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Abstract. Landslides cause severe damage to the road net-

work of the hit zone, in terms of both direct (partial or com-

plete destruction of a road or blockages) and indirect (traffic

restriction or the cut-off of a certain area) costs. Thus, the

identification of the parts of the road network that are more

susceptible to landslides is fundamental to reduce the risk to

the population potentially exposed and the financial expense

caused by the damage. For these reasons, this paper aimed

to develop and test a data-driven model for the identifica-

tion of road sectors that are susceptible to being hit by shal-

low landslides triggered in slopes upstream from the infras-

tructure. This model was based on the Generalized Additive

Method, where the function relating predictors and response

variable is an empirically fitted smooth function that allows

fitting the data in the more likely functional form, consid-

ering also non-linear relations. This work also analyzed the

importance, on the estimation of the susceptibility, of con-

sidering or not the sediment connectivity, which influences

the path and the travel distance of the materials mobilized

by a slope failure until hitting a potential barrier such as

a road. The study was carried out in a catchment of north-

eastern Oltrepò Pavese (northern Italy), where several shal-

low landslides affected roads in the last 8 years. The most

significant explanatory variables were selected by a random

partition of the available dataset in two parts (training and

test subsets), 100 times according to a bootstrap procedure.

These variables (selected 80 times by the bootstrap proce-

dure) were used to build the final susceptibility model, the ac-

curacy of which was estimated through a 100-fold repetition

of the holdout method for regression, based on the training

and test sets created through the 100 bootstrap model selec-

tion. The presented methodology allows the identification, in

a robust and reliable way, of the most susceptible road sec-

tors that could be hit by sediments delivered by landslides.

The best predictive capability was obtained using a model in

which the index of connectivity was also calculated accord-

ing to a linear relationship, was considered. Most susceptible

road traits resulted to be located below steep slopes with a

limited height (lower than 50 m), where sediment connec-

tivity is high. Different land use scenarios were considered

in order to estimate possible changes in road susceptibility.

Land use classes of the study area were characterized by

similar connectivity features. As a consequence, variations

on the susceptibility of the road network according to dif-

ferent scenarios of distribution of land cover were limited.

The results of this research demonstrate the ability of the de-

veloped methodology in the assessment of susceptible roads.

This could give the managers of infrastructure information

about the criticality of the different road traits, thereby al-

lowing attention and economic budgets to be shifted towards

the most critical assets, where structural and non-structural

mitigation measures could be implemented.
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1 Introduction

Landslides are important geohazards in many regions of the

world. They cause severe economic damage each year in the

order of hundreds of billions of dollars (Zezere et al., 2007;

Salvati et al., 2014; Gariano and Guzzetti, 2016). Slope in-

stability induces significant damages, deaths and economic

losses to infrastructures, to roads in particular (Van Westen

et al., 2006; Klose et al., 2015). The main negative conse-

quences of instability phenomena on roads are (Bil et al.,

2014) (i) their partial or complete destruction, which can

also cause human losses; (ii) the traffic restriction due to the

blockage of a hit road, which may affect the entire network

causing congestion and (iii) the cut-off of certain areas that

cannot be reached by alternative routes.

Thus, it is fundamental to identify what sectors of a road

network are more susceptible to landslides, in order to reduce

the risk to the population potentially exposed and the mone-

tary expense caused by road damage. This aim is particularly

important, also because much research (Nemry and Demirel,

2012; Michaelides, 2014; Strauch et al., 2015; Klose et al.,

2017; Matulla et al., 2017) has stressed that the exposure of

road networks to slope instabilities could increase as a con-

sequence of the climate change and of the economic rising

income in different countries.

According to the geomorphological and triggering fea-

tures, landslides affecting roads can be distinguished as

(i) landslides in correspondence of the infrastructure and

(ii) landslides triggered in a natural or an engineered hills-

lope upstream to the road, whose transportation and/or accu-

mulation zone hit the infrastructure.

The triggering mechanisms of the first landslide type are

strictly related to local hydrological and geotechnical settings

that are related to the road presence. These factors generally

highlight incorrect construction or management of the infras-

tructure, regardless of the natural features of the slopes where

the road was built (Sidle and Ochiai, 2006; Muenchow et al.,

2012; D’Amato Avanzi et al., 2013; Brenning et al., 2015).

In contrast, the triggering mechanism and landslide runout

of the second landslide type can be related to the geologi-

cal, geomorphological and hydrological predisposing factors

of the natural or engineered slopes upstream to the roads.

Furthermore, these events are the most widespread in terms

of affected routes, in many cases including the involvement

of extended sectors of hilly and mountainous road networks

(Quinn et al., 2010; Bil et al., 2014).

In recent years, several data-driven methodologies were

built to identify the susceptible sectors of a road network to

landslides (Budetta, 2004; Hearn et al., 2008; Jaiswal et al.,

2010a, b, 2011; Quinn et al., 2010; Michoud et al., 2012;

Tarolli et al., 2013; Bil et al., 2014, 2017; Penna et al., 2014;

Ramesh and Anbazhagan, 2015; Tarolli and Sofia, 2016;

Winter et al., 2016; Donnini et al., 2017; Pellicani et al.,

2017; Postance et al., 2017; Martinovic et al., 2018). These

methods are based on quantitative statistical relationships be-

tween predisposing factors and a response variable. They

assume that an event is most likely to occur under similar

ground conditions to previous events (Varnes, 1984). They

present the advantage of being more objective and easily ap-

plicable on different scales (from site-specific to regional),

as well as capable of managing large sets of predisposing

factors (Corominas et al., 2014). Data-driven models depend

strictly on the reliability of the inventories of the response

variable (Guzzetti et al., 2006; Corominas et al., 2014). Aside

from this limitation, data-driven methods are most flexible to

be used at different scales of analysis (from site-specific to

regional scale) and do not require a lot of data to compared

to the physically based models (Corominas et al., 2014).

Data-driven models used for the characterization of sus-

ceptible routes were based on a multi-variate analysis (Dai

and Lee, 2002; Chen and Wang, 2007), which predicts the

spatial distribution of roads hit by landslides through the

estimation of the relations and the relative weight between

the predisposing factors and the response variable (roads af-

fected by landslides). Such methods do not consider non-

linear relations between the predisposing factors and the re-

sponse variable. However, the non-linearity of the system

should be considered, since changing the environmental and

geological conditions leads to a consequent interaction of the

mobilized materials with roads (Goetz et al., 2011). More-

over, neglecting a possible non-linearity in the model could

decrease its predictive performance, due to limitation in high-

lighting the complex behaviours of the phenomena (Phillips,

2003, 2006). Thus, it could be useful to implement a method-

ology that considers also a non-linear regression technique,

such as the Generalized Additive Model (GAM; Hastie and

Tibshirani, 1990).

Furthermore, previous methods did not take into account

the potential slope sediments mobilized by the landslide that

reach the road network in the downstream area. This aspect

is well described by the amount in sediment connectivity,

which influences the path and the travel distance of the ma-

terials mobilized by a slope failure until reaching a potential

natural or anthropogenic barrier (e.g., river or road) (Cav-

alli et al., 2013; Tarolli and Sofia, 2016; Persichillo et al.,

2018). In this way, the landslide runout can be estimated and

inserted when modelling road susceptibility without employ-

ing numerical or physical methods, which require rheologi-

cal and geotechnical data not easily measurable for the slope

materials (Hungr, 1995; Fannin and Wise, 2001; Pastor et al.,

2014; Fan et al., 2017).

Scenarios of road susceptibility distribution related to the

modifications of land use in a particular area were not consid-

ered so far. However, land use changes can have significant

impacts both on the locations of landslide triggering zones

(Glade, 2003; Begueria, 2006; Reichenbach et al., 2014; Per-

sichillo et al., 2017a) and on the connectivity of the mobi-

lized sediments (Foerster et al., 2014; Lopez-Vicente et al.,

2013, 2016). Thus, susceptibility scenarios of different land

use distributions may allow the identification of land man-
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agement practices able to reduce the slope instability which

can induce damages to roads.

For these reasons, a non-linear data-driven method was

developed and tested for the identification of road network

sectors more susceptible to shallow landslides triggered in

slopes upstream to an infrastructure. The main objectives

of the paper are (i) the development and testing of a data-

driven non-linear methodology, based on the GAM, that is

able to identify the relations between predisposing and re-

sponse variables for the assessment of road sectors suscepti-

ble to shallow landslides triggered upstream of the infrastruc-

ture; (ii) the importance of considering sediment connectivity

in the susceptible road segments modelling and (iii) the anal-

ysis of the effects resulting from different scenarios of land

use distribution on the road sectors potentially affected by

shallow landslides.

2 The study area

The analysis was carried out in a catchment located be-

tween Scuropasso river and Versa river, in Oltrepò Pavese,

in the northern termination part of the Italian Apennines

(Fig. 1). The study area is 14 km2 wide and presents an ele-

vation range between 88 and 295 m a.s.l. The morphological

structure is typical of the Pede-Apennine margin of Oltrepò

Pavese and is closely related to both the lithology and the

tectonic or neotectonic setting of the Apennine margin. It is

characterized by a medium-high slope gradient, with slope

angles higher than 10◦, with prominent altimetric irregular-

ities along ridge lines and channel network in narrow val-

leys (Bordoni et al., 2015). Bedrock is characterized by a

Mio-Pliocenic succession formed by medium low-permeable

arenaceous conglomeratic materials (Monte Arzolo Sand-

stones, Rocca Ticozzi Conglomerates) overlying imperme-

able silty–sandy marly bedrock (Montù Beccaria Formation,

Sant’Agata Fossili Marls) and evaporitic chalky marls and

gypsum (Gessoso-Solfifera Formation) (Vercesi and Scagni,

1984). Superficial soils, derived by bedrock weathering, are

mainly clayey–sandy silts and clayey–silty sands. Soil depth

has values lower than 2.5 m.

Land use maps of the study area have been available

since 1954. The land use map of 1954 was realized through

aerial photographs from Gruppo Aereo Italiano (Italian

Aerial Group), with a resolution of 0.5 m. Moreover, the

land use map from 1980 was obtained from photo inter-

pretation at a scale of 1 : 50 000 from the TEM1 flight

(scale 1 : 20 000). Land use maps from 2000, 2007, 2012

and 2015 were provided by the Lombardy Region and

shared as part of the Infrastructure for Spatial Informa-

tion in Lombardy (IIT) via the Geoportal (Lombardy Re-

gion Geoportal: http://www.cartografia.regione.lombardia.it/

geoportale, last access: 11 December 2017). The map of

2000 was obtained from the photo interpretation of aerial

images of Flight IT2000, with a resolution of 1 m, while

the land use map of 2007 was realized by using colour and

infrared orthophotos from Flight IT2007, with a resolution

of 0.5 m. The maps of 2012 and 2015, which corresponded

to the actual situation, were realized through the photo-

interpretation of aerial photos realized by Agency for Dis-

bursement in Agriculture (AGEA). The photo-interpretation

was also supported by auxiliary data of Lombardy Region

databases (e.g., Regional Agricultural Information System,

Forest Types maps, map of the resident population, Archive

of Integrated Activities production). The overall accuracies

of maps obtained for Lombardy Region using this methodol-

ogy was reported in Zaffaroni (2010) as approximately 95 %.

More detailed information about the method to create these

maps is available in Fasolini (2014).

The study area is characterized by traditional viticulture

vocation with grapevine cultivation representing the main

economic branch. Till the 1980s, more than 90 % of the terri-

tory was covered by cultivated vineyards, where manual cul-

tivation practices predominated (Fig. 2a, b, c). This situation

represented the highest diffusion of vineyards in the study

area, identifying all the hillslopes that are effectively adapted

for grapevine plantation and cultivation. Instead, in the last

40 years, more than 40 % of previously cultivated slopes

were abandoned, with a corresponding progressive increase

in woodlands (+13 % from 1980 to 2007–2015) and in un-

cultivated areas generally composed of shrubs and grasses

(+10 % from 1980 to 2007–2015, Fig. 2a, d). Between 2007

and 2015, land use classes distribution remained steady. In

the 2007–2015 time span, 49 % of the area was occupied by

vineyards, 10 % by uncultivated areas, 16 % by woodlands

and 16 % by urban areas (Fig. 2d). Other land use classes are

present in a percentage lower than 5 %.

This abandonment was due to the conversion from manual

to mechanical cultivation practices that increased the difficul-

ties in the maintenance of vineyards, especially for those lo-

cated on very steep slopes (> 25◦) (Persichillo et al., 2017a).

Moreover, societal changes, together with the decreasing

number of people actively cultivating the area, caused a re-

duction in land care practices and maintenance works in both

abandoned and cultivated vineyards (Persichillo et al., 2017a,

2018).

A primary road network (81 km long and generally 3–5 m

wide) crosses the study area and is composed of provincial

and municipal roads that connect different villages and towns

(Fig. 3). The roads were built in correspondence of the valley

floors or in the medium part of a hillslope, cutting its conti-

nuity. In the second case, a 3–5 m height trench was built

upstream to the road sector.

This area was recently affected by several shallow land-

slides triggered by intense rainfall events (Bordoni et al.,

2015). The most important one occurred in 27–28 April 2009

(160 mm/62 h), and induced 532 failures; other shallow land-

slides occurred during the events of March and April 2013

and of 28 February–2 March 2014, triggering 19 and 18

shallow failures, respectively. Lower numbers of phenom-
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Figure 1. Geological setting and shallow landslide distribution of the study area.

Figure 2. Land use distribution and land use changes in the period 1954–2015: (a) percentage of the area occupied by each land use class

during the analyzed period; (b) land use distribution in 1954; (c) land use distribution in 1980 and (d) land use distribution in 2015. Land

use maps were provided by the Lombardy Region and shared as part of the Infrastructure for Spatial Information in Lombardy (IIT) via

the Geoportal (Lombardy Region Geoportal: http://www.cartografia.regione.lombardia.it/geoportale, last access: 11 December 2017). The

detailed information regarding the method to create these maps are available in Fasolini (2014).

ena reflect the lower amount of rainfall recorded during these

events (40 mm in about 30–50 h in March and April 2013

events; 69 mm in 42 h in 28 February–2 March 2014 event).

These landslides had an average length of about 35 m and

area varied from a minimum of 13 m2 to a maximum of al-

most 9000 m2, with an average of about 477 m2. The fail-

ure surface was mainly detected between 0.9 and 1 m from

the ground level, generally in correspondence with the soil–

bedrock contact. 30 % of these shallow landslides were trig-

gered in vineyards, while an equal percentage of phenomena

developed in woodlands or uncultivated areas. According to

Cruden and Varnes’ (1996) classification, most of the shal-

low landslides can be classified as roto-translational slides

evolved into flows, with width / length ratio > 1. Moreover,

Nat. Hazards Earth Syst. Sci., 18, 1735–1758, 2018 www.nat-hazards-earth-syst-sci.net/18/1735/2018/
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Figure 3. (a) Primary road network of the study area, with the shallow landslides events that occurred between 2009 and 2014 that affected

these routes. This road network is composed of provincial and municipal roads (available from: Administration of Pavia Province and

Infrastructure for Spatial Information in Lombardy (Lombardy Region geoportal: http://www.cartografia.regione.lombardia.it/geoportale,

last access: 11 December 2017). (b) A shallow landslide (B2 type), triggered in correspondence of the road trench upstream of the route, that

blocked the route. (c) A shallow landslide triggered in a slope cultivated with vineyards, whose mobilized materials destroyed completely a

road trait downstream.

24 failures (5 % of the total number) were roto-translational

slides affecting the trench in correspondence with a cut of a

road. These phenomena were named as B2 type, according

to the term used by Zizioli et al. (2013) and Persichillo et

al. (2018).

The landslides significantly affected the road network,

with severe damage (Fig. 3) i.e. the partial or complete de-

struction of road traits, debris accumulation and blockage,

causing traffic restriction and the cut-off of villages and

towns.

A detailed inventory map of the road sectors affected

by shallow landslides in the study area was prepared and

used as response variable of the model. The inventory

map of affected road traits include all the sectors hit by

the shallow landslides occurred in the study area during

27–28 April 2009, March/April 2013 and 28 February–

2 March 2014 rainfall events. For the 2009 event, colour

aerial photographs at a resolution of 15 cm acquired im-

mediately after the event were examined (Persichillo et al.,

2017a). For 2013 event, affected road traits were identified by

visual interpretation of Pleiades satellite images with a res-

olution of less than 1 m (Persichillo et al., 2017a). For 2014

event, slope failures and affected roads immediately after the

event were detected through field surveys; the identified phe-

nomena were mapped through a GPS tool, whose resolution

is less than 2.5 m.

In particular, 2.5 km of the principal road network was af-

fected by shallow landslides in the last years. The 134 shal-

low landslides (23 %) hit roads, 24 failures (15 % of the to-

tal number) were roto-translational slides affecting the trench

of a cut realized for building a road. Instead, the remaining

90 phenomena (85 %) were shallow landslides triggered in

slopes upstream the routes on cultivated or abandoned hill-

slopes. The length of the road sectors hit by a shallow land-

slide ranged between 2 and 94 m.

3 Methods

3.1 Development and test of the data-driven model

3.1.1 Predictor variables

A data-driven methodology based on GAM was imple-

mented for the assessment of roads that could be hit by shal-

low landslides. A schematic flow-chart of this methodology

is shown in Fig. 4. Such a procedure is similar to that one pro-

posed by Persichillo et al. (2017b) for the assessment of the

shallow landslide susceptibility in different settings. In this

paper, it was refined for the application to road susceptibility

to landslides. In particular, different predictor variables and

response variables were considered, according to their influ-

ence on the possible interaction between landslide mobilized

materials and the road network located downstream.

In the model, 11 predictor variables were identified. Eight

of these parameters were extracted by a 1 m resolution lidar-

derived Digital Elevation Model (DEM), through SAGA GIS

(System for Automated Geoscientific Analyses; Olaya, 2004;

Conrad et al., 2015). The DEM was available from the Italian

Ministry of Environment and Protection of the Land and Sea,

following the realization of the Piano Straordinario di Teleril-
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Figure 4. Flow-chart containing the scheme for the implementation of the proposed model.

evamento Ambientale (Extraordinary Plan of Environmental

Remote Sensing – PST-A). These attributes were slope angle

(SL), aspect (ASP), curvature (CURV), slope length (LEN),

slope height (HEI), catchment area (CA), catchment slope

(CS) and topographic wetness index (TWI).

SL, ASP and CURV were calculated through Zevenber-

gen and Thorne (1987)’ approximations. SL strongly con-

trols the velocity of the material mobilized by a shallow land-

slide, thus its capacity of travelling for long distances from

the source areas (Fannin and Wise, 2001; Catani et al., 2013;

Fathani et al., 2017). ASP influences the soil moisture and

the vegetation growth, that can have a key role on the sus-

ceptibility of a slope to shallow failures (Van Westen et al.,

2008; Jaiswal et al., 2010a). CURV influences the amount of

water runoff, the rate of underground water movement and

the potential rates of sedimentation and erosion (Dai et al.,

2002; Kritikos and Davis, 2015).

LEN and HEI are key parameters for the estimation of the

distance travelled by a landslide from its source area and of

the velocity of the displaced material (Bathurst et al., 1997;

Chau et al., 2004; Martinovic et al., 2016). LEN is the dis-

tance from the point of origin of overland flow to the point

where either the slope gradient decreases enough for depo-

sition to start, or runoff waters are streamed into a chan-

nel (Wischmeier and Smith, 1978). This parameter is use-

ful to predict zones where the soil deposition is predominant

(Winchell et al., 2008). HEI represented the elevation differ-

ence between the source area of a shallow landslide and the

bottom of the hillslope where this failure occurred.

Multiple-flow direction algorithm (Quinn et al., 1991) was

used to obtain CA and CS. Multiflow direction algorithm dis-

tributed the water flow to all neighbouring downslope cells

weighted according to slope angle, avoiding the flow concen-

tration to particular lines sometimes unrealistic. In the case

of planar and concave hillslopes, as the ones present in the

study area, the partitioning of the flow provided by the use of

the multiflow direction algorithm was consistent to the real

situation (Seibert and McGlynn, 2007).

CA is used as a proxy for soil moisture and soil depth,

thus for the potential amount of materials that can be mobi-

lized by the shallow landslide and that can reach an infras-

tructure (Brenning et al., 2015). CS influences the destabi-

lizing forces upstream that can provoke the development of

a landslide (Brenning et al., 2015; Persichillo et al., 2017b).

TWI highlights the water fluxes along the slopes and the po-

sition of the accumulation points in a catchment (Seibert et

al., 2007).

Along with the DEM-derived predictor variables, the Eu-

clidean distance from the shallow landslide source area

(DIST) was calculated, considering the shortest distance be-

tween the landslide source area and a considered road trait.

The choice of an Euclidean distance was consistent to the

types of slope failures present in the study area. The shal-

low landslides did not follow established paths of the flow

direction on the hillslopes where they occurred. Moreover,

they were not channelled, as in the case of typical debris

flows. Furthermore, the distance calculated along the flow

direction was not considered to avoid redundancy with the

Nat. Hazards Earth Syst. Sci., 18, 1735–1758, 2018 www.nat-hazards-earth-syst-sci.net/18/1735/2018/
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parameter of sediment connectivity. In fact, sediment con-

nectivity already took into account the shortest paths along

the flow direction in its downslope component (Cavalli et al.,

2013; Crema and Cavalli, 2018). DIST parameter is consis-

tent with slopes of homogeneous gradient, aspect and cur-

vature and is important in understanding the capacity of the

mobilized material to travel along a slope and to reach a route

located downstream (Bil et al., 2014; Brenning et al., 2015).

The source area of each slope failure was extracted through

Galve et al. (2015)’s procedure, selecting 25 % of the land-

slide area in correspondence to the highest elevations.

Bedrock geology (GEO) was also considered as predic-

tor. GEO influences the geomechanical, geotechnical, rheo-

logical and hydrological properties of the soil, which have

effects on the runout of a landslide (Hungr, 1995; Pastor et

al., 2014). GEO was obtained from the geological map of the

studied catchment, realized by the Department of Earth and

Environmental Sciences of University of Pavia through field

surveys.

Different authors (Budetta, 2004; Jaiswal et al., 2010a,

b, 2011; Quinn et al., 2010; Michoud et al., 2012; Bil et

al., 2014, 2017; Ramesh and Anbazhagan, 2015; Pellicani

et al., 2017; Postance et al., 2017) had already used some of

the previously described predictors in different data-driven

model aiming to assess roads susceptible to being hit by

shallow landslides. Until now, sediment connectivity has not

been considered yet. Tarolli and Sofia (2016) and Persichillo

et al. (2018) analyzed two different hilly and mountain-

ous catchments, located in western USA and northeastern

Oltrepò Pavese, respectively, in order to highlight potential

connections between a road network and the sediment deliv-

ery. The works both quantified the sediment connectivity us-

ing the index of connectivity (IC), that allows the evaluation

of the potential connection between hillslopes and features,

which act as targets for transported sediments based only on

the morphological and topographical characteristics and the

vegetation cover of a territory. These works highlighted that

the segments of the road network, which can act as a stor-

age area for the sediments mobilized by a phenomenon up-

stream to the road, are those ones located in correspondence

of zones characterized by high IC values. This aspect tes-

tifies how slope instability phenomena can actively deliver

sediment to particular portions of a road network, producing

damage provoked by the impact of the mobilized materials

on the infrastructure (Sidle et al., 2014; Klose et al., 2015).

Persichillo et al. (2018) demonstrated that, in two catchments

of Oltrepò Pavese, the road sectors hit by the materials mo-

bilized by shallow landslides that occurred upstream are the

ones located close to slopes characterized by the lowest or

the highest values of sediments connectivity along the entire

catchment. In order to verify the potential influence of this

parameter in discriminating the susceptible road sectors, an

index of sediment connectivity within the predictor variables

of the model was inserted.

The index of sediment connectivity (IC), defined by

Borselli et al. (2008), evaluates the potential connection be-

tween hillslopes and features that act as targets or storage

areas (sinks) for mobilized sediments (e.g., channels, basin

outlet, lakes or road networks). In the proposed model, IC,

calculated according to the approach of Cavalli et al. (2013),

was implemented for a better characterization of surface pro-

cesses and properties and to exploit a high-resolution DEM.

For further details on the changes introduced in the IC calcu-

lation following this scheme, we refer to Cavalli et al. (2013)

and Crema and Cavalli (2018).

IC is calculated according to Eq. (1) combining the ups-

lope (Dup) and downslope (Ddn) components of connectivity,

respectively.

IC = log10

Dup

Ddn
(1)

IC can have values in the range of [−∞, +∞], with connec-

tivity increasing for larger IC values (Cavalli et al., 2013).

IC was calculated through the stand-alone application Sed-

InConnect 2.3 (Crema and Cavalli, 2018).

In the calculation of IC, both the Dup and Ddn depend on

a weighting factor (W ) (Eqs. 2, 3):

Dup = WS
√

A (2)

,Ddn =
∑

i

di

WiSi

, (3)

where S is the average slope gradient of the upslope con-

tributing area, A is the upslope contributing area, di and Si

are the length of the flow path and the slope gradient for the

ith cell, respectively.

W , intended to model the impedance to sediment fluxes,

was extracted in two different ways:

1. according to the linear formulation of W (Eq. 4) as a

function of land use:

Wlin = 1 − n, (4)

where n is the Overland Flow Manning’s n Roughness

Value, which depends on the land use type (Table 1);

2. according to the non-linear approach proposed by Gay

et al. (2015) and Kalantari et al. (2017) as a function of

the morphological properties and of the land use char-

acteristics (Eq. 5):

Wnl =
1

1 + e−0.5(x−x0)

(

1 −
Ri

Rimax

)

, (5)

where Ri is the roughness index dependent on the sur-

face morphology variability (Cavalli et al., 2008; Cav-

alli and Marchi, 2008), Rimax is the highest value of Ri

in the study area and x0 is the midpoint of the distribu-

tion function of Ri in an area.
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Table 1. Overland flow Manning’s n Roughness Values assigned

to each class of land use maps available for the calculation of Wlin

factor.

Land use classes Manning’s n (–)

Woodlands 0.40

Uncultivated areas 0.35

Grasslands 0.25

Orchards/arable areas/vineyards 0.20

Bare soil 0.05

Urban areas 0.02

According to the different methods of calculation, IC dis-

tribution changes (Kalantari et al., 2017). In the considered

case study, IC was calculated with both approaches, produc-

ing two IC maps (IClin obtained implementing Wlin, ICnl ob-

tained implementing Wnl), inserted alternatively in the model

for the assessment of the roads susceptible to shallow land-

slides.

For each trait of the road network analyzed, the value of

each assigned predictor corresponded to the one of the slope

immediately upstream the road trait, where a landslide that

could hit this sector could be triggered. This is consistent

with the features of the slopes where shallow landslides oc-

curred in the past in the study area. In fact, from the source

area to the accumulation zone of each landslide, the failed

slopes kept similar morphological and hydrological features,

in terms of slope angle, exposition, curvature and hydrolog-

ical features (Bordoni et al., 2015; Persichillo et al., 2017b).

Maps of the predictor variables were produced for the study

area at a resolution of 1 m, as the input DEM.

3.1.2 Response variable

The response variable corresponded to the inventory of the

road traits hit by sediments mobilized by shallow landslides

during events that occurred between 2009 and 2014. In the

inventory map binary information was inserted; a value equal

to 0 was assigned to the road segments not affected by a shal-

low landslide, while a value of 1 was assigned to each hit

road trait. The resolution of this map was set to that of the

predictor variable (1 m). The inventory maps referred to the

primary road network of the study area, composed of provin-

cial and municipal routes. This was considered because this

network contains the most affected road sectors, in terms of

economic damage and indirect losses (restriction of traffic,

cut-off of villages due to the blockage of roads).

3.1.3 Implementation of GAM model

The data-driven methodology developed for assessing sus-

ceptible roads was based on GAM. GAM is an extension of

the Generalized Linear Model (GLM), in which the linear

function is replaced by an empirically fitted smooth function

that allows fitting the data in the more likely functional form

(Hastie and Tibshirani, 1990; Goetz et al., 2011). GAM uses

a link function to relate the mean (µ) of the response vari-

ables (probability that a road sector could be hit by a land-

slide) and the sum of smooth functions of the predictor vari-

ables (Jia et al., 2008) (Eq. 6):

g(µ) =
n

∑

i=1

fi(xi), (6)

where g is the link function and the fi is the smooth func-

tion (typically splines), each dependent on a single predictor

variable, xi , chosen in a set of n variables xi . . .xn.

GAM was implemented through a “gam” package of R

software (Hastie, 2013). Starting from null model, each pre-

dictor variable can be included in the GAM model as lin-

ear (untransformed), non-linear (non-parametrically trans-

formed with two equivalent degrees of freedom), or not in-

cluded in the model. For the selection of the explanatory vari-

ables, we used the “step.gam” command of the R package

“gam”. The variables were selected allowing both directions

in the step-wise search, using the option direction = “both” in

issuing the step.gam command. The selected “best” model is

the one that minimizes the Akaike Iteration Criterion (AIC).

The adopted procedure was composed of the following

steps. The first step was the application of a multi-collinear

analysis between the numerical predictor variables. Multi-

collinearity verifies when some predictor variables are lin-

early correlated among them to avoid redundancy that could

affect the numerical stability (Farrar and Glauber, 1967). The

condition indexes of the matrix of the independent variables

was calculated. Variables featuring an index higher than 30

were considered not independent, thus they were excluded

from the analyses to reduce collinearity (Belsley et al., 1980).

In the second step, a database formed of an equal num-

ber of road pixels affected or not affected by shallow land-

slides was implemented in order to avoid the over-estimation

of non-landslide areas, which are much wider than landslide

ones (Dai and Lee, 2002; Ayalew and Yamagishi, 2005; Per-

sichillo et al., 2017b). Then this database was subdivided into

training and test sets. The training set, corresponding to two-

thirds of the dataset, was used to fit the model. Whereas the

test set, forming of the remnant third of the dataset, was used

to verify the accuracy of the model. Training and test sets

were randomly selected for 100 times according to a boot-

strap procedure. The most frequent predictor variables (se-

lected at least 80 times by the bootstrap procedure) were used

to build the final susceptibility model. Moreover, linear and

non-linear predictors were identified according to the higher

percentage of selection of each parameter.

Model forecasting capability constituted the third step of

model scheme. A 100-fold repetition of the holdout method

for regression with a binary response (McLachlan, 1992;

Molinaro et al., 2005; Maindonald and Braun, 2010), con-

sisting of a random sub-sampling of different training and
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Figure 5. Potential land use scenarios used for the assessment of road susceptibility to shallow landslides in the study area, together with

the 1980 land use distribution (Fig. 2c): (a) Scenario 3, correspondent to the transformation of actual uncultivated areas in woodlands;

(b) Scenario 4, correspondent to an increase in abandoned areas similar to those in 1980–2015 period.

test sets, in the proportion of two-thirds for testing and one-

third for the test, was implemented. The accuracy calculated

for these iterations in all training and test sets was averaged

to obtain its overall value. The considered training and test

sets were the ones created through the 100 bootstrap model

selection. The area under the Receiver Operating Character-

istic (ROC) curve (AUC) (Hosmer and Lemeshow, 2000) was

computed to evaluate the model’s ability to discriminate af-

fected road sectors, furnishing a further measure of the accu-

racy of the model. The AUC can take values from 0.5 (no dis-

crimination) to 1.0 (perfect discrimination; Spitalnic, 2004).

Moreover, the mean value and the bootstrap 95 % confidence

intervals of the 100 AUC obtained from the 100-fold boot-

strap procedure for the overall accuracy of the model were

calculated.

Furthermore, the 100 fitted bootstrap models were used

to extend the prediction to the whole road sectors to ob-

tain the distribution of probability. Thus, the map of the

susceptibility to be hit by shallow landslides was obtained

from the mean values of each bootstrap distribution of 100

probability values. Also a prediction uncertainty was as-

sociated with to each estimated probability was estimated

through the calculation of by calculating the bootstrap 95 %

confidence intervals of the susceptibility. Different classes

of probability susceptibility were created, subdividing into

four intervals the probability values in the susceptibility

map: low (0 < p ≤ 0.25), medium-low (0.25 < p ≤ 0.50),

medium-high (0.50 < p ≤ 0.75) and high (0.75 < p ≤ 1).

The number of true positives (TP), true negatives (TN),

false positives (FP) and false negatives (FN) was further ob-

tained by comparing the susceptibility map with the response

variable map used to build the model (Jollifee and Stephen-

son, 2003). For making this comparison, susceptibility values

were classified as a binary variable: 1 was assigned to values

higher than 0.5 (modelled pixel hit by a landslide), while 0

was assigned to values lower than 0.5 (modelled pixel not

affected by a landslide).

Susceptibility was calculated considering a spatial resolu-

tion of 1 m, as the input predictors, and for a buffer of 5 m

from the middle of each road sector. The chosen buffer of

5 m was consistent with the size of the roads present in the

study area. These roads had similar sizes, with a width of the

roadway ranging between 3.5 and 5 m.

To assess the effect of considering IC in modelling the

susceptibility, three models were produced and compared:

Model (1) using all the predictor variables except for the IC;

Model (2) considering all the predictors with IClin; Model (3)

considering all the predictors with ICnl.

3.2 Change in susceptibility according to different land

use scenarios

IC depends on the morphological features and on the land

use of hillslopes, due to the presence of W factor. On the

hypothesis that morphological features does not change, IC

maps were created using particular land use distribution, rep-

resentative of potential situations that could characterize the

study area.

Aside from the current scenario used for building the sus-

ceptibility models at this time, another three scenarios were

considered. The second scenario (Scenario 2) consists of the

1980 land use map, where the widest extension of cultivated

vineyards was reached (Fig. 2c). Thus, this scenario repre-

sents the possible distribution of vineyards in the case of a

complete recovery of the abandoned areas since the 1980s.

The third scenario (Scenario 3) corresponded to the ac-

tual scenario, with an interruption in the increase of aban-
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Figure 6. Actual (2015) IC maps corresponding to the linear calculation of the index since Wlin (a) and to the non-linear calculation of the

index since Wnl (b). A detail of the northern sector of the study areas is reported for IClin (c) and ICnl (d) maps.

doned areas without the recovery of the previously cultivated

slopes. According to this, uncultivated areas completely dis-

appear and they convert into woodlands (Fig. 5a). This sce-

nario is consistent with the new land use management poli-

cies that were developed at the municipal level in the study

area, aiming at regulating the diffusion of uncultivated areas

(Rural Police Regulation, 2008; Persichillo et al., 2017a).

The fourth scenario (Scenario 4) corresponded to a fur-

ther increase in the abandonment of cultivated grapevines

(Fig. 5b). According to this, actual uncultivated areas trans-

form into woodlands, while further uncultivated ones de-

velop in correspondence of actual vineyards. The slopes

where abandonment was supposed are the currently culti-

vated slopes with similar morphological features (slope an-

gle higher than 15◦) to the abandoned areas in the period

1980–2015. The increase in abandoned areas was kept equal

to 22 %, as occurred from the period 1980–2015.

Different IC scenarios were then created using these land

use distributions and they were inserted in GAM model for

assessing the susceptibility change of road traits in function

of this parameter. Other morphological and hydrological in-

put predictors were kept steady. The model used for these

reconstructions corresponded to the one that had the best pre-

dictive performance considering the actual situation.

4 Results

4.1 Map of IC reconstructed through linear and

non-linear methodology

The distribution of IC for the actual conditions, reconstructed

through the linear (IClin) and non-linear (ICnl) calculation of

the W factor, was analyzed (Fig. 6). In the study area, IClin

ranged between −7.00 and 1.75, while ICnl values ranged

between −4.20 and 2.23 (Fig. 7). The average value of IC

distribution was −3.17 for IClin and −3.57 for ICnl, while

the standard deviation was similar for both the distributions

(0.72 and 0.65, respectively). The map obtained with the lin-

ear implementation of W in IC calculation showed values

averagely higher than the ones obtained with the non-linear

W methodology in the corresponding sectors (Fig. 6).

In these analyses, IC values were classified into four

classes (low, medium-low, medium-high and high), by identi-

fying classes limits that best grouped similar values and max-

imized the differences between classes using the Jenks natu-

ral breaks (Jenks, 1967) following the approach used in sim-

ilar contexts by Surian et al. (2016), Tarolli and Sofia (2016)

and Tiranti et al. (2016).
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Table 2. Frequencies (in percentages) of explanatory variables (both linear and non-linear) selected by 100-fold bootstrap procedure. The

explanatory variables selected by 100-fold bootstrap procedure with an absolute frequency greater or equal than 80 % are highlighted in

bold. In the brackets, the frequencies (in %) of selection of each variable as linear or non-linear is shown. The italic number corresponds to

the frequency of the selected function connected to each variable. SL: slope angle; ASP: aspect; CURV: curvature; LEN: slope length; HEI:

slope height; CA: Catchment area; CS: Catchment slope; TWI: topographic wetness index; DIST: distance from the source area of a shallow

landslide; GEO: bedrock geology; IC: index of connectivity.

Model SL ASP CURV LEN HEI CA CS TWI DIST GEO IC

1 97 2 87 36 88 56 (56-0) 100 85 100 100 –

(Lin.-not Lin.) (95-2) (0-2) (41-46) (36-0) (45-43) (56-0) (0-100) (14-71) (0-100)

2 97 18 87 19 88 66 100 85 100 100 100

(Lin.-not Lin.) (95-2) (12-6) (41-46) (19-0) (45-43) (66-0) (0-100) (16-69) (0-100) (5-95)

3 97 18 87 19 92 65 100 95 100 100 100

(Lin.-not Lin.) (95-2) (11-7) (41-46) (19-0) (53-39) (65-0) (0-100) (12-83) (0-100) (2-98)

Figure 7. Box-plot of IC values distribution for the actual scenario

(2015), for the linear and non-linear calculation of the index.

The IClin map highlighted that the northern and western

parts of the catchment were characterized by medium-high

and high connectivity (Fig. 6a). All the slopes with a high

gradient (generally higher than 15◦) presented medium-high

and high connectivity features. Highest values were reached

in road trenches with limited slope height (lower than 20 m)

and at the bottom of hillslopes characterized by high slope

angle (higher than 15–20◦) and by slope height in the order

of 35–70 m.

Instead, the ICnl map indicated lower connectivity in all

the sectors of the study area (Fig. 6b). Where the IClin map

showed a wide diffusion of slopes with medium-high and

high connectivity, ICnl highlighted especially medium-low

and low sediment connectivity (Fig. 6b). Only a few areas

close to road segments were characterized by high connectiv-

ity (Fig. 6d). These sectors corresponded to the road trenches

characterized by a slope height lower than 20 m; both recon-

structions showed low and medium-low connectivity where

plain areas or hillslopes with slope angle lower than 10◦ are

present (Fig. 6).

4.2 GAM models implementation

4.2.1 Selection of the explanatory variables

Three GAM models were tested on the basis of the differ-

ent set-up of the input predictors. The first phase was the se-

lection of the variables to introduce in each model. All the

predictors were not collinear so all these were inserted in

the modelling. For each model, the variables whose selec-

tion frequency was higher than 80 % in the 100-fold boot-

strap procedure were selected. The selected variables were

the same ones for all three models, with similar selection fre-

quency (Table 2). IC was taken into account only in Model 2

and Model 3, and then consequentially selected in both these

models (Table 2). Besides IC (having a selection frequency

equal to 100 % in both Models 2 and 3), the variables se-

lected are the following (Table 2): SL (97 %), CURV (87 %),

HEI (88–92 %), CS (100 %), TWI (85–95 %), DIST (100 %)

and GEO (100 %) in all the three models. ASP, LEN, and

CA were excluded from all the models. Among these vari-

ables, only CA had a quite high frequency of selection (56–

66 %), but it fell under the defined threshold (Table 2). The

selected continuous explanatory variables (all the predictors,

except GEO) were distinguished into linear or non-linear, on

the basis of the higher percentage of selection obtained in

the bootstrap procedure. SL and HEI were chosen as linear,

while CURV, CS, TWI, DIST and IC were selected as non-

linear (Table 2). Despite the different types of calculation of

the IC implemented in Model 2 (IClin) and in Model 3 (ICnl),

this variable was evaluated as significant in both this model,

with a frequency of 100 %. Moreover, IC was chosen as a

non-linear variable in both these models (Table 2).

4.2.2 Predictive performance and susceptibility maps

of the models

Model 1, that did not consider IC, is characterized by a fair

predictive capability. In fact, AUC of the training and the

test sets of this model were equal to 0.71 and 0.70, respec-
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Table 3. Mean and standard deviation of accuracy for the training sets, the test sets and the final application of the model to the entire study

area.

Model Mean accuracy Standard deviation Mean accuracy Standard deviation Mean AUC 95 % confidence

of training of accuracy on on test of accuracy on of the model interval of AUC of

sets (–) training sets (–) sets (–) test sets (–) (–) the model (–)

1 0.71 0.01 0.70 0.01 0.74 0.73–0.75

2 0.90 0.01 0.90 0.01 0.94 0.93–0.95

3 0.82 0.01 0.82 0.01 0.83 0.82–0.84

Figure 8. 95 % bootstrap confidence bands of ROCs: (a) Model 1; (b) Model 2; (c) Model 3. (d) Percentage of true positives (TP), true

negatives (TN), false positives (FP) and false negatives (FN) of the different models.

tively (Table 3). AUC of the final susceptibility map pro-

duced with Model 1 was similar to those of training and test

sets (0.74; Table 3). However, the predictive capability in-

creased whether or not the IC parameter was added among

the predictor variables. In particular, AUC of training and

test sets increased until 0.82 for Model 3, that also consid-

ered also ICnl. For this model, AUC of the final susceptibil-

ity map was of 0.83, with an increase of 0.09 with respect

to Model 1 (Table 3). A better effectiveness was reached if

IClin was taken into account (Model 2). AUC of training and

test sets of Model 2 reached values of 0.90, while AUC of

the final susceptibility map was of 0.94. According to Spital-

nic (2004), a model with similar predictive performances can

be classified as excellent.

Table 3 also highlighted very low values of standard de-

viation in AUC of training and test sets of each model that

were maintained equal to 0.01. This confirmed the reliability

of the procedure used to build up the different models.

Furthermore, the bootstrap 95 % confidence intervals of

AUCs were every 0.02. This result is also confirmed by the

very narrow bootstrap 95 % confidence bands of ROC curves

(Fig. 8a, b, c). The maps showing the bootstrap 95 % confi-

dence intervals of the probability for each road trait to be hit

by a shallow landslide are illustrated in Fig. 8. As confirmed

by the low values of the confidence intervals remaining lower

than 0.25, the spatial variability of this probability is gener-

ally low in the entire road network of the study area for each

model (Fig. 9).

The predictive capability of the models were also evalu-

ated by computing the values of the four indexes of a four-

fold plot. TP and TN were significantly higher in Model 2

than Model 1 and 3, while FP and FN were significantly
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lower in the same model that the others (Fig. 8d). TP and

TN reached values of 90.0 and 84.8 % in Model 2, respec-

tively. These values highlighted an increase of 5.1–13.7 % re-

spect to Model 3 and of 13.3–30.6 % respect to Model 1. The

highest effectiveness of Model 2 was confirmed also by the

lowest values of FP and FN (10.0 and 15.2 %, respectively),

that were lower of 5.4–35.8 % than Model 1 and Model 3

(Fig. 8d).

The susceptibility maps for the road network extracted by

GAM models are in Fig. 10. Model 1 classified 46.9 % of the

road network in medium-high and high susceptibility classes.

This percentage is significantly higher than those obtained

for Model 2 and Model 3 (Fig. 11). The widespread diffusion

of high susceptibility areas in Model 1 also explains the high

values of FP measured for this model.

Model 2 and Model 3, also considering IC within predic-

tors, classified a lower percentage of the road network in

medium-high and high susceptibility classes which are over-

all of 15.4 and 18.3 %, respectively (Fig. 11). The number

of high susceptible road traits of Model 3 seems overesti-

mated in respect to the real situations, as demonstrated by the

higher FP and FN than Model 2 (Fig. 8d). Model 2 presented

a higher predictive performance than the other models, as

confirmed by the quantitative indexes calculated for GAM

model. It classified 15.4 % of the road network of the study

area in medium-high and high susceptibility classes and the

remnant 85.6 % in low and medium-low classes (Fig. 11).

All the susceptibility maps classified as more susceptible the

road sectors located below slopes of SL higher than 20◦,

HEI lower than 50 m, catchment slope between 28 and 30◦

and DIST in the range of 40–100 m. Moreover, Model 2 and

Model 3 discriminated those road traits as more susceptible

in correspondence with areas of medium-high and high IC,

generally higher than −3, regardless of the land use which

covered the slope above the road.

4.3 Susceptibility maps according to different

land-use scenarios

The assessment of the predictive capabilities of the GAM

models related to the actual scenarios revealed that Model 2

was the best one. This model took into account for several

morphological and hydrological features of the slopes up-

stream the road sectors and the sediment connectivity, evalu-

ated according to the linear modelling of IC parameter. Due

to the importance of considering IC distribution in the eval-

uation of the routes that could be affected by shallow land-

slides, susceptibility scenarios were created varying IC maps

input according to three defined scenarios of land use distri-

bution hypothesized for the study area (Scenario 2, Fig. 2c;

Scenario 3, Fig. 5a; Scenario 4, Fig. 5b). In fact, IC may

change as a function of the change in the distribution of W

factor used in the calculation of this index.

Figure 12 illustrates the influence of different land use sce-

narios on IC. Its spatial distribution did not seem to be af-

Figure 9. Maps of the amplitude of 95 % bootstrap confidence inter-

vals of the probability associated to each pixel of the studied area:

(a) Model 1; (b) Model 2 and (c) Model 3.

fected by land use changes presented in the considered sce-

narios. The connectivity of a particular hillslope kept ap-

proximately equal to the actual scenario. This was also con-

firmed by the mean and the standard deviation of the distri-

bution of IC values in the study area, which remained equal

to −3.20/−3.17 and 0.72/0.74, respectively.

The similar maps of IClin obtained for the different land

use maps implicated that the susceptibility distribution along

the road network did not change significantly for the dif-

ferent considered scenarios (Fig. 13). Compared to the sus-
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Figure 10. Maps of the susceptibility of the road segments to be af-

fected by shallow landslides: (a) Model 1; (b) Model 2; (c) Model 3.

ceptibility of Model 2 created considering the actual sce-

nario (Fig. 11), the differences on the percentages of the road

network classified with low, medium-low, medium-high and

high susceptibility by the other reconstructed scenario were

negligible, ranging in the order of 0.1–0.2 % (Fig. 13).

5 Discussions

In this work, a methodology was developed and tested for

classifying, in different susceptibility classes, the traits of

a road network potentially hit by sediments of landslides

triggered above the road. Different authors (Budetta, 2004;

Figure 11. Percentages of the road network classified with low,

medium-low, medium-high or high susceptibility to be affected by

shallow landslides for each GAM model.

Hearn et al., 2008; Jaiswal et al., 2010a, b, 2011; Quinn et

al., 2010; Michoud et al., 2012; Tarolli et al., 2013; Bil et al.,

2014, 2017; Penna et al., 2014; Ramesh and Anbazhagan,

2015; Tarolli and Sofia, 2016; Winter et al., 2016; Donnini et

al., 2017; Pellicani et al., 2017; Postance et al., 2017; Mar-

tinovic et al., 2018) developed similar approaches in other

geological or geomorphological settings, based on the im-

plementation of data-driven techniques for the estimation of

road susceptibility. For the first time, the proposed method-

ology allowed to implement a data-driven technique (GAM

method) able to take into account the non-linear relationships

between the predictors and the response variable (road sector

hit by shallow landslides). Moreover, this model also consid-

ers a parameter (the index of connectivity) that, if coupled

with a landslide inventory, helps assess the potential slope

sediments mobilized by the landslide triggering, which can

reach the road network in downstream area, also inserting a

proxy of landslide runout in the modelling of roads suscepti-

bility.

The models identified some of the input predictors as

non-linear variables (in this case, slope curvature, catch-

ment slope, topographic wetness index, distance from shal-

low landslides source area and index of connectivity), better

understanding the complex relationships that are present in

an area between predisposing factors and susceptible roads

(Phillips, 2006; Goetz et al., 2011). Moreover, before build-

ing the model, the procedure developed for the individua-

tion of the most important predictor variables improved the

knowledge about mechanisms which regulate the location

of the damaged roads in such an area, avoiding collinear-

ity and bias that could reduce the reliability of the suscep-

tibility estimation (Farrar and Glauber, 1967; Hosmer and

Lemeshow, 1990; Bai et al., 2010). The robustness of the

proposed methodology was also confirmed by the low con-

fidence degree of AUCs measured for the created models

(Petschko et al., 2014). The first reconstructed susceptibility

model (Model 1) considers the most important predisposing

factors in the study area, chosen among those morpholog-
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Table 4. Sensitivity of the different predictor variables to the accuracy of the training sets, the test sets and the final application of the model

to the entire study area. The standard deviation of accuracy on the training and test sets was 0.01 for all models, while the range of the 95 %

confidence interval of AUC was 0.02 for all the models.

GAM model Mean accuracy of Mean accuracy of Mean AUC of

training sets (–) test sets (–) the model (–)

1 0.71 0.70 0.74

2 0.90 0.90 0.94

3 0.82 0.82 0.83

2 − (CURV, HEI, TWI) [threshold of selection equal to 90 %] 0.84 0.84 0.88

2 + (CA) [threshold of selection equal to 50 %] 0.90 0.90 0.94

2 − (SL) 0.74 0.74 0.78

2 − (CURV) 0.87 0.87 0.92

2 − (HEI) 0.85 0.77 0.91

2 − (CS) 0.79 0.79 0.83

2 − (TWI) 0.88 0.88 0.92

2 − (DIST) 0.75 0.75 0.78

2 − (GEO) 0.84 0.85 0.88

2 + (ASP) 0.90 0.90 0.94

2 + (LEN) 0.90 0.91 0.95

ical, hydrological and geological parameters taken into ac-

count for these analyses in different contexts by other au-

thors (Budetta, 2004; Jaiswal et al., 2010a, b, 2011; Quinn

et al., 2010; Michoud et al., 2012; Bil et al., 2014, 2017;

Penna et al., 2014; Ramesh and Anbazhagan, 2015; Pelli-

cani et al., 2017). The reliability of the model is quite fair,

as testified by its AUC value (0.73) and by its high value

of FP and TN indexes (22.3 and 45.8 %, respectively). Ac-

cording to Model 1, the most susceptible road segments are

those located downstream to slopes characterized by high

slope gradient (> 20◦), limited height (< 50 m), high catch-

ment slope (28–30◦) and shallow landslides triggering zones

located very close to the road network (40–100 m). These

settings are widespread in the entire study area (Bordoni et

al., 2015; Persichillo et al., 2017b, 2018), but these particular

features are not enough to discriminate more accurately those

routes where damages provoked by sediments mobilized by

shallow landslides are probable.

Starting from this observation, also IC was inserted in the

model for the evaluation of the susceptibility of the roads to

be affected by shallow landslides. The other two models were

created, differing each other for the type of IC used. Model 2

uses IClin calculated according to the method proposed by

Cavalli et al. (2013), where the W factor in the model is eval-

uated in a linear way. Model 3 uses ICnl, calculated by means

also of a W factor evaluated in a non-linear way and in re-

lation also to the both surface roughness and land use prop-

erties of a territory (Fryirs et al., 2007; Cavalli et al., 2008;

Cavalli and Marchi, 2008; Gay et al., 2015; Kalantari et al.,

2017). In these terms, both IClin and ICnl represent a struc-

tural connectivity depending on the morphological and land

use attributes of a territory (Borselli et al., 2008; Cavalli et

al., 2013; Crema and Cavalli, 2015).

The models that consider also sediment connectivity have

a higher predictive performance than Model 1. This is testi-

fied by a high AUC values (0.94 for Model 2 and 0.83 for

Model 3) and by higher values of TP and TN (till 90.0 and

84.8 %, respectively). Moreover, FP and FN of both these

models are lower than Model 1 (till 10.0 and 15.2 respec-

tively).

A sensitivity analysis to assess the role of each predictor

variable on the accuracy of the GAM models was performed.

This analysis allowed also evaluating the change in predic-

tive accuracy related to adding or removing a set of predictors

according to a threshold of selection different than the used

80 % or related to adding or removing a particular predictor.

It is important to highlight that the results of this sensitiv-

ity analysis shown referred to the susceptibility model which

had the best predictive accuracy, that is Model 2. Instead,

the quantitative changes on the predictive accuracy related

to different sets of predictors were similar considering both

Model 1 and Model 3.

Table 4 showed the results of this sensitivity analysis. Ac-

cording to the percentages of selection of each variable in the

100-fold bootstrap procedure (Table 2), also thresholds of 50

and 90 % of selection frequency were considered and com-

pared to the used threshold of 80 %. A threshold of selection

frequency lower than 50 % was not considered significant.

Considering a threshold equal to 50 %, also CA (chosen as

a linear variable) had to be inserted for modelling the suscep-

tibility. Instead, the mean predictive accuracy of the model,

estimated in terms of AUC value, did not change, for both

the training set, the test set and the final model. The differ-

ence in the predictive accuracy was lower than 0.01. Instead,

concerning a threshold equal to 90 %, CURV, HEI and TWI

had to be removed. In this case, the mean predictive accu-
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Figure 12. IClin maps of the different land use scenarios considered: (a) Scenario 2: land use distribution equal to that of 1980 (highest

extension of vineyards); (b) Scenario 3: transformation of actual uncultivated areas in woodlands; (c) Scenario 4: increase in abandoned

areas similar to that which occurred in 1980–2015 period.

racy of the best model (Model 2) decreased from 0.90 to 0.84

and from 0.94 to 0.88 for training/test sets and for the final

models, respectively. Removing a predictor or a set of these

from the susceptibility model caused a decrease of the accu-

racy due to a reduction in explaining the physical relations

between the predisposing factors and the resulting effects on

the response variable, in this case represented by the road

sectors hit by shallow landslides. These results demonstrated

that a threshold of selection of the predictors equal to 80 %

allowed to obtain the sets of predisposing factors able to esti-

mate in the best reliable and effective way the susceptibility

of the road network to be affected by shallow landslides.

Furthermore, a sensitivity analysis of the different predic-

tors considered as predisposing factors for road susceptibility

was performed. This analysis consisted in running one of the

models (e.g., Model 2), created considering a threshold of

selection frequency equal to 80 %, removing each time one

of the selected predictors or adding one of the other predic-

tors each time, whose frequency of selection was lower than

80%. In this way, the sensitivity of the model to each predic-

tor could be quantified.

Removing SL or DIST caused a reduction of the predictive

accuracy for both training sets, the test sets and final mod-

els of 0.15–0.16. Instead, this reduction was lower than the

one quantified if in the model IC was not taken into account

(Model 1). In fact, the absence of IC provoked a decrease in

the accuracy of 0.19–0.20. The removal of CS caused a mod-

erate reduction of the accuracy, correspondent to 0.11. While

removing one of the other chosen parameters (CURV, HEI,

TWI, GEO) provoked only a slight decrease in the predic-

tive accuracy in the order of 0.02–0.06. This meant that they

explained the susceptibility of a road to shallow landslides

less than the other selected predictors. Instead, CURV val-

ues close to the roads were generally slightly negative (lower

than −0.05) and the affected sectors were in correspondence

with the lowest CURV values (around −0.40). TWI was gen-

erally positive in correspondence with road traits, with values

higher than 5 close to sectors affected by shallow landslides.

Moreover, damaged road traits were mainly located in areas

where GEO was composed of medium-low permeable are-

naceous conglomeratic materials (Monte Arzolo sandstones,

Rocca Ticozzi conglomerates) or impermeable silty–sandy

marly bedrock (Montù Beccaria formation, Sant’Agata Fos-

sili Marls).

Moreover, adding alternatively to the chosen predictors

one of the other predisposing factors (CA, ASP, LEN) did

not significantly modify the reliability of the models. The

predictive accuracy improved 0.01 at most for both training

sets, the test sets and final models. ASP close to the roads was

very variable, without the identification of peculiar features.
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Figure 13. Maps of the susceptibility of the road segments to be affected by shallow landslides according to the different land use scenarios:

(a) Scenario 2: land use distribution equal to that of 1980 (highest extension of vineyards); (b) Scenario 3: transformation of actual uncul-

tivated areas in woodlands; (c) Scenario 4: increase in abandoned areas similar to those in the 1980–2015 period; (d) percentage of road

network traits of different susceptibility classes for the considered scenarios.

While LEN and CA values close to the road sectors were in a

quite narrow range, between 2 and 150 m and around 102 m2,

respectively. The particular distributions of these parameters

confirmed their not significant roles in the evaluation of the

road susceptibility.

These results confirmed the significant sensitivity of the

susceptibility model to IC, especially the one estimated in

a linear way. Neglecting IC in these models caused a big

decrease in the effectiveness, which significantly affects the

susceptibility classification of the road network. Further-

more, SL and DIST also significantly affected the accuracy

of the final susceptibility model and had to be considered

for obtaining a correct classification of road network. The

models were more sensitive to the other chosen predictors

(CURV, HEI, TWI, GEO). Instead, the leakage of only one

of these parameters could decrease the final reliability of the

road susceptibility.

It is important to note that the standard deviation of accu-

racy on training and test sets was of 0.01 for all the models,

while the range of the 95 % confidence interval of AUC was

of 0.02 for all the models.

The susceptibility maps produced through Model 2 and

Model 3 identify the road sectors characterized by the high-

est values of IC (IC higher than −3) as the most suscepti-

ble. These conditions are measured in several routes regard-

less of the land cover present in the slope upstream from the

road. Among these models, Model 2, that considers IC calcu-

lated through a linear manner, performs better than Model 3.

Non-linearly reconstructed IC identified less areas with high

connectivity than IClin. Thus, the estimated probability to be

affected by sediment impacts is reduced in these road traits.
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Figure 14. Examples of correct assessment of the susceptibility performed by Model 2, for road sectors hit by B2 type shallow landslides

and by other types of phenomena.

ICnl is more representative of the sediment connectivity in

lowland environments, where the connectivity is also driven

by other factors (such as the amount of surface water runoff),

together with the morphological features of the hillslopes

(Fryirs et al., 2007; Gay et al., 2016; Kalantari et al., 2017).

Its application in geomorphological settings characterized by

a predominant hilly or mountainous morphology, such as the

considered catchment, can implicate an underestimation on

the connectivity or disconnectivity of the sediments, influ-

encing the correct assessment of the sectors of an infrastruc-

ture threatened by the material mobilized after a triggering

event.

The comparison of the best susceptibility model (Model 2)

with the distribution of real case of road sectors damaged by

sediments mobilized by shallow landslides, that were trig-

gered upstream of the road, has confirmed an excellent pre-

dictive performance of this model. It allows the correct iden-

tification of both the road sectors hit by the accumulation

zones of roto-translational shallow landslides, triggered in

the trenches present in halfway roads (B2 type), and the road

traits affected by the materials mobilized by shallow land-

slides, triggered in the slopes upstream of the routes in corre-

spondence with cultivated or abandoned hillslopes (Fig. 14).

This reveals the suppleness of the methodology for estimat-

nig, in a reliable way, the most susceptible sectors of a road

network also in the case of sediment source areas, repre-

sented by slope instabilities with different features.

Nevertheless, Model 2 classifies wrongly some road sec-

tors in the study area, as testified by the 15.2 % of FN and

of 10 % of FP cases. FN are mostly located in few pixels,

sometimes close to other road traits identified with medium-

high or very-high susceptibility. These situations could be

linked to local factors, which may affect road susceptibil-

ity that are not completely described by the input predictors

chosen for the model. On the contrary, FP cases correspond

to road segments where high susceptibility (higher than 0.5)

was estimated. These sectors are mostly located near traits

already affected by shallow landslide materials in past events

(Fig. 15). They are in a buffer of less than 250 m, in particu-

lar between 50 and 200 m, respect to sectors hit in past, and

they present morphological and connectivity features simi-

lar to threatened traits. Hence, they could represent sectors

which could be affected by future events that occur in the

same study area, whether the settings of this zone and the

triggering conditions will stay similar to past events. In these

terms, the susceptibility map obtained from Model 2 is useful
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Figure 15. False positive (FP) cases identified through the susceptibility map obtained from Model 2. FP cases are mostly located close (in

a range lower than 250 m) to road sectors already affected by shallow landslides, in similar morphological and connectivity settings.

for accurately determining the susceptible sectors of a road

network, furnishing an important tool for the management of

the hazard and for sketching policies of risk reduction out.

Due to the importance of sediment connectivity on the

model capability, scenarios of susceptibility were recon-

structed, through Model 2, starting from different IC maps

that were obtained considering particular land use distribu-

tions. In fact, changes in land use cause are represented by

changes in the W parameter of the IC calculation, provoking

a potential variation in the connectivity distribution. The dis-

tribution of susceptibility and of the roads most probably af-

fected by shallow landslides do not change significantly from

the actual situation for the three different modelled scenar-

ios (recovery of all cultivated vineyards, break on the aban-

donment, further increase of the abandoned areas). This is

due to the similar values of W (0.6–0.8) characterizing the

most widespread land covers of the study area, which thus

induce to a limited change in IC value passing from a land

use class to another one. Instead, changes in land use distri-

bution could also have effects on the physical morphology of

the hillslopes (Fu et al., 2006; Tarolli et al., 2015). For exam-

ple, the recovery of the cultivation of grapevines in a slope

could lead to the development of a drainage system of the

superficial and of the shallow waters and to modification on

the slope morphology for the implantation of the vineyards.

While the abandonment of previously cultivated vineyards

induces changes in flow direction and regulation, with direct

consequences on sediment production and delivery (Cevasco

et al., 2014; Lieskovsky and Kenderessy, 2014; Tarolli et al.,

2014; Prosdocimi et al., 2016). These actions could influence

the movement of the rainwater and of the sediment mobilized

by runoff, then reduce the connectivity and also the potential

susceptibility of a road located downstream. Hence, more de-

tailed scenarios of susceptibility changes in relation to land

use changes will also take into account the morphological

modifications linked to these changes, using a higher resolu-

tion DEM (less than 1 m).

6 Conclusions

In this work, a non-linear data-driven approach, based on

GAM, was developed for the evaluation of the susceptible

road sectors of a network that could be affected by the sedi-

ments delivered from shallow landslides occurred upstream.

The methodology also assessed the role of the sediment con-

nectivity on susceptibility estimation, by the implementation

of the index connectivity calculated according to a linear or

a non-linear approach.

Aside from the use of an inventory of road damages that

only referred to three triggering events that occurred between

2009 and 2014, the random partition of the entire dataset in

two parts (training and test subsets), within a 100-fold boot-

strap procedure, allowed the selection of the most significant

predisposing variables. This provided a better description of

the occurrence and distribution of the road sectors potentially

susceptible to damage induced by shallow landslides.

The best predictive capability was reached by a model,

which also took into account the index of connectivity, cal-

culated linearly. This index represented the rates of connec-

tivity and disconnectivity in the studied catchment well, in

relation to its morphology (steep slopes and narrow valleys)

and land uses (vineyards, abandoned areas and woodlands).

Most susceptible road traits resulted in those located below

steep slopes with a limited height (lower than 50 m), where

sediment connectivity is high, regardless of the land use that

covered the slope above the road.
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Different scenarios of land use were implemented in order

to estimate possible changes in road susceptibility. Land use

classes of the study area were characterized by similar effects

on connectivity features. The index of connectivity did not

change significantly with a consequent leakage of variations

also on the susceptibility of the road networks. Larger effects

on sediment connectivity could be induced by modifications

in the morphology of the slopes (e.g., drainage system, mod-

ification of the slope angle) provoked by the abandonment or

by the recovery of cultivations. Then this could have effects

on the sediment delivery and also on the susceptibility of a

road to be hit by sediments mobilized upstream.

The presented methodology allows to identify the most

susceptible road sectors that could be hit by sediments de-

livered by landslides in a robust and reliable way. This tool

can represent a fundamental starting point for improving the

land management of the slopes where the source areas of the

sediments could develop, in order to reduce the damage to

the infrastructure and the related risks and economic losses.

Moreover, the results of the susceptibility analysis can give

asset managers indispensable information on the relative crit-

icality of the different road sectors, thereby allowing atten-

tion and economic budgets to be shifted towards the most

critical assets, where structural and non-structural mitigation

measures could be implemented.

Furthermore, thanks to the flexibility of the model in the

selection of the predictors, the proposed model can be ap-

plied to areas with different geological, geomorphological

and land use features, identifying the most important predis-

posing factors peculiar of each catchment. This method can

be also implemented in areas characterized by much larger

catchments than the ones analyzed herein, with the only limit

of the availability of high-resolution DEMs and of computa-

tional resources. Moreover, the methodology can be applied

for estimating the susceptibility and the risks related to land-

slides affecting other main lifelines, such as railways, gas and

oil pipelines, power lines.
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