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Microdisk structures have been used to achieve low-threshold lasing. For these microcavity 
lasers, the spontaneous emission coupling factor p is an important parameter since it determines 
the threshold current of the laser. Theoretical calculation of p based on the exact solution of the 
modes in a microdisk is complicated. A simple, approximate method for solving the waveguide 
modes and the density of states is developed here, using conformal transformation and the 
Wentzel-Kramers-Brillouin approximation and taking into account the effect of the disk 
thickness. We find that the p value for a microdisk laser is smaller than that of an ideal laser that 
has a cylindrical waveguide structure with a strong index guiding. A considerably high value of 
0 can still be achieved, however, in a microdisk laser. 

I. INTRODUCTION 

Recently, McCall et al. demonstrated a two-dimen- 
sional guided microdisk structure to achieve low-threshold 
lasing.’ This structure is an example of photonic confined 
microcavities, in which the photon density of states and the 
spontaneous emission characteristics are significantly 
modified.” The threshold current of a microcavity laser 
with low transparency current is dependent mainly on the 
spontaneous emission coupling factor fl, which is the spon- 
taneous emission rate into the lasing modes divided by the 
total spontaneous emission rate. We have previously cal- 
culated the fl value of a microring laser.3 The cross section 
of a microring laser is a one-dimensional dielectric cylin- 
drical waveguide with a high index guiding region of di- 
ameter dD. We showed that, when dD is less than the cutoff 
diameter for the second-order guided mode, the fi value 
can be as high as 0.96. In our decay rate calculations, the 
spontaneous decay is modeled as stimulated decay due to 
stochastic vacuum field fluctuations.2-4 The spontaneous 
emission rate y due to the vacuum field in either the guided 
or the radiation modes is proportional to the modal density 
of states and the vacuum mode field intensity at the loca- 
tion of the dipoles. More precisely, the contribution to y 
from the guided mode n is3 

29T &o 
Y*‘F2Lp IEnA2~~, (1) 

where A is basically the spatial mode area (i.e., the trans- 
verse area of the mode) times the dielectric constant, J!?,, is 
the mode function for the guided mode, and p is the usual 
dipole matrix element. In this case, the field has been quan- 
tized in the z direction via the traveling-wave modes. Thus 
the number of states per unit angular frequency is 
dp,, = ( L/277-) (dk,/da ) for each waveguide mode. Usu- 
ally, an exact solution of gn and the density of states are 
very complicated. To ‘extend our theory to a microdisk 
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laser for the purpose of estimating the /3 value, a simple, 
approximate method for solving the waveguide modes and 
the density of states is developed here. Knowledge of the 
mode size and the density of states allows us to obtain the 
relative value of r,, according to Eq. ( 1) and, thus, esti- 
mate the p value of the microdisk laser. A microdisk is 
characterized by two ‘size parameters, d and R, where d is 
the thickness and R the radius of the disk. The waveguide 
modes travel around the edge of the disk by repeated total 
internal reflections, in a way similar to the “whispering 
gallery rnodesST5 In this article the whispering gallery 
modes are solved approximately by using conformal trans- 
formation and the Wentzel-Kramer+Brillouin (WKB) 
approximation. The modal density of states and the mode 
field sizes are then evaluated as a function of d and R. 
Finally, an estimation for the /? values of microdisk lasers 
is given. We would like to note that there are also other 
methods for investigating the properties of disk 
waveguides.6P7 However the conformal transformation 
method gives us an estimation of the spatial widths of the 
guided modes that is needed for our purpose here. 

II. METHOD OF CALCULATION 

A microdisk structure can be seen as part of a cylin- 
drical waveguide, as shown in Fig. 1. To facilitate future 
calculations, let us first consider the mode solutions of the 
cylindrical waveguide. The wave equation for the z com- 
ponent $ in cylindrical coordinates is8 

a$!J 1 a$ 1 a2+ a%j 
s+Tar+7a92+~+k2$=0. (2) 

The z components of the electric and magnetic fields have 
the form @=F( r) exp ( f im# ) exp (ikg) , representing a 
traveling wave in the z direction, where m is the azimuthal 
number given by m=O, 1, 2 ,..., and k, is the k vector in the 
z direction (see Ref. 8). In this case Eq. (2) can be reduced 
to the wave equation for the radial mode function F(r)? 
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FIG. 1. Schematic diagram of a cylindrical waveguide and a disk 
structure. 

$ ‘L!E+ $- 2 +r r [’ ($)]F=O, (3) 

where 42 = k2 - e. For each m, given waveguide frequency 
V, and radius R, one can solve for q by matching the 
boundary conditions of the electric and magnetic fields at 
r=R. The propagation vector k, can then be determined. 

Unlike a cylindrical waveguide where the mode prop- 
agates along the z axis of the cylinder, the waveguide 
modes in a microdisk are stationary in the z direction and 
propagate around the Jisk. Hence, the eigenmodes of a 
microdisk structure can be constructed from the cylindri- 
cal waveguide modes by summing both +z and --z prop- 
agating modes to form stationary modes in the z direction. 
It is important to point that out because of the boundary 
conditions imposed by the top and bottom boundaries of 
the disk; the k, vector in the microdisk case is determined 
solely by the disk thickness. For a given disk thickness, 
there can be more than one allowed k, value, correspond- 
ing to resonant modes with different numbers of nodes 
along the z direction and which will be referred to as the 
planar mode number p=O, 1, 2, 3 ,... . These modes are 
simply the planar waveguide modes. Thus, in the case of 
the microdisk k, is determined by the structure, and we 
want to solve the resonance frequency v for each azimuthal 
mode number m. The azimuthal mode number m deter- 
mines the number of nodes along the 4 direction, which is 
obvious from the function of 111. It turns out that for each 
m, there are many resonance frequencies v, corresponding 
to resonance modes with different numbers of nodes in the 
radial direction [and given by different solutions to F(r)], 
which will be referred to as the radial mode number. The 
radial mode number will be denoted by Z=O, 1, 2,... . Thus 
the resonance mode frequency v is parameterized by three 
mode numbers: m,Z,p. We are interested mainly in the case 
where the disk is so thin that only thep=O mode exists and 
we shall drop the p parameter below. We will denote the 
frequency for mode m, I, (p=O) as vmI. 

Thus the modes in the microdisk can, in principle, be 
solved approximately using the cylindrical waveguide 
modes9 However, the solution is complicated. Here, we 
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FIG. 2. (a) Schematic structure of a disk waveguide with radius R and 
thickness d and its transformation. n, and n2 are the refractive indices 
inside and outside the disk. (b) Illustration of J$(u) as a function of u. 

adopt an approximation method to solve for the modes 
based on the method of conformal transformation devel- 
oped in Ref. 10. There, the conformal transformation is 
applied to find the bending loss of a waveguide. Here, we 
apply the conformal transformation to treat the cavity of 
the disk structure. Besides the difference in applications, 
our approach differs from Ref. 10 in that we have taken the 
finite thickness of the microdisk into consideration. 

Figure 2 (a) shows the geometry of the microdisk char- 
acterized by a radius R and a thickness d. It is assumed 
that R > d for a microdisk. The indices in the figure are 
assumed to be that given by a semiconductor microdisk 
with nl = 3.4 and n2 = 1. Equation (2) can be transformed 
into the Cartesian form 

(4) 
in a coordinate system (UJ) that is related to (r,b> by a 
conformal transformation as follows:‘o 

v=R& 

The resulting wave equation is 
2 2 $+fJ-$+$eq g *=O, ( 1 (6) 

where q2=(kf-@) for r<R and $=(6--h<) for r>R, 
k,=knl, k2=kn2, and k=2?ry/c. The disk waveguide is 
thus equivalent to a straight waveguide in the (u,v) space 
shown in Fig. 2(a), but the index distribution has become 
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a function of a. Note that in Fig. 2 (a), u = 0 corresponds to 
r=R, u= - CO corresponds to r=O, v=O corresponds to 
#=O, and v=2?rR corresponds to C$ =2~. 

Under the transformation, the form of Ic, is trans- 
formed to q.b=F(g)exp(ik&)cos(kg), where k,,v=m#. 
The cosinusoidal variation of r/ in the z direction accounts 
for the waveguiding in the plane of the disk. Let us deline 
an effective index n, as k,=2rnJd (a is the free-space 
wavelength). Since k,v = mq%, using v= R# from Eq. (5) to 
eliminate C$ we have 

Later we will see that n, in Eq. (7) is dependent on the 
radial mode number I. As a result, the allowed values of ,% 
are discrete and are dependent on mode numbers m and I. 

Note that in the. disk waveguide, for each k vector 
there are two modes corresponding to two polarizations. 
We shall defme them as transverse electric (TE) and trans- 
verse magnetic (TM) modes with the electric field and 
magnetic field, respectively, parallel to the r direction, as 
shown in Fig. 2(a) (in the figure thedirection of the elec- 
tric field is indicated). This corresponds to having the elec- 
tric field and magnetic field, respectively, parallel to the u 
direction in the transformed coordinate. Under our deflni- 
tion of the TE and TM modes, $ is the z component of the 
magnetic field for the case of the TE mode (i.e;, the electric 
field has no z component) .8 Likewise, $ is the z component 
of the electric field for the case-of the TM mode. The 
equation for the radial function F(u) can be obtained by 
substituting the function of 1/, previously given into Eq; 
((3, giving 

d2F 
g= --k2(uG, (8) 

where k2(u)=(kT-~~exp(2u/Rj’-l for r<R, 
e(u) = (d~-e)exp(2tij;R) -g for r>it,^ and. k, must. 
satisfy the condition for guided mode 
(G--X.)<e<(@-e). The variable k, can be inter- 
preted as an effective k vector component in the u direc- 
tion. The form of k2,( u) is illustrated in Fig. 2 (b) . Let us 
define an effective index n, so that k,=2wz,/A. From Fig. 
2(b) we see that n, is a strong function of u.~The form of 
the index distribution n,(u) inside the waveguide entails 
that the radial distribution of the mode is skewed towards 
the edge (i.e., r=R or u=O) since the index has a maxi- 
mum there. In the case where (g-k<) > 0, the effective 
refractive index outside the disk increases radially as e”‘R 
so at some point the index will be large enough where the 
oscilIatory mode can again exist and resulting in radiation 
loss. On the other hand, if (e-e) is negative, as when k, 
is large, then the field is completely evanescent outside the 
guide. Since n2= 1, from Fig. 3 we see that n, < n2 or 
e < e for a thick disk, while e >/$ for a thin disk. Hence 
for a thick disk, we expect the wave to be completely eva- 
nescent outside the disk. For the thin disk of interest here 
where d is small, there could be propagating wave outside 
the disk according to the theory here. However, it must be 
pointed out that the wave will experience diffraction once it 
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FIG. 3. Calculated n,, defined by k,= (2?r/k)n,, for the lowest TE mode 
as a function of d/k. 

leaves the disk and k, can become large there due to dif- 
fraction [diffraction has been totally neglected in Eq. (8)]. 
It is possible that when diffraction is properly included,‘the 
wave outside the disk may be completely evanescent also 
for a thin disk. Hence, the question of radiation loss cannot 
be appropriately addressed by the theory here. 

As mentioned earlier, k, can be determined by match- 
ing the boundary conditions at the interface of the planar 
waveguide. For the lowest-order TE modes, this gives 

(9) 

where d is the thickness of the disk, and h is a variable 
defined by g+h2=k2(n:-n$). Writing k,=kn,, we plot 
n, as a function of d/A in Fig. 3. Note that n,> n2 for most 
values of d/A. of interest. The most interesting region of 
d/A is just below 0.5/q where only the lowest-order TE 
mode is guided and the confinement of the spontaneous 
emission in the plane of the disk is at its peak.4 

Next, k, is determined in the WKB approximation” by 
requiring the quantization condition 

s k,(u)du=Z?r++,+#2, 1=0,1,2... , (10) 

where the integral is taken over the classical region from 
the lower lit defmed by k,(u) =0 to the upper limit u =0 
(or r=R), I is the radial mode number, and $i and 42 are 
phases determined by the shape of the potential function at 
the turning points. Doing so yields the implicit equation” 

2 JGz g ( &Z-a cos-‘a) 

=I+$+; tan-’ J/w, z=o12 , , ,**- , (11) 
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FIG. 4. The calculated effectiire index n, for the I=0 radial mode as a 
function of R/A for various values of d/L. The solid lines are. the curve 
fitting for the calculated points. 

where a and b are ‘defined by a=nJ d-z, and 
b= ,/&ii&/~:. Th us n,, is a function of R/A, d/A . -. 
(from n,), -and i For Z=O, the calculated n, as a function 
of R/A and d/A is shown in Fig. 4. Note that (i) n, is 
relatively insensitive to R/A for R/A > 2, and (ii) n, de- 
creases with d//z. 

To facilitate later calculations for the case of Z=O, we 
fit the calculated n, with simple curves, shown by the solid 
lines in Fig. 4, which have the following simple expression 

n”=aJGz, a=f-L (R//Z) ’ 
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FIG. 5. Cavity resonance wavelength vs the azimuth& mode number m For the lowest-order radial mode, we obtained A by 
for the TE and I=0 and I= 1 modes of a 2 brn radius disk waveguide. approximating the two-dimensional mode profiles with a 

FIG. 6. The dependence of the mode density d&/da for the lowest-order 
TE mode on d//l,,,, and R/k,, . 

where f =0.984 and g=O.l63 for I=O. Using Eq. (7) to 
eliminate n, in Eq. ( 12), it follows that, for a fixed d/A 
and, hence, a fixed ,/Gz, there is a linear relationship 
between R/A and m (i.e., m ;= 2~r~x ,/FzR/A). Since m 
is an integer, this determines, for a-given R, the resonance 
wavelength A corresponding to each value of m and 1. We 
shall denote A for the mode number m and- I as Az,[. An 
example of A,* for R=2 pm, n,=2.7, and I=0 and 1, is 
shown in Fig. 5. The cavity resonance frequency vmI is then 
given by v,I=c/&,,. 

In order to evaluate the spontaneous emission coupling 
factor, we need to determine the mode area A as well as the 
modal density of states. The modal density of states 
dkJdm for any guided mode can, in principle, be derived 
analytically from Eq. ( 11). However, a simpler approach 
is by making use of EQ. ( 12), noting that k,==wnJc and, if 
n, is a function of only R/&l and d/&l, then a general 
and complete expression for dkJdu is 

dk; R dn, d dn, 
’ dw’nv+~ld(R/A,l) +cId(d&) * 

(13) 

With Eq. ( 12), this gives 

Cdw=nv f-L --if=i$ /2,[ d(d/;l,,J ’ 

RanI 1 ( 14) 
dk, 

i 

f 4 d dn, 

where dnJd(d/&) may be obtained from Fig. 3 or de- 
rived analytically from Eq. (9). In Fig. 6, cdk,/du for the 
lowest-order radial mode (Z=O) is plotted as a function of 
d//z,,,* for various values of R/&l. It should be noted that 
dk/da is not sensitive to R/&l, and that its dependence 
on d//z,,,* is significant only if d/A,* is smaller than 0.2. We 
can expect that this is also the region where the spontane- 
ous emission rate is modified most. This behavior can also 
be inferred from Fig. 4. 
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FIG. 7. Plot of the Bessel function Jm(qr) for tn= 12 and I&. 

product of cosine functions of the form cos( ?rx/ 
w,) cos( v/d,), where w, is the effective width of the radial 
mode function, and d, is the effective mode thickness in the 
direction perpendicular to the disk. The effective mode 
thickness d, is given by the width of the planar waveguide 
mode. We are interested mainly in the case where the las- 
ing mode is the lowest-order planar waveguide mode. The 
value of w, is determined by the radial functions for the 
(m,Z) modes, which are Bessel functions of the order m, 
J,(qr), where q = (2?r&J ,/m is dependent on I 
through &l. An example of the radial mode function is 
shown for m = 12 and I=0 in Fig. 7. The outer limit of w, 
is simply given by rout= R (or u=O) in Fig. 2(b). The 
inner limit of w,, denoted by ri,, is given approximately 
by the classical turning point at r=ri, shown in 
Fig. 2(b) where k,(u)=O. Setting kU(u) =0 gives 
,/m exp(u/R) = n,. Using Eq. ( 12), we then obtain 

rl = Ra = RnJ dm. Using rl as an estimate for ri, 
tends to underestimate w, because of the weak mode con- 

0 2 4 6 8 10 

R/h 

FIG. 8. The normalized effective radial width of the lowest-order TE 
mode as a function of d/L,,,, and R//Z,,. 

finement; a better estimate is given by ri, Y RnJnl which is 
slightly smaller than rl . Using this estimation for ri,, we 
obtain the following equation for wJ&: 

~=(&)(I-~). (15) 

In this form, w/am1 is not only a function of R/ii,,, but 
also of d/Lml. Figure 8 shows w,J&,,I for the I=0 modes as 
a function of R/&f and d/&I. Note that the radial mode 
widths are actually larger for the disks with smaller d/a,,,, 
since they have larger n, and, hence, smaller n, [see Eq. 
(1211. 

III. RESULTS 

The modal density of states and the effective mode size 
allow us to determine the spontaneous emission coupling 
factor p for a microdisk laser. It is given by 

(16) 

where RL is the emission rate into the lasing mode, and RT 
is the total emission rate. We shall take RL and RT as 
normalized rates normalized by the spontaneous emission 
rate in a bulk medium of uniform index nl given by 

1 nl w 3 
‘Ybulk=Gz ; 

0 
IP12* (17) 

We assume that the spontaneous emission into the lasing 
mode only emits into one guided mode spatially and into 
one cavity resonance spectrally. The condition for the 
spontaneous emission to go into one single resonance mode 
spectrally is Av, > AvSP , where Av,, is the spontaneous 
emission width, and Av, is the intermode frequency spac- 
ing given by AvC-c/(2?rRn,).3 If Av, < AvSP, then the 
spontaneous emission will emit into other nonlasing modes 
spectrally and the p value will decrease. This condition, 
therefore, determines the maximum size of the disk before 
the p value decreases. For example, the spontaneous emis- 
sion width of a quantum well is typically 1% of the optical 
frequency so, at &I= 1.5 pm, the largest diameter of the 
disk that satisfies the condition Av,> AvSP is 9.5 pm. If 
several radial mode8 are allowed, the dominant mode is 
one with the largest cavity Q. The evaluation of Q is com- 
plicated, as it depends on the particular dominant loss 
mechanism. In the case of radiation loss due to tunneling 
from the disk, it can be shown that the Q is larger for the 
modes with the larger values of rn.12 Note in Fig. 5 that the 
values of m for the I=0 modes are significantly larger than 
those for the I= 1 modes. Hence, the I=0 modes will have 
larger Q values than the I> 0 modes and will be the most 
likely to lase. The cavity resonance width Av,, is also 
related to Q according to Av,,= Av,JQ. If AvSr,<Av,, , 
then the spontaneous emission rate into the guided modes 
will be enhanced by a factor of Q. On the other hand, if 
Aysp ’ &xv 9 then the spontaneous emission rate into the 
guided mode will not be strongly affected by. the cavity. 
The cavity enhancement factor will be averaged to around 
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FIG. 9. The calculated spontaneous emission coupling factor B for -mi- 
crodisk lasers with varying size parameters (R//Z,,,&&,,,), assuming 
only one guided &sing) mode is supported. 

unity if the spontaneous emission width approaches the 
mtermode spacing. We will assume for our estimation of p 
that this is the case.3 

It turns out that for the case of the microdisk, R, is 
close to the bulk emission rate because of the high proba- 
bility of spontaneous emission from the center and then 
from the side of the disk. Thus we can take R,- 1. In fact, 
even for the strongly confined waveguide of a microring 
cavity, RT does not vary from 1 by more than 20%.3 By 
knowing dk Jdo and A are functions of R/& and d/&,[, 
one can determine RL for specific combinations~of R//Z,,,/ 
and d/&. We will restrict d/;l,[ to 0 <d/&< 0.5/nl, 
which is the region of interest for microdisk lasers where 
we want all the emissions to be in a single lasing mode. The 
calculated fl is plotted in Fig. 9 with respect to R//Z,l and 
d/&. Note that the j? value for a particular R/il.is the 
highest at around d/A-O. 14, right at the disk thickness 
that cut off the second-order planar guided mode. The fi 
value reduces with reduced disk thickness d because of a 
broadening of the guided mode at small d, leading to a 
larger mode width w,. On the other hand, the p value 
increases with decreasing disk radius R due to the reduc- 
tion of the mode width at a smaller disk radius. Physically, 
a smaller mode width corresponds to a larger mode guid- 
ing angle, which allows the lasing mode to capture more 
spontaneous emission. 

The calculation of the fl value is done with the assump- 
tion that only the radial.dipole is excited by the pump (i.e., 
the nonisotropic pumping). In the case of isotropic excita- 
tion (i.e., all three dipoles are equally excited, which ,is 
normally the case in practice), the p value will vary. How- 
ever, we note that it has been shown4 that the radiation is 
nonisotropic even when the excitation is isotropic. In par- 

titular, the z-dipole emission is suppressed by the thin disk 
due to the reduction of the z component of the vacuum 
field. In fact the z-dipole emission rate will be further re- 
duced if quantum wells are used as the active medium 
inside the disk.13 As a result, there will only be r and 4 
dipole emissions, even under isotropic excitation. Since 
only r dipole emits into the lasing mode, the p value will be 
approximately half of that considered here. 

The p value obtained here can be compared to the case 
of the microring laser mentioned earlier.3 The p value of a 
microdisk laser is generally smaller than that of a micro- 
ring laser; this is primarily because of the weaker mode 
confinement in a microdisk structure, except when the ra- 
dius is of the order of a wavelength. For the microdisk 
case, if the laser is multimode, with several radial modes 
(Z=O, l,...), then the /3 value will be even smaller. 

IV. CONCLUSIONS 

We have developed an approximate method for solving 
the whispering gallery modes in a microdisk laser. Confor- 
ma1 transformation of the wave equation for the circular 
disk is used to show the effective radial index distribution 
that provides a guiding action to confine the mode to near 
the edge of the disk. The effect of disk thickness is also 
evident in this approach. We showed that the spontaneous 
emission coupling factor of a microdisk laser is smaller 
than that of a laser with an ideal cylindrical waveguide 
structure with strong index guiding. Nevertheless, a con- 
siderably high value of fl, 0.1-0.2, can still be achieved in a 
microdisk laser with a cavity Q  value of unity. In practice, 
the microring laser geometry is not easy to achieve. 
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