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ABSTRACT. In this study, the issue of reconstructing strain fields from corrupted full-field 
displacement data is addressed. Two approaches are proposed, a global one based on Finite 
Element Approximation (FEA) and a local one based on Diffuse Approximation (DA). Both 
approaches are compared on a case study which is supposed difficult (open-hole tensile test). 
DA provides more stable results, but is more CPU time consuming. Eventually, it is proposed 
to monitor locally the filtering effect of both approaches, the prospects being an impending 
improvement of the reconstruction for both approaches. 

RÉSUMÉ. Cette étude s’intéresse à la reconstruction de champs de déformation à partir de 
mesures de champs de déplacements bruités. Deux approches sont étudiées : l’une globale 
s’appuyant sur des approximations éléments finis (AEF) et l’autre locale s’appuyant sur 
l’approximation diffuse (AD). Ces deux approches sont comparées sur un cas test considéré 
comme difficile (essai de traction sur éprouvette trouée). L’AD donne des résultats plus 
stables, mais coûte plus cher en temps de calcul. Finalement, un contrôle localisé de l’effet de 
filtrage des deux approches est proposé en perspective pour une amélioration prochaine de la 
reconstruction. 
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1. Introduction

The recent development of digitized full-field displacement measurements opens

new ways of characterizing materials in solid mechanics (Kobayashi, 1993). However,

for most of the users of these techniques the strain fields rather than the displacement

fields provide a real insight into the physics of the material at different scales. There-

fore, except for the techniques which provide directly the displacement derivatives, it

is necessary to differentiate the data. When the gradients of the displacement fields

are relatively low, for example when the materials still behave elastically, the small

measurement errors may induce large errors on the computed derivative (Geers et

al., 1996). So the key work is to develop a stable algorithm, in which it is possible to

quantify explicitly the effects induced by noise differentiation.

A large number of algorithms can be found in the literature. A survey of these

methods is briefly presented in (Wei et al., 2006). The most common approach is

the finite difference method (Wei et al., 2006). Simple and effective with precise

data, it is implemented in most of the softwares providing full-field displacement data.

However, when the level of noise is significant, filtering is required.

One widely used way of performing this filtering consists in interpolating or ap-

proximating the data using smooth basis functions. The differentiation of the data

is turned into the differentiation of the basis functions. For a given basis of func-

tions, the regularization parameter is tied to the number of functions used in the basis.

A good compromise between the faithfulness of the reconstruction (obtained with a

large number of basis functions) and the efficiency of the low pass filtering (obtained

with a small number of basis functions) has to be found.

However, a good choice of the basis functions is essential (Hickernell et al., 1999).

The approximation can be defined either globally (Lira et al., 2004), or locally

(Cleveland et al., 1995). Previous studies (Pierron et al., 2007) showed that a global

polynomial basis leads to parasitic oscillations in the reconstruction when the degree

of the polynomials is too large. Indeed, because of the global aspect of this type of

bases, local artifacts in the data affect the whole reconstruction. Accordingly, it seems

that basis functions that have limited interactions between each other would be more

appropriate.

Two approaches fulfilling this requirement have been chosen and this paper is

aimed at comparing them. The first approach is based on global least-squares min-

imization using Finite-Element shape functions as the basis functions (FEA) (Feng

et al., 1991). The second approach is based on local weighted least-squares mini-

mization using a polynomial diffuse approximation (DA) (Nayroles et al., 1991). The

regularization/precision parameter is the mesh size for the first approach, the span of

the weighting function in the second one.

In a first section, the framework and the principle of the proposed approaches are

presented. Then, their efficiency is compared using simulated data. Eventually, the

approaches are applied onto real data for solving a problem of damage detection.



Strain reconstruction from noisy data 859

2. Framework and presentation of the approaches

2.1. Framework and notations

The proposed approaches are aimed at deriving strain fields from a set of full-field

displacement measurements. These measurements are derived from the deformation

of a pattern bonded onto the investigated solid, for instance using digital image cor-

relation (Schreier et al., 2002) or fringe analysis (Surrel, 1994). Let us consider a

given zone Ω. The input data for deriving strain fields across Ω are therefore the

displacements in both directions given at the nodes (called pixels) of a regular grid,

whose coordinates are denoted xi. In the proposed examples, this grid is made of

N = 168×224 pixels. These measurements are denoted as:

ũ(xi) = uex(xi)+ δu(xi) , ∀i ∈ [1,N] [1]

where δu represents the measurement error and uex is the exact mechanical field. The

objective is to derive the gradients of uex to obtain the exact strains.

In the following sections, the data are simulated or measured onto a plate tested

in an open-hole tensile configuration, which is a difficult case with large strains con-

centrated near the hole (Balaco de Morais, 2000). The simulated data are obtained

with a reference calculation (numerical example) in order to evaluate properly the re-

construction errors. The measured data are obtained on a real test carried out onto a

glass/epoxy composite laminate. In the case of simulated data, uex and δu are known.

Since the reconstruction operator is linear (see 3.2), the reconstructed field uap(x),
at any x, can be split up into three parts as follows:

uap(x) = uex(x)+ δuk(x)+ δub(x) [2]

where δuk(x) corresponds to the error due to the approximation of the exact field and

δub(x) is the error due to the noise contained in the measurements.

Due to the linearity of the differentiation operator, the reconstructed strains can be

similarly split up in three terms.

2.2. First approach: global least squares/finite element approximation

A first group of methods consists in using global least-squares minimization over

the whole measurement zone Ω. The choice of the basis functions on which the mea-

surements will be projected will affect the regularity and the precision of the recon-

struction. FEA (Feng et al., 1991), where the basis functions only have very low

interactions between each other, is chosen in this study because it limits reconstruc-

tion oscillations as the precision increases, contrarily to polynomial basis functions

(Pierron et al., 2007). The regularization parameter is hence the mesh size of the

FEA.
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The reconstructed displacement field is written like this:

uap(x) = [Φ(x)]U [3]

where [Φ(x)] is the matrix of the shape functions and U is the vector of the nodal

displacements. In our examples, the elements are triangles with linear shape functions.

U is found as the solution of the following minimization:

min
U

N

∑
i=1

(uap(xi)− ũ(xi))
2 [4]

The minimization problem [4] leads to a linear system to be solved, yielding U .

The strain field is directly derived from uap(x), by differentiating the shape func-

tions. In order to keep an approximated strain field described with the same shape

functions, εap(x) = [Φ(x)]E , with E the nodal strains, the strain field is projected onto

the same basis of functions. Its nodal values E are the solution of the following global

least-squares problem:

min
E

Z

Ω
(εap(x)− [B(x)]U)2

dS [5]

where [B(x)] is the symmetric gradient of [Φ(x)].

2.3. Second approach: diffuse approximation/polynomial approximation

A second group of methods is based on the use of local regression (Cleveland et

al., 1995). Here, DA (Nayroles et al., 1991) is chosen with polynomial basis functions,

various degrees being tested. As this approach is based on weighted least-squares, a

key point is the span of the weighting function, denoted R. This parameter can be

tuned to obtain the best regularization/precision compromise. As presented below, the

(diffuse) derivatives are directly derived from the measurements with this approach.

DA enables to define a continuous field from a discrete number of data points.

Given p(x) a vector of basis functions, the starting point is to define, for any x, the

vector of coefficient {a(x)}, which will be the solution of a local weighted least-

squares across the neighborhood V (x) of x:

min
a(x)

1

2
∑

i∈V (x)

w(x,xi)
(

p(xi − x)T {a(x)}− ũ(xi)
)2

[6]

x being a constant with respect to the minimization and the weighting function w(x,xi)
being evaluated at each data point. w(x,xi) can be any function defined over a bounded

domain. The bounded domain requirement is aimed at keeping the local character of

the reconstruction. Here, the weighting function is defined as:

w(x,xi) = wre f (
x− xi

Rx

)wre f (
y− yi

Ry

) [7]
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where wre f is a dimensionless window function whose derivative zeroes at 0 and

1 (this aspect ensures continuity up to the first derivative of the reconstructed fields);

here Rx and Ry are chosen independant of xi but may depend on x.

Then, {a(x)} is a vector field such that, if the basis is composed of monomials up

to at least degree 1, the approximate field and its first derivatives are reconstructed as:

uap(x) = a1(x),
δuap

δx
(x) = a2(x) and

δuap

δy
(x) = a3(x) [8]

where δu
δx

denotes the diffuse derivative which is an approximation of the exact deriva-

tive. This reconstruction can be applied to each component of the displacement field

ũ(xi). The strain fields can be deduced subsequently from the first order diffuse deriva-

tives. Let us finally mention that this approach implies the resolution of problem [6] at

each evaluation point. This means that one has to choose the evaluation points. Here,

they are chosen as coincident with the pixels where data are provided. Accordingly,

the reconstruction is evaluated through the discrete grid of the points xi , i ∈ [1,N].

3. Understanding and illustrating the methods with a numerical example

3.1. Numerical data and strain reconstruction

Figure 1. Exact shear strain field to be reconstructed

In this section, the two methods presented in Section 2 are applied to simulated

data. A FE simulation of the tensile response of an elastic isotropic plate with a

hole is thus performed. The obtained displacement field is then used to create a grid

of data points and a white noise, with a realistic standard deviation equal to 5% of

the maximum displacement, is added in order to represent the perturbation on the

measurements. The strain is reconstructed from these measurements. At first, the

strain reconstruction is illustrated on the shear strain field εXY . In order to compare

visually the quality of the reconstruction, the exact field is plotted in Figure 1. Figures

2 and 3 show the shear strain field reconstructed by both approaches for two different
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regularization parameters (mesh size or span of the weighting function) in each case.

Let us remark that the larger the mesh size or span of the weighting function, the

smoother the results. But the reconstructed field appears smoother with DA since the

FEA first derivative is only C0 at the edges of the elements, rending almost visible the

mesh. In both cases, the approximation error δεk remains quite small and is smaller in

the DA approach. This will be confirmed in Section 4.1.

(a) Mesh size : h = 5pixels (b) Mesh size : h = 12pixels

Figure 2. Reconstructed shear strain field εXY with the FEA approach

(a) Weight span R = 7pixels (b) Weight span R = 18pixels

Figure 3. Reconstructed shear strain field εXY with the DA method

3.2. Reconstructing operator

As explained in Section 2, the two proposed methods lead to the resolution of

linear problems, which means that the reconstruction operators are linear. The first

consequence is that, in the additive decomposition [2], the δub term corresponds to

the reconstruction of the noise alone and the δuk term is related to the reconstruction
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of the exact field. One can therefore study them separately. The second point is

that one can define the Green’s functions of the reconstructing operator. The Green’s

function at point xi can be obtained as the reconstructed field with measurements such

as: ũ(x j) = δi j, with δi j the Kronecker function. As shown in Figure 4, the Green’s

functions confirm that both approaches only have a local domain of influence. In the

FEA case, the effect of the mesh is visible.

(a) Finite Elements method (b) Diffuse Approximation method

Figure 4. Green’s function of the first order derivative reconstruction operator

4. Numerical comparison of the methods

The comparison proposed in this section are based on the displacement fields ob-

tained from a simulation and described in Section 3.1.

4.1. Global reconstruction error

In this section, we propose to compare the two reconstruction approaches from a

quantitative point of view. Consequently, one has to choose a criterium for evaluating

the quality of the reconstruction. Since the reconstruction is applied to simulated data,

this criterium is defined as a quadratic distance between the reconstructed strain field

and the exact one:

eε =

〈

√

(εap
XX − εex

XX)2 + 2(εap
XY − εex

XY )2 +(εap
YY − εex

YY )2

〉

Ωm

[9]

where 〈•〉Ωm
is the average of the data over region Ωm. Ωm can be either the whole

measurement zone Ω or a smaller zone around the hole where large gradients occur.

In Figure 5, error [9] is compared in various cases, for noisy and noiseless data, from

strain fields reconstructed with the FEA and the DA approaches. For the latter, the
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effect of the degree of the polynomial basis, ranging from 1 to 3, has also been studied.

As expected, the perturbation error decreases as the mesh size or span of the weighting

function increases, whereas the approximation error increases. One can notice that the

FEA approach has a larger filtering effect than DA, but induces larger approximation

errors, even when the basis functions of DA are of the same degree (degree 1). This can

be explained by the larger size of the domain of influence of the FEA reconstruction

operator.
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(b) Error eε near the hole

Figure 5. Reconstruction error with respect to the characteristic size

In the considered example, the average of the approximation error obtained with

DA remains small. The error at the vicinity of the hole for various degrees of the func-

tion basis used in DA is shown in Figure 5(b). One observes that the approximation

decreases as the degree increases, and the perturbation error increases. Nevertheless,

degree 2 in our case is a good trade off between the filtering effect and the faithful-

ness of the reconstruction. From the curves plotted in Figure 5(b), it should also be

emphasized that the approximation error depends on the zone. Therefore, it would

be interesting to use mesh sizes or spans of the weighting function that vary spatially,

depending on the zones. In order to do that, one has to define a criterium controlling

the local mesh sizes or spans of the weighting function, for example a criterion based

on the signal to noise ratio. The implementation of this feature is currently on-going.

4.2. VFM-based stiffness identification using the reconstructed strains

According to the basic equations of the Virtual Fields Method (VFM) (Grédiac et

al., 2006), the Poisson’s ratio of the material should verify the following equation:

ν = −

Z

Ω
(εxxε∗xx + εyyε∗yy + 2εxyε∗xy)dS

Z

Ω
(εxxε∗yy + εyyε∗xx −2εxyε∗xy)dS

[10]
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where ε∗ is the strain field derived from a virtual displacement field u∗ chosen across Ω
in such a way that u∗ = 0 on ∂Ω. The components εxx, εyy and εxy are the experimental

strain fields reconstructed from the data. Because of data corruption, equation [10]

is not satisfied in practice. Errors exist, but they can be minimized by choosing an

optimal virtual field, denoted u∗∗, according to the principles presented in (Avril et

al., 2007).

When ε∗∗ is used instead of ε∗ in equation [10], the remaining error can be used

to quantify the quality of the experimental strain reconstruction from the data. The

reference value for ν here is 0.286.

The obtained values of ν for different types of reconstruction (FEA with different

mesh sizes, DA with different spans of the weighting function), using noiseless data,

are shown in Figure 6(a). It can be noticed that:

– the error increases when the mesh size or the span of the weighting function

increases, due to the degrading faithfulness of the reconstruction;

– the curve for DA is smoother than the curve for FEA. Indeed, for a given span

of the weighting function, the reconstruction obtained with DA is unique, and so is

the identified Poisson’s ratio. But for FEA, as many different meshes give as many

different reconstructions, hence as many identified Poisson’s ratio. This is why the

curve for FEA in Figure 6(a) has this serrated aspect.
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Figure 6. Identified ν as a function of the characteristic size

Identification results obtained with noisy data deduced from the use of 150 samples

of white noise are shown in Figure 6(b). It shows the mean value of the identified

Poisson’s ratio and the error bar of plus and minus the standard deviation. The av-

erage of the identified Poisson’s ratio on the samples converges to the noiseless case

with the number of samples. First, one can remark that the larger the mesh size or

the span of the weighting function, the smaller the standard deviation. For DA, the

systematic error illustrated on Figure 6(a) remains small with respect to the standard

deviation and therefore the increase of the span of the weighting function improves the
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identification accuracy within the studied range. Furthermore, when using the FEA,

the scatter on the identification results is both due to the noise on the measurements

and the dependency of the reconstructed field to the mesh (for a given mesh size, two

meshes yields two different fields). Since the identification error remains small, the

scattering due to the mesh is emphasized and it is not possible to see if a larger mesh

size improves the identification results.

Eventually, due to the averaging effect of integration in equation [10], it can be

concluded that the error on the Poisson’s ratio identified with the VFM does not con-

stitute a relevant criterion for qualifying the reconstruction approaches. Other criteria

based on local errors may be used instead.

5. Real test data: detection of non-linearities

In this section, the two reconstruction approaches are applied to data obtained

from an open-hole tensile test carried out onto a glass/epoxy laminated plate having

a quasi-isotropic stacking sequence: [−454,904,454,04]s. In such tests, fracture of

the 90◦ underlying plies occurs quite early. An objective of full-field displacement

fields is to detect the onset and spatial location of this fracture. Thirty snapshots of

the displacement fields were measured with the grid method (Surrel, 1994) in a region

around the hole of the specimen, for tensile loads ranging from 0 to 13.3kN. It has

been proposed in (Pierron et al., 2007) to characterize the fracture process by detect-

ing local non linearities of the response. A first estimation of these non-linearities is

obtained by computing the discrepancy between the real strain field and the strain field

resulting from the extrapolation of the linear response. One has therefore to determine

the latter.

The linear response is estimated from the first ten snapshots, i ∈ {1, ..10}, Fi being

the corresponding load , as the slope of the response of each pixel:

min
εlin

Nlin

∑
i

(Fiεlin − ε(x,Fi))
2

with, Nlin = 10 [11]

Then, it is possible to define the non-linear part of the strain field for a given load F:

∆ε(x,F) = Fεlin(x)− ε(x,F) [12]

The ∆ε fields reconstructed by the two approaches are shown for two different loads

in Figure 7. The detection of the non-linearities around the hole gives better results

than the previous method used in (Pierron et al., 2007), with a sharper zone provid-

ing a more precise localization. Both methods yield similar results, even if the FEA

approach remains sensitive to the underlying mesh. The DA is more affected by the

noise differenciation but seems to offer a better contrast. Nevertheless, the perturba-

tions on the measurements are more severe than in the numerical case and one would

have to input more a priori information on the fields to get better results. This sug-

gests considering regularization approaches, which are considered as one of the major

prospects of this study.
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(a) Load 9.7kN - FEA (b) Load 13.3kN- FEA

(c) Load 9.7kN - DA (d) Load 13.3kN - DA

Figure 7. Non-linear part of the displacement from the reconstructed fields

6. Conclusion

This paper has presented two methods for reconstructing strain fields from full-

field displacement data. The aim of the methods is to handle measurement perturba-

tions and control their filtering. In both methods, the regularization and the precision

of the reconstructed fields are controlled by only one parameter, the mesh size or the

span of the weighting function. The results on the examples are satisfactory. The

FEA approach has a lower computational cost, but provides larger errors in the recon-

structed field. Another disadvantage is the dependency of the approximation to the

mesh, even for a given mesh size, yielding less robust results. The DA approach does

not have this drawback and offers a richer way of reconstructing the fields, by making

easier the choice of parameters controlling the errors. Furthermore, the DA approach

enables the enrichment of the basis by any function, further work should be devoted

to the introduction of some mechanical knowledge through mechanical fields in the

basis.

It has been shown on a first example that the choice of the mesh size (FEA) or the

span of the weighting function (DA) can improve the reconstruction quality. There-
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fore, it would be interesting to establish a criterion for choosing them as point depen-

dent functions, leading to size maps for the reconstruction process. Studies about the

choice of a relevant criterion are still on-going.

Finally, once the choice of the parameters controlling the errors is optimized in

both approaches, implementation of regularization techniques, such as Tikhonov ones,

will be investigated for further improvements.
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