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J. Appl. Probab. 38A, 158{175 (2001)Printed in Englandc Applied Probability Trust 2001ESTIMATION OF THE UPPERCUTOFF PARAMETER FOR THETAPERED PARETO DISTRIBUTIONY. Y. KAGAN1 ANDF. SCHOENBERG,2 University of CaliforniaAbstractThe tapered (or generalized) Pareto distribution, also called the modi�edGutenberg{Richter law, has been used to model the sizes of earthquakes. Unfor-tunately, maximum likelihood estimates of the cuto� parameter are substantiallybiased. Alternative estimates for the cuto� parameter are presented, and theirproperties discussed.Keywords: Parameter estimation; tapered Pareto distribution; Gutenberg{Richterrelation; maximum likelihood estimation; method of moments; earthquakesAMS 2000 Subject Classi�cation: Primary 62F10Secondary 62F12, 62F25, 62F151. IntroductionIn this paper, we investigate the problem of estimating the parameters used in modelsfor the sizes of earthquakes. Such models are important for the investigation andquanti�cation of seismic hazard, i.e. the risk of an earthquake exceeding a given sizewithin a given time period in the future, which is a subject of concern not only inseismology but also in civil engineering, urban planning, and insurance.Our work was chiey inspired by David Vere-Jones, who has been one of the principalarchitects of the general area of statistical seismology, in which the subject of our paperlies. In addition to his numerous signi�cant advances on closely related themes, Vere-Jones has been a main proponent of the use of the tapered Pareto law in modelingearthquake sizes.This paper is addressed to both statisticians and seismologists, and in what fol-lows we provide more explanatory material than is customary. General properties ofthe earthquake process and its stochastic modelling, as well as some principles of sta-tistical analysis, have been discussed by Kagan [11] and Kagan and Vere-Jones [14].Earthquake occurrences are most commonly modeled as point processes; Daley andVere-Jones [2] provide a thorough introduction to such models.Extensive global catalogs of seismic moment tensor solutions with thousands ofevents have become available since 1977 (see [5], [6] and [24], and references therein).These catalogs are thought to be of signi�cantly superior quality (in terms of precision,Received September 20001 Postal address: Dept of Earth and Space Sciences, University of California, Los Angeles CA 90095{1567, USA. Email: ykagan@ucla.edu2 Postal address: Dept of Statistics, University of California, Los Angeles, CA 90095{1554, USA.Email: frederic@stat.ucla.edu 158



Estimation of tapered Pareto distribution 159reliability, completeness, and accuracy) compared to instrumental earthquake catalogsavailable since the end of the 19th century. An example is the Harvard catalog [5],which presently contains information on 16706 earthquakes for the period 1977/1/1{1999/12/31. Many of these earthquakes occur at shallow depths (less than 70 km),and represent a major hazard to humans.Modern earthquake catalogs such as the Harvard dataset contain the following in-formation about moderate and large earthquakes: origin times; locations; sizes; andorientations of earthquake focal mechanisms ([11], [16]). An earthquake's locationmay be speci�ed either via hypocentral coordinates (the spatial location where theearthquake rupture begins) or via earthquake centroid coordinates (the location of thecenter of gravity for the seismic moment release). Historically, earthquake sizes wererecorded in terms of empirical magnitude, a measure which was �rst proposed in the1930s by Charles Richter for characterizing earthquakes in California. Presently, anearthquake's size is typically measured in terms of either scalar seismic moment, M ,or on a logarithmic scale via moment magnitude, m. Seismic moment is measured inNewton-meters (Nm) or in dyne cm (1Nm = 107 dyne cm) ([5]) and may be convertedinto moment magnitude via the function �:m ' �(M ) = 23 log10M � 6; (1)with M expressed in units of Nm.The distribution of earthquake sizes has been the subject of considerable research;see Kagan [11], Vere-Jones [29] and especially Utsu [26] for a thorough review. Earth-quake magnitudes have traditionally been modelled via the Gutenberg{Richter (G{R)law, an exponential law in terms of earthquake magnitudes which transforms into aPareto distribution in terms of scalar seismic moments.Due to limitations on the sensitivity of seismographic networks, small earthquakesare generally missing from earthquake catalogs. Hence one typically �ts a Pareto dis-tribution that is truncated on the left at some positive value a, called the completenessthreshold. For instance, the Harvard catalog is thought to be incomplete below themoment threshold of about 1017:7Nm, corresponding to a magnitude of approximately5.8 [12]. The Harvard catalog, when restricted to shallow earthquakes above this mag-nitude, contains 3765 events, and we shall refer only to this portion of the catalog inthe remainder.Additionally, the upper tail of the Pareto distribution has been modi�ed in variousways, based on physical and statistical principles. Considerations of �niteness of seismicmoment ux or of deformational energy suggest that the upper tail of the seismicmoment distribution decays to zero more rapidly than that of the Pareto ([15], [25],[32]); this agrees with empirical observations that the G{R law appears to overpredictthe frequencies of large seismic moments (see Figure 1). A simplistic modi�cationproposed by several researchers is to use a Pareto distribution that is truncated atsome upper threshold � (e.g. [10], [26]).Kagan [10] has argued that a sharp upper threshold does not agree with the knownbehavior of dissipative physical dynamic systems and fundamental seismological scalingprinciples. Furthermore, the fact that observations of seismic moments are recordedwith error contradicts the notion of a �xed point � such that earthquakes with moment�+" are observed with very di�erent frequencies compared to those with moment ��"(see [10]).
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FIGURE 1: Earthquake cumulative number versus log seismic moment for the globalshallow earthquakes in the 1977/1/1{1999/12/31 Harvard catalog. The curves show thenumbers of events with seismic moment � M . Four approximations to the empiricaldistribution, for which the parameters � and � are �tted by the maximum likelihoodestimator (MLE), are shown: (i) the original G{R law without upper cuto� (the classicalPareto distribution) (� � � � � �); (ii) the two-sided truncated Pareto distribution (�����);(iii) the left-truncated Gamma distribution with negative shape parameter ({ { { {);and (iv) the tapered Pareto distribution (|||).As an alternative, a Pareto distribution which tapers to zero via an exponential func-tion, instead of sudden truncation, has been proposed by Vere-Jones et al. [30]. Thetapered Pareto distribution, sometimes called the modi�ed G{R law by seismologists[1] is characterized by its gradual rather than steep decrease in frequency at the uppercuto� moment, and provides better agreement with both fundamental seismologicalprinciples and earthquake catalogs ([7], [10]).For example, Figure 1 shows the �t of various distributions to the Harvard catalog.One sees that the tapered Pareto distribution �ts the data much better than eitherthe simple Pareto distribution or the Pareto distribution truncated on the right ata maximum seismic moment. There is little perceptible di�erence between the fourtheoretical curves and the empirical distribution for seismic moments in the range5� 1017Nm to 1019Nm (not shown).Several alternative models for the earthquake size distribution have been proposed.One example is the left-truncated Gamma distribution with negative shape parameter([11], [13], [17]), which is similar to the tapered Pareto law: the former involves applyingan exponential taper to the Pareto density function, while the latter involves applyingan exponential taper to the survivor function. In addition, di�erent parametric formsfor the tapered upper moment of the Pareto distribution have been proposed ([18],[25], [26]). The tapered Pareto distribution of Vere-Jones et al. [30] is preferred largelybecause of its simplicity and paucity of free parameters; available data from catalogs



Estimation of tapered Pareto distribution 161of seismic moments do not seem to warrant more than two or three degrees of freedom(see Table 2 of [26]).Note also that the arguments used to motivate the modi�ed G{R law may suggesttapering rather than truncation at the lower end of the distribution as well, as discussede.g. in [19] and [30]. Such modi�cations appear to be of limited seismological concern,however, and will not be treated here. Instead, our focus is on estimation of the one-sided tapered Pareto distribution described by Vere-Jones et al. [30] and Jackson andKagan [7]. 2. The tapered Pareto distribution2.1. CharacterizationThe Pareto distribution and its variants have been used in numerous applications.See chapter 20 of [9] for a review, including a survey of historical developments andproperties of the Pareto distribution and its various estimates.The tapered Pareto (or modi�ed G{R) law has cumulative distribution functionF (x) = 1� �ax�� exp�a� x� � (a � x <1); (2)and density f(x) = ��x + 1���ax�� exp�a � x� � (a � x <1); (3)where a is the observational completeness threshold, � is a shape parameter governingthe power-law decrease in frequency with seismic moment, and � is an upper cuto�parameter governing the location of the exponential taper to zero in the frequency oflarge events. The distribution is a special case of what has been called a generalizedPareto distribution; see e.g. equation (20.152) of [9]. In fact, the distribution appearsto have been �rst proposed by Vilfredo Pareto himself in 1897 ([20], pp. 305-306, Eqs. 2and 5).Typically the lower threshold moment a in (1) is presumed known, and only theparameters � and/or � must be estimated. [Note that the notation here di�ers slightlyfrom the usual seismological notation (cf. [7], [12]), which uses the notation Mt andeither Mmax or Mc in place of a and �, respectively, and the symbol mc to denote �(�),the magnitude of the upper cuto�, where � is de�ned in (1). Estimable parameters aredenoted here by Greek letters, in agreement with statistical convention.]The characteristic function associated with F de�ned in (2) is�(t) = E[exp(itX)] = Z 1a exp�a� (1� �it)x� ���x + 1���ax�� dx= exp(a=�)�a� �it�it � 1 Z 1a x���1 exp[(�it� 1)x=�] dx+ exp(ait)1� �it= ��it exp(a=�) �a(1� �it)� �� �(��; a(1� �it)=�) + exp(ait)1� �it ; (4)



162 Y. KAGAN AND F. SCHOENBERGwhere �(y; z) = R1z e�tty�1 dt denotes the incomplete gamma function; �(�; �) satis�esthe relation �(y + 1; z) = y�(y; z) + zye�z (0 < z <1; y 6= 0;�1; : : :): (5)2.2. MomentsThe moments of F may be obtained directly from (3). For instance, the �rst moment� = E(X) is given by� = Z 1a x��x��ax�� exp�a� x� � dx+ Z 1a x�1���ax�� exp�a� x� � dx= �a� exp(a=�) Z 1a x�� exp(�x=�) dx+ a� exp(a=�)=� Z 1a x1�� exp(�x=�) dx: (6)By a simple change of variable one obtainsZ 1a x�� exp(�x=�) dx = �1���(1� �; a=�); (7)and integration by parts yieldsZ 1a x1�� exp(�x=�)dx = �a1�� exp(�a=�) + �(1 � �) 1Za x�� exp(�x=�) dx= �a1�� exp(�a=�) + �(1 � �)�1���(1� �; a=�): (8)Substituting (7) and (8) into (6) yields, after some cancellation,� = a+ a��1�� exp(a=�)�(1 � �; a=�): (9)Continuing in this fashion one readily obtainsE(X2) = a2 + 2a��2�� exp(a=�)�(2� �; a=�); (10)and a general formula for the moments of higher order,E(Xk) = ak + ka��k�� exp(a=�)�(k � �; a=�): (11)2.3. SimulationVere-Jones et al. [30] note that the product form of the distribution (2) admits aninterpretation in terms of competing risks, namely, the survivor function S(x) = 1 �F (x) is the product of the survivor functions of a Pareto random variable and anexponential random variable. This observation shows that a very simple method forsimulating from F is to take the minimum of independently simulated Pareto andexponential random variables (see [30] for details).



Estimation of tapered Pareto distribution 1633. Estimation of � and �The parameters of the tapered Pareto distribution are most commonly �tted by maxi-mum likelihood. When independent, identically distributed (i.i.d.) observations x1; : : : ;xn come from the distribution (2), the log-likelihood function takes the formlogL(�; �) = nXi=1 log� �xi + 1��+ �n log a� � nXi=1 log xi + an� � 1� nXi=1 xi: (12)Setting the derivative of logL with respect to the parameters � and � to zero yieldsthe relations �n nXi=1 xi�� + xi = �x� a (13)and � nXi=1 1�� + xi = nXi=1 logxi � n log a; (14)where �x is the sample mean (x1 + ::: + xn)=n. Approximate simultaneous solutionsto these equations may be obtained via a numerical �tting routine such as Newton{Raphson optimization (see [30]).It is convenient to write� = 1� ; A = 1n nXi=1 log xia ; B = �x� a: (15)Then, as noted in section A4 of [30], the maximum likelihood estimates �̂ and �̂ satisfy�̂A+ �̂B = 1; (16)so, writing vi = xi=a, 1n nXi=1 11� �̂(B � Avi) = 1 : (17)The solution �̂ to this last equation must satisfy 0 � �̂ < 1=(B � Aminifvig), andconsequently, assuming that the maximum likelihood estimates satisfy�̂ > 0; �̂ > 0; (18)a Newton{Raphson iteration starting from �̂0 = 1=B converges to �̂.It is generally important to discriminate between the case where two parameters areestimated and the case where only one is estimated, since in the one-parameter caseonly one of the equations based on the derivative of the log-likelihood is justi�ed. Anexception is the case where either � or � is known to be zero. When � = 0, for instance,the distribution (2) reduces to a purely exponential form, and the maximum likelihoodestimate �̂ = 1=�̂ = 1=B, in agreement with (16). Similarly, when � is known to be 0,the distribution (2) is a pure Pareto, and �̂ = 1=A, as is consistent with (16).



164 Y. KAGAN AND F. SCHOENBERG
FIGURE 2: Log-likelihood map for the distribution of scalar seismic moments: TheHarvard catalogue time span is January 1, 1977 to December 31, 1999; the completenessthreshold a is 1017:7 Nm; the number of shallow events is 3765. Approximation by thetapered Pareto distribution. The solid contour line denotes a 95% con�dence boundbased on asymptotic theory [32].In practice, the problem of estimating � is nowhere near as di�cult as that ofestimating �. To illustrate this, Figure 2 shows a contour plot of logL(�) as a functionof � and �, using the data from the Harvard catalog. The likelihood function has beennormalized so that its maximum is 3.0. The log-likelihood, as a function of �, appearsnearly symmetric around a well-de�ned maximum, and approximate 95%-con�denceintervals can be constructed in a straight-forward manner, based on the convergence ofthe negative reciprocal of elements of the diagonal of the Hessian of the log-likelihoodfunction to �2 (chi-squared) random variables (see e.g. [31], Chapter 13.8). By contrast,the log-likelihood as a function of � decays very slowly from its maximum and ishighly non-symmetric. An approximate 95%-con�dence interval, based on asymptoticrelations, corresponds to the contour labeled 0.0. Although the interval is bounded inFigure 2, for smaller subcatalogs this is not the case. Even for relatively large datasetsof the size of the full Harvard catalog, simulations show that con�dence intervals basedon asymptotic theory have inappropriate coverages.The source of this problem is the fact that estimation of � is essentially dominated byonly the largest events. Hence in the Harvard catalog of 3765 shallow earthquakes, it isjust a small number of them that heavily inuence the determination of the upper cuto�parameter � [21]: indeed, only 12 of these earthquakes have seismic moment in excessof 1021Nm (8:0 in magnitude), the value corresponding to the maximum likelihoodestimator (MLE) of � (see Figures 1 and 2). Since it is these events which dominate theestimation of �, the relevance of asymptotic results for maximum likelihood estimates,such as asymptotic normality, consistency, and unbiasedness, is questionable in the



Estimation of tapered Pareto distribution 165absence of numerous events above the upper cuto� itself.In addition to being easily estimable, there is some evidence that the parameter �may be constant globally, or at least for certain classes of shallow earthquakes, andhence need not be estimated simultaneously with � using individual local earthquakecatalogs. Indeed, Kagan [12] has shown that there is no statistically signi�cant variationin � for all subduction and continental seismic regions; estimated values of � for all suchearthquakes range from 0.60 to 0.70. Further, recent analysis of oceanic earthquakes[1] suggests that the distributions of these events have �-values similar to subductionand continental earthquakes. By contrast, whereas mc = �(�) is typically about 8.0for subduction and continental regions (see Figure 2), estimates of �(�) vary from 5.8to 7.2 for oceanic earthquakes [1].Further, there exists theoretical justi�cation for the global value of �: Vere-Jones([27], [28]) derived the value � = 0:5 for a critical branching process which was proposedas a general model for the earthquake size distribution (see also further discussion byKagan [11] and Kagan and Vere-Jones [14]). If the process is slightly subcritical, theresulting distribution is similar to the tapered Pareto distribution (2). Observationalestimates of � are slightly higher than the theoretical value mentioned above; the causeof this discrepancy is not yet clear ([11], [12]).Thus, given a particular earthquake catalog, one may wish to assume a global valueof � and concentrate exclusively on the estimation of �. Since seismologists usuallyuse the G{R distribution with b-value corresponding to � = 23 , we use this value inour considerations below; the results do not signi�cantly change if a slightly di�erentvalue for � is assumed, e.g. � in the range 0:60 to 0:63 as suggested in [12]. How ourresults below are a�ected by variations in � is discussed further at the end of Section5. However the focus of the remainder of this paper is on estimation of � alone.4. Estimation of � onlyWe now consider the case where one wishes to estimate only the cuto� parameter �,the other parameters a and � being known.4.1. Maximum likelihood estimatesIn the case where only � is being estimated, the log-likelihood function (12) is a functionof only one variable. Thus one need merely obtain a solution to the single nonlinearequation (13). An approximate solution may be obtained from any of a variety ofstandard numerical procedures.The maximum likelihood estimator �̂ is justi�ed primarily because of its desirableasymptotic properties. For small samples, however, maximum likelihood estimates ofthe cuto� parameter � can be heavily biased, and conventional formulae for standarderrors and quantiles based on asymptotic relations may be highly misleading. Asmentioned in Section 2, even for relatively large catalogs such as the Harvard dataset,asymptotic properties are less relevant than small-sample properties when it comes toestimating �, since the determination of �̂ depends essentially on the very few largestevents.Consider i.i.d. observations x1; : : : ; xn from any distribution truncated from aboveat an unknown value �. Pisarenko and others ([21], [22]) derived an expression forthe bias in the MLE of the truncation point for a general class of truncated randomvariables. The origin of the bias in the maximum likelihood estimator �̂ comes from



166 Y. KAGAN AND F. SCHOENBERGthe fact that the likelihood function L(�) is at its peak when � = maxfxig. Hence theestimator �̂ is never greater than the true value of �, for any realizations x1; : : : ; xn, soination of this estimator is unilaterally sensible.In the case where x1; :::; xn are uniformly distributed random variables on [0; �], forinstance, it is well known that the maximum likelihood estimator �̂ = maxfxig is biasedby a factor of (n � 1)=n (see e.g. p. 289 of [9]). In the case where xi are distributedaccording to a truncated Pareto law, the bias in the MLE of � is much greater than inthe uniform case, the relative infrequency of large values contributing to the expecteddiscrepancy between maxfxig and �.The case is essentially similar for estimating � in the tapered Pareto distribution (2)using a small sample. Unfortunately, due to the lack of an expression in closed formfor the maximum likelihood estimator for �, no simple formula for its bias is available.However, the bias may be approximated via simulation; see Section 5 below.Note that relation (16) suggests the estimator �� given by�� = B1� �A : (19)Since it is based on likelihood equations, one may expect the behavior of �� to be similarto that of the MLE �̂. However, since � is not being estimated, equation (14), whichis obtained by setting the partial derivative of the log-likelihood function with respectto � to zero, is meaningless. In practice the denominator in (19) tends to be verynearly zero, so the estimator �� is extremely unstable; this is con�rmed by simulationsas described briey in Section 5 below.4.2. Estimation of � based on momentsAs an alternative to the maximum likelihood estimator �̂, an estimator of � based onthe �rst two moments of X may be constructed.Using (5), one may rewrite (10) asE(X2) = a2 + 2a� + 2(1� �)a��2�� exp(a=�)�(1 � �; a=�): (20)Combining (9) and (20) yieldsE(X2) = a2 + 2a� + 2�(1 � �)(� � a); (21)and rearranging terms gives � = E(X2)� a22[a� + (1� �)�] : (22)Given i.i.d. observations x1; : : : ; xn, one may substitute the uncentered �rst andsecond sample moments �x = Pni=1 xi=n and Pni=1 x2i =n in equation (22), leading tothe estimator ~� = Px2i =n� a22[a� + (1� �)�x] : (23)The simplicity and closed analytic form of the equation for ~� facilitates the derivationof properties of the estimator, including small-sample properties. For the MLE �̂, bycontrast, estimates of small-sample bias and rates of convergence are unavailable.



Estimation of tapered Pareto distribution 167Theorem 1. Suppose x1; : : : ; xn are independently sampled from the distribution (2),with a > 0. Then the method of moments estimator ~� is asymptotically unbiased andconsistent; its mean is given byE(~�) = � + (� � 1)[2a3 + 3a2�� + (�2 + �2)(6� � 3�� � 2�)]4n[a� + (1� �)�]2 + O �n�2� : (24)Proof . The moments of ~� may readily be approximated using the technique of lin-earization (or more appropriately polynomialization), described e.g. in [3], [4] and [23].Let gn(u) = 12 �Pi x2i =n� a2�=[a� + (1 � �)u], and let yn = �x � �. Then we maywrite ~� = gn(� + yn) = gn(�) + yng0n(�) + y2ng00n(�)=2! + � � �= Px2i=n� a22[a� + (1� �)�] 1Xk=0� yn(� � 1)a� + (1� �)��k ; (25)provided the Taylor series converges. Note the convergence propertyPr� ���� yn(� � 1)a� + (1� �)� ���� < 1� ! 1 (n!1): (26)Indeed, for any positive ", �, Prfjynj > "g � �2=(n"2) < � for n > �2=(�"2) byChebyshev's inequality, since yn has mean 0 and variance �2=n.In order to show convergence of the mean of ~� via the expected value of the Taylorexpansion (25), it is not enough to show that the Taylor series converges on a set withprobability going to one; one must also ensure that the expected value decreases tozero on the set S where the Taylor series fails to converge. But this fact is ensuredby noting that the expected value of ~� is bounded even on S: the denominator in (23)must be no smaller than 2a since each xi � a; hence E(~�;S) � P (S)� 12 [E(X2)+a2]=a,which converges to zero with n!1 since P (S)! 0.Since ~� is expressed in (25) as a polynomial function of the �rst two sample moments,computation of the approximate moments of ~� is straightforward. For instance, theexpected value of ~� is given byE(~�) = E � Px2i =n� a22[a� + (1� �)�]�+ E � (Px2i =n� a2)(�x� �)(� � 1)2[a� + (1� �)�]2 �+ O �n�2�= � + 12(� � 1) [a� + (1� �)�]�2 hE��xXx2i=n�� �E(X2)i+ O �n�2� ; (27)since the expectation of the higher-order terms in (25) are of the order of n�2.Note that E��xXx2i=n� = E(X3)=n+ �E(X2)� �E(X2)=n; (28)and that, using (5) and (11),E(X3) = a3 + (3�=2) �(2� �)E(X2) + �a2� : (29)Combining (27), (28) and (29) yields (24). Hence ~� is asymptotically unbiased. Acalculation similar to (27) shows that the variance of ~� is of the order of 1=n, whichtogether with the asymptotic unbiasedness of ~� implies that ~� is consistent.
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FIGURE 3: log L versus � = 1=�, for a simulated dataset consisting of n = 100 indepen-dent draws from equation (2), with a = 1, � = 23 , � = 1000.Relation (24) suggests adjusting the estimator ~� by subtracting its bias. Note how-ever that the approximate bias in ~� depends on the quantities �, �2, and �, whichare generally unknown. One may plug in estimates of these quantities to obtain anadjusted moment estimator~�a := ~� � (� � 1)[2a3 + 3a2~�� + (�̂2 + �x2)(6~� � 3~�� � 2�x)]4n[a� + (1 � �)�x]2 : (31)Although the estimator ~�a may be very nearly unbiased, the adjustment factor canintroduce substantial variance in some cases. These features are discussed further inSection 5.4.3. Average likelihood estimation of �A third estimator, ��, may be obtained by computing the mean of � with respect to thelikelihood measure dL(�), namely, �� := R �L(�) d�R L(�) d� : (32)This Average Likelihood Estimator (ALE) is equivalent to the posterior mean of �obtained in Bayesian estimation, starting with a non-informative prior on �. (Notethat some authors call this estimator the mean likelihood estimator, abbreviated mele;see e.g. equation 4.4.15 of Jenkins and Watts [8].)Unfortunately, in many cases the integral in the numerator of (31) does not converge.When the sample size n is relatively small, the likelihood function L decays very slowlyas � !1, as seen in Figure 2. In such cases, one may choose to modify the ALE �� insome fashion. For instance, instead of a non-informative prior, one may adopt a prior



Estimation of tapered Pareto distribution 169TABLE 1: Simulated estimates of ��̂ ~� ~�a ��in bias sd rmse bias sd rmse bias sd rmse bias sd rmse25 {335 1257 1301 {612 674 910 {30 2139 2139 {763 371 84850 {140 1330 1337 {459 752 881 128 2081 2085 {642 429 772100 {6 1240 1240 {311 765 826 167 1738 1746 {489 470 678250 48 914 915 {160 675 694 108 1117 1122 {270 487 557500 36 638 639 {88 555 562 58 740 742 {139 456 4771000 20 435 435 {47 428 431 27 496 497 {65 378 3842500 9 267 267 {19 287 311 11 304 304 {25 261 2625000 4 187 187 {10 207 207 5 213 213 {12 187 187that gives very little weight to large values of �. However, clearly in this frameworkthe resulting estimate will depend heavily on the choice of prior.Alternatively, one may set � = ��1 and estimate � using the ALE ��. One may thenwish to employ the inverse ALE estimate ��i := 1=�� as an estimator of �.Figure 3 shows the log-likelihood as a function of �, for a simulated dataset. Whilethe log-likelihood decays very slowly as a function of � in Figure 2, one sees fromFigure 3 that the log-likelihood decays very rapidly with � and hence the integrals in(31) generally converge when estimating �.In practice, computation of �� and ��i is nontrivial. Typically, the integrals in (31)must be evaluated numerically, with each computation requiring an evaluation of thelikelihood L, which itself requires a pass through the n observations. Further, in thenumerical evaluation of the integrals one must experiment with various upper limits andstep-sizes in order to ensure convergence and accuracy, respectively, of the numericalintegration. 5. Comparison of estimatorsThe estimators described previously are compared, �rst on a linear scale (i.e. estimatesof � are compared to �) and subsequently on a logarithmic scale, where estimates of �are converted to units of magnitude via the function � de�ned in (1), and comparedto �(�).5.1. Comparison on linear scaleThe method of moments estimator ~� has several attractive features. First, it is ex-tremely easy to compute: no iteration is required, nor use of numerical approximationroutines. Second, as noted in Section 4.2, expressions for the approximate small-samplemoments of ~� can be obtained. Third, the variance of ~� appears in many instances tobe a bit smaller than that of �̂. One may expect the adjusted method of momentsestimator, ~�a, to have considerably smaller bias than �̂; however, ~�a has larger variancedue to the high variance of the adjustment factor. In fact, when the sample size issmall (i.e. only a few hundred earthquakes, and hence only a handful of large events,are observed), the bias in the unadjusted estimators �̂, ~�, and ��i is very substantial, anduse of the adjustment factor may be sensible despite the resulting increase in variance.The above results regarding the relative performance of estimators may be demon-strated experimentally via simulation. For instance, Table 1 summarizes the perfor-mance of various estimators of � for the case where a = 1, � = 23 , � = 1000. Each row



170 Y. KAGAN AND F. SCHOENBERGof Table 1 shows the result of thousands of simulated catalogs; for each such catalog,an estimate of � is obtained from n independent draws from the distribution (2), asdescribed in Section 2.3. The bias (expressed as the estimated value minus the truevalue), the standard deviation (sd) and the root-mean-squared error (rmse) of the es-timates are reported in Table 1. Whereas as a general principle of estimation theretends to be a tradeo� between bias and variance, the rmse, which can be computedas the square root of the sum of the squared bias and the variance, provides a usefulmeasure indicating the typical size of an estimator's error (see e.g. [9], p. 128). Withthe exception of ��i, for each estimator and each row of Table 1, the total numberof simulated events (i.e. n times the number of simulated catalogs) is approximately2:5�108. Because of the computational burden in computing ��i, for this estimator thetotal number of simulated events in each row is 5� 107.The entries in Table 1 show that the bias in the unadjusted estimators �̂, ~�, and ��iis very large when the sample size is small, and diminishes quite rapidly as the samplesize increases. For the maximum likelihood estimator �̂, somewhat surprisingly, thebias becomes positive for samples of size 250 before beginning to approach zero. Theadjusted moment estimator ~�a is very nearly unbiased but has such large variancethat its root-mean-squared error is larger than that of the other estimators. Notehowever that the observed bias in ~�a may not reasonably be attributed to chancevariation. Indeed, since only the �rst two terms in the Taylor expansion (25) were usedin constructing the adjustment factor in ~�a, and since the unknown � appears in theadjustment factor and is estimated using the biased estimator ~�, it is to be expectedthat the bias in ~�a is nonzero.Though the bias in the ALE for small samples is very large, the root-mean-squarederror is in each case smaller for the ALE than for the other estimators. Note alsothat in almost every case the rmse is smaller for the unadjusted method of momentsestimator than for the MLE. However, the di�erences between the estimators appearto dissipate quickly as n increases. For very large sample sizes of many thousandsof events, all the estimators considered here perform well. Even for n = 1000, thedi�erence between ~� and ��i is hardly substantial and may arguably be insu�cient tojustify the large increase in computational burden.Note that the MLE �̂ in Table 1 is obtained by �nding an approximate numericalsolution to the single equation (13), treating � as known. One may alternatively inves-tigate the maximum likelihood estimate of � based on the estimation of two parameters,i.e. the simultaneous solution to equations (13) and (14) or the inverse of the estimate�̂ in (17). The estimate based on the two-parameter case has uniformly substantiallyhigher rmse than the one-parameter estimate �̂. In addition, the estimate �� de�ned via(19) has substantially higher bias and variance compared to �̂ for each set of simula-tions; its rmse is typically a factor of two or more greater than that of �̂. As mentionedpreviously, the source of this problem seems to be the fact that the denominator in(19) is typically very nearly zero. In fact, in many cases the denominator (and hencethe resulting estimate) is negative. This problem appears to be particularly severe forrelatively small values of the ratio a=�. In cases where the two terms �̂A and �̂B in theleft-hand-side of (16) are of roughly equal size, the estimate �� may perform reasonablywell, but in the typical seismological case where � is usually very small, the estimator�� is prohibitively unstable.



Estimation of tapered Pareto distribution 171A word should be said about the choice of parameters in the simulations of Table 1.The results of the di�erent estimators relative to one another were qualitatively sim-ilar when di�erent choices of these parameters were used. In addition, the bias andvariance of estimates of � appear to depend critically on the number of events in thesample greater than �, which in turn depends on the ratio � = a=�, and this fact canbe used so as to shed light on the bias and variance in estimators of � for catalogs ofvalues of � di�erent than 1=1000. For instance, the global earthquake size distribution,shown in Figures 1 and 2, is dominated by shallow earthquakes in subduction andcontinental areas ([12], [16]), and parameter estimates suggest that the ratio � = a=�is approximately 1/2000 for these earthquakes in the Harvard catalog (see Figure 2).Catalogs of oceanic earthquakes tend to have much smaller empirical values of theratio [1]. Fortunately our simulation results can be easily applied to these earthquakesand other earthquake catalogs, in the following manner. Suppose one obtains n0 in-dependent observations from a distribution with cuto� parameter �0 and completenessthreshold a0, and let �0 = a0=�0. Then the appropriate value of n signifying which rowin Table 1 corresponds to catalogs with a similar number of large events, and hencesimilar values of bias (relative to �) and variance, satis�es:n = n0 (�0=�)� exp(�0 � �): (33)For example, an earthquake catalog with n0 = 794 events taken from the Harvarddata with �0 = 1=2000 has approximately the same number of events exceeding � as asimulated catalog of n = 500 events from a distribution with � = 1=1000, and henceis approximately equivalent in terms of statistical properties of estimates of �. Hence,one need merely multiply the entries of the �fth row of Table 1 by �=�0 to obtainapproximations of the bias, sd, and rmse of the various estimators as applied to thissample subset of the Harvard catalog. This similarity is con�rmed by our simulations.5.2. Comparison on logarithmic scale.It is important to assess estimates of � on a logarithmic scale, for three reasons. First,the moment magnitude of an earthquake, expressed as the logarithm of the seismicmoment via (1), is a quantity of great signi�cance in seismology. Second, seismicmoment data are obtained by an inversion process applied to seismographic recordings;the errors in the recordings and the inversion process appear to be approximatelymultiplicative [6]. Thus on a logarithmic scale, the errors in the seismic moment areapproximately additive. Third, although the exact distributions of the estimators of� have not yet been obtained, simulations indicate that the estimators �̂, ~�, and ��iare very nearly log-normally distributed: for example, Figure 4 shows how close toGaussian are the histograms of the logarithm of these estimates for the simulationssummarized in Table 1. It follows that distributions of estimators of �, expressed interms of magnitudes rather than moments, are well-summarized by their means andstandard deviations.Table 2 presents the results of estimating mc = �(�), with � de�ned as in (1), viathe logarithms of the four estimators in Table 1. That is, for each of the simulationsin Table 1, estimates �̂, ~�, ~�a, and ��i are obtained as before, converted to magnitudescale via the conversion (1), and compared to �(�).
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FIGURE 4: Histograms of �(�̂) and �(~�) (solid lines) for simulations each consisting ofn = 100 independent draws from (2), with a = 1, � = 23 , � = 1000. The total number ofsimulated catalogs is 107. The Gaussian curves (dashed lines) are �tted to have the samemean and standard deviation as the simulated data. The proximity of the histograms of�(~�a) and �(��i) (not shown to avoid excessive overlap) to Gaussian curves was similar.For ~� (left-most curves), the mean and sd of mc are 1:753 and 0:293, respectively. For�̂, the mean and sd of mc are 1:832 and 0:320, respectively.The results of Table 2 are somewhat di�erent from those of Table 1. On the loga-rithmic scale, the root-mean-squared errors are very comparable for all four estimatorsregardless of sample size, and in contrast to the seismic moment scale of Table 1, theMLE �̂ typically has the smallest root-mean-squared error of the four. Unlike on theseismic moment scale, the bias on the magnitude scale is negative for every estimatoreven for larger samples. Another important di�erence is that on the magnitude scale,the adjusted method of moments estimator ~�a o�ers little improvement in terms of biascompared to �̂, and indeed in many cases actually has a bit greater bias than the MLE.Since the adjustment factor is based on the bias of ~� in terms of seismic moment ratherthan magnitude, it is not surprising that the adjustment factor provides relatively littleimprovement in bias on the magnitude scale. On the other hand, it should be notedthat as with the seismic moment scale, adjustment of the method of moments estimatoron the logarithmic scale does result in smaller bias and greater variance for each samplesize, when compared to the unadjusted method of moments estimator ~�. Further, asin Table 1, the di�erences between the estimators in Table 2 diminish rapidly as thesample size is increased. The results in Table 2 can be used directly for catalogs withdi�erent values of the ratio �0 if the catalog size n is adjusted according to (32).Additional simulations were performed to evaluate the inuence of variations in �on estimates of �. In these simulations we created synthetic catalogs using varying�-values, but in the estimation of �, � was assumed to be 23 . We found that a decreasein the true value of � generally caused an increase in the average of the estimate



Estimation of tapered Pareto distribution 173TABLE 2: Simulated estimates of � on magnitude scale�(�̂) �(~�) �(~�a) �(��i)n bias sd rmse bias sd rmse bias sd rmse bias sd rmse25 {.463 .471 .660 {.568 .430 .712 {.423 .511 .663 {.657 .383 .76050 {.291 .398 .493 {.386 .362 .529 {.262 .428 .502 {.462 .321 .563100 {.168 .320 .361 {.247 .293 .383 {.151 .340 .372 {.302 .260 .399250 {.072 .225 .236 {.126 .211 .246 {.068 .236 .246 {.151 .191 .243500 {.037 .165 .169 {.072 .161 .176 {.037 .174 .178 {.081 .150 .1701000 {.019 .119 .121 {.040 .121 .127 {.021 .127 .129 {.042 .114 .1212500 {.007 .076 .076 {.017 .081 .083 {.009 .083 .083 {.017 .075 .0775000 {.004 .053 .053 {.008 .059 .060 {.005 .059 .059 {.009 .054 .055�(~�), with the amount of change depending on n and �. Conversely, an increase in �resulted in decreased average values of �(~�). For example, for n = 100 and � = 11000 , a3% decrease in the true value of � caused �(~�) to increase by about 0:03 on average,thus decreasing the bias in �(~�) from �0:247 to �0:215. Meanwhile, a 3% increase �caused �(~�) to increase by about 0:03 on average, thus increasing the bias in �(~�) from�0:247 to �0:279. For n = 1000, 3% variations in � resulted in corresponding changesof 0:02 in the bias of �(~�). The e�ects on �(�̂) of variations in � were very similar tothose on �(~�). The fact that the use of an improper value of � has an impact on thebias in the estimation of � underscores the importance of accuracy in the determinationof �. Fortunately, as discussed in Section 3, � typically appears to fall within a narrowrange and may readily be estimated quite accurately. Since the bias in estimates of�(�) induced by assuming an incorrect value of � appears to be comparable to the sizeof the error in �, this bias is not overwhelming when compared to typical variations inestimates of �(�). 6. SummaryIn estimating the upper cuto� parameter � of the tapered Pareto distribution, theMLE �̂ has substantial bias for small samples. The integrated likelihood required inthe computation of the ALE ��, in addition to being quite cumbersome computationally,typically diverges. The inverse ALE ��i is certainly preferable to ��, though it is similarlydi�cult to compute and o�ers little improvement in performance when compared to �̂,particularly when performance is evaluated on a logarithmic scale.The method of moments estimator ~� yields similar root-mean-squared error to theMLE and ALE, on both logarithmic and seismic moment scales, and di�erences inperformance may be o�set by the fact that the estimator ~� is vastly simpler and faster tocompute than the MLE and ALE. Though the adjusted method of moments estimator~�a may appear to be preferable to the unadjusted estimators for small and moderatesample sizes due to its reduction in bias, it has increased root-mean-squared error due tothe high variance of the adjustment factor. Here even samples of 1000 earthquakes maybe considered relatively small, since estimation of � is dominated by only the largestfew observations. For very large sample sizes of hundreds of thousands of events, all theestimators considered here perform adequately. The choice between ~� and ~�a appearsto depend largely upon whether one is more interested in obtaining an estimate oflow bias or of low variance; the adjusted estimator ~�a appears to o�er substantially
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