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Estimation of the Squared
Cross-Validity Coefficient in the
Context of Best Subset Regression
Eugene Kennedy
South Carolina Department of Education

A monte carlo study was conducted to examine the

performance of several strategies for estimating the

squared cross-validity coefficient of a sample regres-
sion equation in the context of best subset regression.
Data were simulated for populations and experimental
designs likely to be encountered in practice. The re-
sults indicated that a formula presented by Stein

(1960) could be expected to yield estimates as good as
or better than cross-validation, or several other for-
mula estimators, for the populations considered. Fur-
ther, the results suggest that sample size may play a
much greater role in validity estimation in subset se-
lection than is true in situations where selection has

not occurred. Index terms: Best subset regression,
Cross-validity coefficient, Multiple regression, Predic-
tive validity, Variable selection.

The predictive power of a sample regression
equation in the population and in future samples is
often of primary importance to researchers. A mea-
sure widely used for this purpose is the squared
cross-validity coefficient, R2. This index is defined
as the squared correlation of actual criterion values
with those predicted from the sample equation for
the population of interest. A natural choice as an
estimator of this parameter is the sample squared
multiple correlation, EST(R 2) . This statistic, how-

ever, is known to exaggerate the predictive power
of the sample equation and is widely deemed in-

appropriate in its original form (see Herzberg, 1969).
This fact has given rise to a large body of empirical
and theoretical work concerning the relative per-
formance of various correction or shrinkage pro-
cedures (Cattin, 1980; Schmitt, Coyle, & Rausch-

enberger, 1977). Currently, the consensus among
investigators appears to be that a formula proposed
by Browne ( 1975) is preferable to other strategies
for a variety of experimental situations (see Dras-

gow, Dorans, & Tucker, 1979).

Although in many respects the literature on es-
timation of R is comprehensive, it is almost always
assumed in these studies that the analyst has pre-
determined which predictors will constitute the

model. Typically, however, this is not the case. In
the majority of practical situations, the analyst will
be confronted with a large array of potential pre-
dictors and few substantive guidelines as to which
to include in the model. In this context, an algo-
rithm for empirically identifying a 6 ~b~st9 subset
of predictors offers a solution. Among the many
possibilities are stepwise regression, 9 backward

elimination, and all possible regressions (see Ped-

hazur, 1982).
These procedures afford a degree of convenience

and empirical support for a model, but they also
tend to introduce certain complications. In partic--
ular, once a model has formulated using a
best subset selection algorithm, the usual proce-
dures for drawing inferences in regression analysis
are not strictly applicable (for a thorough review
see Hockings, 1976). Rencher and Pun (1980), for
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example, reported that the expected value of EST(R2)
under subset selection can be twice that without

selection. Lemer and Games (1981), working with
social science datasets, have similarly noted sub-
stantial inflation of validity estimates after empir-
ical model selection. Pope and Webster ( 1972) con-
sidered an order statistic approach to the ordered
set of dependent F values in stepwise regression,
on the grounds that fewer unrealistic assumptions
are required than in the usual procedure. Hockings
(1976) proposed that biased estimators may offer

improvements over the usual least-squares esti-

mator when selection has occurred. Finally, Diehr
and Hoflin ( 1974) obtained approximate percentile
points to the unknown distribution of the sample
squared multiple correlation in best subset regres-
sion.

These results suggest that the subset regression
strategy may warrant a unique set of guidelines for

estimating the squared cross-validity coefficient of
a sample regression equation. Unfortunately, there
is little research on this issue. Most authors suggest

splitting sample data, then using one portion for
identification of the model and the other portion
(not necessarily of equal size) for estimation of

parameters. But cross-validation, as this is called,
is known to have significant restrictions. In partic-
ular, a significant loss of information can be ex-

pected when all available data are not used for

purposes of parameter estimation. When sample
size is large (i.e., several thousand people), this
loss is most likely minor. But for moderate size

datasets, which typify many social applications,
splitting data can yield seriously unstable parameter
estimates (see Picard & Cook, 1984).
The present study compared several formula es-

timators of R2. An extensive search of the statistical
and psychological literature yielded several alter-
native estimation strategies for both the regular and
the subset regression procedures. A first objective
of the study was thus to determine which combi-
nations of procedures and sets of experimental con-
ditions would yield the best estimates (previous
recommendations have provided few experimental
or theoretical foundations). A second objective was
to investigate the impact of different experimental

designs on validity shrinkage when the sample
equation is applied in the population.
A persistent problem in predictive validity stud-

ies is confusion concerning appropriate formula es-
timators of R 2. Researchers commonly apply the

Wherry (1931) shrinkage formula in this context,
but in fact this formula was designed to estimate
the validity of a regression model, not the predic-
tive validity of a sample regression equation. To
illustrate the consequences of this error, the Wherry
formula has included in the simulation results.

(Wherry, 1975, presented an excellent discussion
of this problem.)

Method

One of the primary guidelines of the current study
was to keep the experiments as relevant as possible
for the applied social researcher. The first step in

achieving this was to select a model frequently
studied in the social psychology of education. The
model posits that the occupation a student expects
to achieve is a function of the student’s (1) self-

concept of academic ability, (2) curriculum en-

rollment, (3) academic performance, (4) achieve-
ment orientation, (5) academic aptitude, (6) peer
influence, (7) teacher influence, (8) parent influ-

ence, (9) social class background, and (10) an error

component.
The next step was to obtain a nationally repre-

sentative sample of high school students. The source
for this was the National Longitudinal Study of the

High School Class of 1972 conducted by the Re-
search Triangle Institute. The model was then es-
timated on black and white males. Unfortunately,
missing data for these groups necessitated deleting
several thousand students from the analysis. Be-
cause the size of the resulting sample would have

presented problems for sampling procedures, it was
decided to generate a population of hypothetical
individual from the covariance matrices of the

sample data. The populations were with
an algorithm based on the IMSL routine ~~~~~..
The populations were each composed of 2,000

simulated persons. The squared multiple correla-
tions with all 9 predictors covered a span which
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encompasses many models in the social sciences.

For black males R2 was .12 and for white male

R2 was .20. The intercorrelations and standard de-

viations for black males (Population 1) and white
males (Population 2) are presented in Table 1.

Previous research has shown that sample size
and the ratio of predictors selected to the total in
the set will affect validity estimation in the subset
context (see Rencher & Pun, 1980). Again, to cover
a broad span of experimental situations, sample
size was set to 30, g 7&reg; and 150. To vary the number

of predictors selected to the total in the set, the

best 7, 6, and 5 predictors were selected from among
the 9 possible. The sample size and predictor ratio
factors generated 3 x 3 = 9 sampling conditions
for each of the two populations, for a total of 18

experimental conditions.
The simulation strategy was as follows: For each

cell of the design, 100 random samples (with re-

placement) were drawn. For each sample, the best
~ (K = 7, 6, 5) predictors were identified and a

sample regression equation was computed. Then
various strategies for estimating validity were ap-
plied, and these estimates were compared to the

validity obtained when the sample equation was

applied across the entire population. The accuracy
of these procedures was assessed by the root mean

square error of estimation (RMSE):

Validity Estimators

The estimators of the squared cross-validity
coefficient considered in this study are listed in
Table 2. The Browne (1975), Claudy (1978), Lord

(1950), Stein (1960), and Rozeboom (1978) for-
mulas double cross-validation are all estimators

of R2 for unselected models. The Wherry formula
is not an estimator of R but is included here, as
noted earlier, because it is frequently misused in
this context. The Cohen and Cohen (1975) formula

was proposed specifically for estimating R in the
subset case. ~&reg;~~~~~°9 little empirical or theoretical

support was provided.

Subset Selection

These analyses employed backward elimination
as the technique for identifying the best K predic-
tors in sample data (see l~’ Iienbaum & Kuper, 1978).
This procedure first estimates a regression equation
with all possible predictors. The predictor with the
smallest weight is then ~~~a~g~~~ed and the

equation is reestimated with one fewer predictor.
This continues until a prescribed number of pre-
dictors remains.

Results

Subset and Validity Shrinkage

Because so much has been written on the need

to consider sample size and number of predictors
when validity is at issue in a regression problem,
mean error of estimation was over all
estimators of ~~9 over all experimental situations
for sample size and number of predictors. These
results are presented in Table 3. As is obvious from
the margins, when the number of predictors changes
only occur in mean error. For sample
size, on the other hand, the increase from 30 to

150 observations brings a significant drop in mean
error. e

Table 4 presents the error of estimation

for the sample validity estimate, EST(R 2) , as well
as the estimators considered in this study.
The results for EST(R 2) provide some insight into
factors affecting validity shrinkage when selection
has occurred. First, values are always posi-
tive, a pattern which reflects the known tendency
of EST(R 2) to yield overly optimistic validity esti-
mates. Second, as sample increases and the
number of predictors there is a reduction
in the mean difference between and Rc.

Upon closer examination of patterns, it

appears that the number of in the model
is not nearly as potent a factor as sample size. At
30 observations the average error for any number
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Table 1

Zero-Order Correlations and Standard Deviations for

Population 1 (Above the Diagonal) and Population 2 (Below the Diagonal)

Table 2

Estimators of The Squared Cross-Validity Coefficient

Note. Claudy attributes his formula to Darlington (1968),
but in fact the Darlington formula is an algebraic
rearrangement of the Stein formula presented above.
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Table 3

Aggregated Mean Error of Estimation
Based on Samples From Population 2

of predictors examined is in the .~0 range. As the

sample size increases to 70 and then 150 the error

drops, first to around 15 and then to .07. This

suggests that the researcher should seek to obtain
as many observations as possible. This result has
not been reported in previous investigations and it

highlights a difference between best subset
and regular regression: Although validity estimates
for the latter are highly sensitive to the number of

predictors in the model, the validity estimates for
the former are less sensitive.

In of R§

The mean error for the eight estimators of in
Table 1 can serve as a basis for comparing the

various strategies. in almost every experi-
ment the Wherry formula gave the most biased
estimate. This is cause for concern for the user of

&dquo;canned&dquo; statistics packages which include this
formula as part of their subset routines. Second,
the prominence of the Browne (1975) formula is
lost in these data. While in some instances its es-

timates were within a hundredth of a point, it was
never as accurate as the Stein (1960) formula. In-

deed, in 12 of the 18 experiments conducted, the
Stein formula was superior to all others. Further,
when it failed to yield the smallest error the dif-
ferences were usually less than .001. The formula

appears to be especially potent when sample size
is small. Again, this result points to the need for

special considerations in the context of subset se-
lection.

Another means of examining the performance of
various strategies for estimating R2is by examining
the root mean squared error of estimation. Table
5 presents these values for each of the eight pro-
cedures discussed in this study. Unlike the results
in Table 4, these values do not show any clear

pattern. The Stein (1960) formula again yielded
superior estimates, but there does not appear to be

Table 4

Mean Differences Between Estimated and True Squared
Cross-Validity Coefficients (Sample Estimate Minus Population Value)
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Table 5

Root Mean Squared Errors of Estimators of the Squared Cross-Validity Coefficient

a clear relationship to sample size or number of

predictors in the model. The results for Populations
1 and 2 do not differ systematically.

Discussion

In the majority of the experiments considered

above, the Stein (1960) formula yielded superior
estimates of The data in Table 4 in-
dicate that as size increases cross-validation
becomes an acceptable estimator, but in general,
the Stein formula could be expected to perform as
wall as or better than and to out-

perform the other formula estimators considered.
This result has not been noted in studies.

Further, the results indicate that for models

generated in this manner for populations similar to
the ones used in this study, sample size is a primary
factor in shrinkage. The number of predictors in
the model appears to have a much less prominent
role here than is reported in studies where subset
selection has not occurred (Drasgow et al., 1979).
This result explains in part the superiority of the

Stein (1960) formula. Of all shrinkage formulas

considered, it is the most sensitive to sample size

among the least sensitive to changes in the
number of predictors in the model.

Conclusions

Simulation is a useful research tool for dealing
with difficult theoretical problems. But its use en-
tails finding a balance between the limitless number
of parameters that could be manipulated, and that

group of manipulations relevant to practical appli-
cations. The former often leads to theoretical in-

sight whereas the latter, though more limited, can

practical guidelines. In this project, ob-

viously, the latter course was selected. The total
number of predictors in the pool was not manip-
ulated ; the population multiple correlations were
both low and did not differ by . 1; the number of

predictors selected did not cover a broad range, 9
only one subset selection strategy was consid-
ered. The reader is advised to bear these limitations

in mind when considering the relevance of the pres-
ent results to a particular application. Future efforts

along these lines could provide useful insights.
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