37x, 0.52) , a binary covariate V = I (X – 0.3 + ε > 0) (and
hence conditionally independent of Y) where ε ∼ N (0, 0.32) , and a response indicator R
following the selection for verification model (2.8) with h (Y, V) = γ0 + γ1Y + γ2V and q
(Y, V) = β with (γ0, γ1, γ2) = (3, −2, −3) and β = −1. The values of (γ0, γ1, γ2, β) were
chosen so that roughly 70% of the X′s would be missing. The covariate V was purposely
chosen to have a large correlation (roughly 0.75) with X so that the bias of the estimator
based on the verified patients only, be large. The empirical DR1 ROC curves were obtained
by estimating Se (c) and Sp (c) as described above for every c ∊ {y1, ..., yn} where the yi's
represent the 200 simulated values of Y. Figure 1 illustrates several estimated ROC curves
using one simulated sample along with the true and unknown ROC curve (smooth line). For
comparison we added the biased estimator (NAIVE) using formula (2.1) based on verified
subjects only and the (unfeasible) complete data estimator (COMPLETE) using the entire
sample. We also added the estimator assuming missing at random (MAR) using q = 0.

FLUSS et al. Page 8

Biom J. Author manuscript; available in PMC 2012 October 18.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Notice the large bias of the NAIVE curve whereas the DR1 is closer to both the complete
data estimator and true ROC. DR2 is very similar to DR1 and is not exhibited. The MAR
curve is farther from the true ROC than DR1.

3 Comments on DR estimation of the ROC curve

3.1 Monotonicity and Range

The true Se(c) and 1 – Sp(c) are non-increasing (decreasing for continuous markers) in c and
so the ROC curve is a monotonic non-decreasing (increasing for continuous markers)
function of 1 – Sp (c). However, as noticeable in our example (Figure ??), the DR estimate
of the ROC curve is not necessarily non-decreasing. Further, the ROC curve can attain

values out of the possible range of [0, 1]. Both are due to the possibility of  being
outside of the interval [0, 1].

Non-monotonicity can be corrected by applying an isotonic regression on the estimated
sensitivity and specificity. For the sensitivity, the isotonic regression estimator is defined as

follows. Let  be the n × 1 vector with jth coordinate  equal to , the double-robust
estimator of Se (cj). For any non-increasing function f (·) on the reals, define the n × 1 vector
f whose jth is equal to f (cj). Define

where for any n × 1 vector u, . The isotonic regression estimator of Se (cj) is

defined as  (Barlow et al., 1978). As indicated by these authors, the restricted

minimization needed to compute , can be carried out using the pooled-adjacent-violators
(PAV) algorithm. Following the theory in Barlow et al. (1978, Theorem, 2,2) it can be

shown that convergence in probability of  to Sej for all j = 1, ..., n, implies the

consistency of  as an estimator Sej for each j. The isotonic regression is commonly
recommended for adjusting non-monotonic estimators of monotonic functions. For example,
see Jewell and Van der Laan (2004) in the context of estimating the survival function
estimation with censored data and Alonzo and Pepe (2005) for estimation of the ROC curve
under verification bias assuming a MAR process.

After applying the PAV algorithm to both the estimated sensitivity and specificity, these
resulting estimates can still be outside the range [0, 1]. We correct for this by adjusting the
DR estimates greater than 1 (or less than 0) to be 1 (or 0). We refer to these adjusted
estimates as DR-PAV. In Figure 2 we present the DR-PAV estimated ROC curve of the
illustrative example (Section 2.1). The general form of the ROC curve remains the same but
the curve is much smoother now. Formulae for the asymptotic variance of the DR-PAV
estimate is not presently available. However, we speculate that the non-parametric bootstrap

estimator of variance is a consistent estimator of the asymptotic variance of . The
simulation results presented in Section 4 support our speculation. Further theoretical
investigations are needed to confirm this speculation.

3.2 Confidence Intervals for the ROC Curve

After computing the estimator  of the asymptotic variance-covariance matrix of  (not
applying the isotonic regression) we can obtain marginal 1 – α confidence intervals (CIs) for
Se (c) and Sp (c) for a fixed value of c. A joint confidence region (CR) for bthe pair (Se (c) ,
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Sp (c)) can be constructed either by applying the Bonferroni correction (BON) or by the

elliptical CR (MVN) based on the asymptotic bivariate normality of . Applying the

logit(·) transformation on  usually improves the normality of these estimators and as a
result may improve coverage in both marginal and joint CIs. The asymptotic variance-

covariance matrix of  can be obtained using the delta method. Fluss (2006) further
discusses CIs for the DR estimated ROC curves and provides some simulation results which
indicate that for large sample sizes (n=2000) the coverage reaches the nominal level and the
logit transformation makes no real difference. For small sample sizes (n=200) the CIs
usually exhibit undercoverage but the logit transformation improves coverage. The
Bonferroni and the bivariate normal methods had similar performances. An example of these
regions is given below (Section 5).

Alternatively a confidence band (CB) for the entire curve as a whole can be obtained.
Campbell (1994) suggests using bootstrap methods to estimate the distribution of the
maximum distance between the true and the estimated ROC curves as a basis for
constructing the CB. In Fluss (2006) a detailed bootstrap procedure is given.

4 Simulation study

We conducted a simulation study to examine the finite sample behavior of . We
examined the behavior of the DR1 and DR2 estimators under correct and incorrect working
models. We used the model described in Section (2.1), generating 1000 replicates with
sample sizes n = 200 and n = 2000, under two scenarios: (a) β = −1 and (b) β = 0. For each
simulated data set we estimated (Se(c), Sp(c)) for c = 0.4208 (corresponding to Se(c) =
0.4595 and Sp(c) = 0.8). For the DR2 estimator, we solved (2.9) with

 (see

(2.10)) where  denotes the conditional expectation under the working disease model

substituting  for μ and  for γ0 where  is the estimator of γ used to computed the DR1

estimator (i.e.  solving (2.9) with u (Y, V) = ∂h (Y, V; γ) /∂). We also examined DR1 and
DR2 after applying the PAV procedure (Section 3.1). For comparison we considered also
the Monte-Carlo behavior of the inconsistent estimator (NAIVE) using only verified
subjects in formula (2.1), the complete data estimator (COMPLETE) assuming all subjects
in the sample are verified. In scenario (a) we also examined the impact of incorrectly
assuming that β = 0 and thus computed the estimator DR2 using β = 0 (MAR). We also
computed the estimator of Alonzo-Pepe, 2005, but we do not report it here because its
Monte Carlo performance was nearly identical to that of the MAR estimator, confirming the
theoretical results that establish that the estimators are asymptotically equivalent.

In our simulations we computed  under the following four scenarios for the working
models:

i. Both selection for verification and disease models are correctly specified. The
model for selection for verification is: logit (Pr (R = 1|Y, V, X)) = γ0 + γ1Y + γ2V
+ β and the disease model is: logit (Pr (X = 1|Y, V, R = 1)) = log{o (Y, V)}+ μ0 +

μ1Y + μ2V, where . For calculating o (Y, V)
we used the correct values of γ.

ii. Only the selection for verification model is correctly specified. The disease model
was incorrectly specified in that we forced μ1 = 0 and o (Y, V) = 1.
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iii. Only the disease model is correctly specified. The model for selection for
verification was incorrectly specified in that we set γ1 = 0.

iv. Both working models are incorrectly specified as in (ii) and (iii).

It can be shown that DR2 and DR1 are algebraically identical when they are computed under
the working models considered in (iv) . They are also identical under the setting (iii) if the

estimator  assumes β = 0 (see proof in Fluss (2006)). The performances of the estimators
of θ(c) were assessed by means of Monte Carlo bias and standard error (MCSE). In addition,
we examined the agreement between the Monte Carlo mean of the estimated standard errors
(computed with the formulae given in Theorem 1) and the MC standard error of the DR
estimators. As formulae for estimates of the standard error of the DR-PAV estimators are
not presently available, for these estimators we report results on the bootstrap estimator of
standard error. Due to time considerations the bootstrap was only computed for DR2 and n =
200. The symbol ‘−’ stands for unavailable data.

In our simulations, applying the PAV algorithm generally had little effect on both the bias
and standard error so here we will restrict our discussion to the simulation results for the
non-PAV adjusted estimators. As predicted by theory, the simulation results show that the
DR estimators greatly corrected the noticeable bias of the NAIVE estimator (especially
when n=2000) in any of the first three scenarios in which either the disease or the
verification processes were correctly modeled. Even when both working models were
incorrectly specified (scenario (iv)) the DR method exhibited substantially smaller bias than
that of the NAIVE estimator. When the true β was −1 and n = 2000, the MAR/Alonzo-Pepe
estimator had bias that, even though small (roughly 7% relative bias for Se and 0.5% for Sp
in scenarios (i) and (ii)), it was orders of magnitude greater than that of the DR estimator
that used the true value of β. When n = 200, and under the same scenarios (i) and (ii) , the
biases of the DR estimators were still smaller than those of the MAR estimators but of
comparable sizes. In scenario (iii) the bias reduction of the DR estimator compared to the
MAR estimator still existed but was less pronounced. Finally, in scenario (iv) in which,
according to the theory none of the estimators is consistent, we see that for estimation of Se,
the magnitude of the bias is still smaller for the DR compared to that of the MAR estimator
but this order reverses for estimation of Sp. The reason why under scenarios (i) – (iii) the
MAR estimator is biased downwards is as follows. Under our setting, for subjects with a
given value of Y and V, the odds of being verified are 2.7 times greater for those diseased
than for those non-diseased. Thus, within each level of Y and V the fraction of non-verified
subjects will be larger in the non-diseased group than in the diseased group. However, the
procedure that incorrectly assumes MAR will implicitly impute, within levels of V and Y ,
half of the non-verified to the diseased group and the other half to the non-diseased group.
But this will spuriously inflate the left tail of the distribution of Y for disease subjects and
deflate the distribution of Y for the non-diseased subjects because most of the imputation
will occur for low values of Y since the chances of being verified increase with Y . The
effect of this spurious distortion of the tail distribution is that both P (Y ≤ c|X = 0) and P (Y
> c|X = 1) will be underestimated. Furthermore, because the diseased subjects are only 30%
of the entire sample, the distortion caused on the distribution of Y by incorrectly assigning
non-diseased subjects to the non-disease group will be greater on the diseased group than on
the non-diseased group. Thus, we would expect (as confirmed in our simulations) the bias in
the estimation of Se = P (Y > c|X = 1) to be greater than the bias in the estimation of Sp = P
(Y ≤ c|X = 0) .

The MCSE was similar to the Monte Carlo mean of the estimated standard errors, especially
for n=2000. For n=200, the estimator of standard error underestimated a bit. As predicted by
the theory when β = −1 and both working models are correct, i.e. under scenario (i) , the
Monte-Carlo variance of the DR2 estimator was less than that of the DR1 estimator (the
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variance reduction being, nevertheless, generally small). When both working models are
correct and β = 0, the theoretical results establish that both DR1 and DR2 are asymptotically
equivalent. This was confirmed in our simulations for n = 2000 since the MCSE of DR1 and
DR2 were roughly the same. Yet, for estimation of Se when n = 200, DR2 still exhibited
some variance reduction over that of DR1 (roughly 5% reduction).

The comparison of the MCSE of the COMPLETE and DR2 estimators raises another
interesting point. The COMPLETE estimator was calculated using all n simulated data
points (i.e. as though no X′s were missing). Yet, in our analysis, roughly 70% of the
subjects had missing X. An estimator based just on the data points with X observed, would
then be expected to have MC variance roughly equal to 1/0.3=3.33 times the MC variance of
the COMPLETE estimator. Yet, the MC variance of the DR2 estimator was far smaller than
that. For example, in scenario 1 and β = −1, the (MCSE(DR2)/MCSE(COMPLETE))2 =
1.57. This result confirms the theoretical efficiency properties of the DR2 procedure.
Specifically, the estimator that uses the DR2 estimator with both working models correctly
specified, exploits all the information available in the observed data about the parameters Sp
and Se. Thus, it not only exploits the information in the units with observed X′s but also in
the units with missing X′s.

When examining the Monte Carlo sampling distributions of the DR estimators we find them
reasonably bell-shaped but with a few extreme values. Fluss (2006) considers additional
choices of β and c, and different disease and selection models. Due to space constraints,
these simulations are not presented here. They nevertheless were qualitatively similar to
those presented here.

5 EBCT data

We apply the double-robust procedures of Section 2 to the data example described in the
introduction with the goal of estimating the ROC curve of the (log-transformed) EBCT
marker. To that end, we define Y = ln (1 + EBCT), X the indicator of coronary disease as
determined by the SPEC test (regarded here as the gold standard) and V = (V1, V2) a
bivariate vector comprised by age (V1) and the indicator of aspirin use (V2). We consider
the working verification and disease models

Similar working models were considered in Rotnitzky et al. (2006) who give the rationale
for these choices. In the analysis reported below we use q (Y, V) = β, repeating the analysis
for values of β regarded as known ranging from −2 to 0. This range was chosen so as to
include settings with very severe residual selection bias in favor of diseased subjects (the
choice β = −2 indicates that the odds of selection is exp (2) ≈ 7 times larger for diseased
than healthy patients with the same values of EBCT, age and aspirin use), and ignorable
verification (β = 0). The estimated ROC curves using DR2 (applying the PAV algorithm)
are presented in Figure 3. The results without PAV are very similar, as found in the
simulation study for large sample sizes, and are not presented. The DR1 estimate provides
similar results and is not given. The estimated ROC curve based on the verified only
subjects is also presented labelled as NAIVE.

The naive estimate gives a significantly different ROC curve than the DR and with a smaller
area under the curve. We can see there is an evident effect of the value of β on the ROC
curve, but all the DR estimated curves show the marker has better diagnostic power than is
shown by the naive estimator. We constructed 95% confidence regions for several points on
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the ROC curve. Three points corresponding to  and 0.9 (using β = −1) are
presented in Figure 4. Since Fluss (2006) found the logit transformation did not make much
of a difference for large sample size we used the simple Bonferroni (BON) and Multivariate
Normal (MVN) distribution based CR. The resulting CRs are shown in Figure 4. The MVN
CRs are very similar to the Bonferroni ones. The width of the CRs in the sensitivity axes is
very wide indicating on a large amount of uncertainty in the sensitivity estimation. This is
due to the small number of verified disease cases.

The estimated ROC curves adjusted by our procedure for verification bias show a higher
discriminatory power than the ROC curve based on verified only subjects. This holds true
for a wide range of residual selection bias values. An advantage of our method is that it
permits the examination of the consistency of qualitative conclusions on the adjusted ROC
curves for selection bias ranging from negligible to considerable. We note from Figure 3 that
for high specificity values the corresponding sensitivities are only moderate in size. Adding
to this consideration the large range of values for sensitivity in the CRs of Figure 4 it is
difficult to make a definite conclusion as to the effectiveness of the EBCT marker. An
anonymous referee pointed out that SPECT perfusion imagining is not really a gold standard
for coronary artery disease. In fact, angiography is the accepted gold standard. The medical
literature supports the findings that the specificity and sensitivity of SPECT for
angiographically confirmed CAD are less than 0.9. This may explain, in part, the somewhat
disappointing results for EBCT.
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Appendix: Sketch of the Proof of Theorem 1

Regardless of whether or not models (2.8) and (2.11) are correct, the solutions  and  to

 and  converge in probability to μ* and γ* solving E {H (μ*)} =
0 and E {B (γ*; u)} = 0. Standard Taylor expansions arguments give

where for any random variables  stands for . Another Taylor
expansion gives

(A.

1)

for some ,  and  satisfying  and

. Now,
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(A.2)

where the last identity follows from the Law of Large Numbers and the fact that E {XDR
(γ* , μ*) |Y, V} = E {X|Y, V} when one of models (2.8) or (2.11) is correct, but not
necessarily both. Furthermore, under regularity conditions, a Uniform Law of Large

Numbers gives  and

. Consequently, replacing the
expansions (A.1) and the latter expressions for the derivatives in (A.2) and solving for

 we obtain

and the result follows after invoking the Central Limit Theorem. The condition (2.7) is
required to ensure that B (γ*, u) and XDR (γ*, μ*) have finite variance when model (2.8)
holds but model (2.11) is incorrect.
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Figure 1.
Example of DR estimated ROC curves.
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Figure 2.
Estimated ROC curves of example after applying PAV.
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Figure 3.
DR estimated ROC curves of the EBCT example.
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Figure 4.
CR for 3 points on the EBCT ROC curve
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