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ESTIMATION OF THE MEANS IN THE BRANCHING
PROCESS WITH IMMIGRATION

By C. Z. WEI! AND J. WINNICKI

University of Maryland and Columbia University

Let {X,} be the branching process with immigration and let m and A
be the means of the offspring and immigration distributions, respectively.
Estimation results for m and A were obtained in the literature for the
suberitical (m < 1) and supercritical (m > 1) cases, but no unified estima-
tion procedure was developed, which would allow inference without knowl-
edge of the range of m. The goal of this paper is to investigate this
problem.

1. Introduction. In this paper we attempt to solve a long-standing esti-
mation problem for the branching process with immigration, raised by Heyde
and Seneta in 1974.

The branching process with immigration can be defined recursively by

X,
(1.1) X,= Y Y, ,+1I, n=12,....

i=1
We can interpret X, as the size of the n-th generation of a population, where
Y, ; is the offspring size of the i-th individual in the (n — 1)-st generation and
I is the number of immigrants contributing to the population’s n-th genera-
tion. Throughout this paper we will assume that {Y, ;} and {I,} are indepen-
dent sequences of ii.d., nonnegative, integer-valued random variables with
finite means m and A and finite variances o2 and b2, respectively. We also
assume that the initial value X, is a nonnegative, integer-valued, square-inte-
grable random variable which is independent of {Y, .} and {I,}. [See Athreya
and Ney (1972) for the basic properties of {X,,}.]

The study of estimation problems for the parameters m and A on the basis
of observing a single realization {X,..., X} dates back to Smoluchowski
(1916). Bartlett and Patankar [see Bartlett (1955)] began investigating this
problem by the maximum likelihood approach. As noted by Heyde and Seneta
(1972), the expressions for the maximum likelihood estimates of m in the
parametric models considered were, in general, too complicated to be useful.
[However, if the numbers of immigrants I, or even all offspring sizes Y, ; as
well, are included in the sample, then the maximum likelihood approach yields
useful results. These are given in Bhat and Adke (1981), Venkataraman (1982)
and Venkataraman and Nanthi (1982).]
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1758 C.Z. WEI AND J. WINNICKI

The same authors [Heyde and Seneta (1972, 1974)] were the first to obtain
estimation results for m and A without imposing specific distribution assump-
tions on {Y, ;} and {I,}.

For the case m > 1, they pointed out that the results of Heyde and Seneta
(1971) and Heyde (1970) show that the ratio estimators X,/X, , and

* . X;/L?_1X;_, can be used to estimate m.

For the case m < 1, they used a formal analogy between the branching
process with immigration and the first order autoregressive process to derive
strongly consistent and asymptotically normal estimators for m and A. [Their
moment assumptions were subsequently weakened by Quine (1976).] Their
estimators are closely related and asymptotically equivalent to the conditional
least squares estimators, first obtained by Klimko and Nelson (1978). Rewrite
(1.1) as )

(1.2) X, =mX,_,+A+¢,,

where ¢, = X, — mX,_, — A. Then ¢, is a martingale difference with respect
to &,, where ¥, =a(X,, X;,...,X,) and (1.2) is a stochastic regression
equation. The conditional least squares estimators of m and A resulting from
(1.2) are

=[x E ] / {[iglxi_lr g xe)

i=1  i=1 i=1

and

R n n n n n 2 n

Ap = [Z X, X2 X, - XX, )» Xi] {[Z Xi—l] -n) Xi2—1}'

i=1 i=1 i=1 i=1 i=1 i=1

In the subcritical case (m < 1) the asymptotic properties of these estimators
were extensively studied by Venkataraman (1982).

The previously mentioned results do not solve the problem of how to

estimate m and A if we do not know whether m <1, m =1 or m > 1 [cf.
Heyde and Seneta (1974), pages 576 and 577].

In an attempt to obtain such a unified theory, Wei and Winnicki (1987)
considered the estimators 7, and A, in the cases m > 1. Under the assump-
tion that o2 < » and b2 < «, they showed the following:

1. If m =1, then /2, >, m and

n 1/2
P

(1.3) -, {éYz(l)(fOlY(t) dt)l/2 -(v(1) + éaz)(folY(t) dt)s/z}

x{fole(t) dt — (folY(t) dt)z} ,

where Y(¢) =lim, . X[,,/n [weakly in D[0,)] is a limiting diffusion
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process [Wei and Winnicki (1989)].
2. If m > 1, then /2, > m as. and

n 1/2
( Y (X, +1)

i=1

(h, —m)

(1.4)
>4 N(0,(m + 1)*(m? + m + 1) 'o?).

They also proved that ;\n is not a consistent estimator if m > 1.

This naturally leads to the question whether there exist other estimators
which are always consistent.

In Section 2, based on the idea of the weighted conditional least squares
[Nelson (1980)], we propose new estimators 7z, and, A,. The estimator 7, is
shown to be consistent in all cases and to have a normal limit law if m # 1. If
m = 1, then its asymptotic distribution is expressed in terms of the limiting
process Y(¢) [cf. (1.3)]. In the case m # 1, the asymptotic variances of /7, and
1, can be compared to show that 7, is a more efficient estimator (cf. Section
4.5).

Even more convincing evidence for using the weighted conditional least
squares estimators are the results for )\ , which is shown to be consistent if
m < 1 as well as m = 1. However, the 11m1t1ng distribution of /\ is known
only if m <lor m = 1and 21 > o2 3

In Section 3 we will show that the inconsistency of A, or A, in the
supercritical case is inevitable. More precisely, we will prove that there does
not exist a consistent estimator for A when m > 1.

2. The weighted conditional least squares estimators. Let us rewrite
(1.2) as

X
(2.1) W =m(X, + D+ (A-m)(X,_,+1) " +5,,
n—1

where §, = ¢,/(X,_; + D72
Note that E(5,|.7,_,) = 0 and

a?X,_, +b*
X, ,+1

Since E(82|.%,_,) < a® + b?, the conditional variance of the “error” terms &,
in the stochastic regression equation (2.1) would not fluctuate too much even
when X, is unbounded . It is also obvious that E(82|.%,_;) —» o> as. as
X, — ». Hence, when {X,} is transient, the error terms 5, in & (2.1) would be
asymptotically homogeneous. Furthermore, from the definition of ¢, and the
central limit theorem, it is not difficult to see that the asymptotic conditional
distribution of §, given %,_, is normal if X, — «. If §, were conditionally
normal, then the least squares estimators based on (2.1) would be the maxi-
mum likelihood estimators. Some optimality properties in this case would then
be expected.

(2.2) E(821F,_,) =
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These considerations lead us to study the least squares estimators based on
(2.1), which we will call the weighted conditional least squares estimators,

e (£ 0 ey nf ]

i 1+1

and

{Z(XL1+1)Z_‘, ! nz}

X, ,+1

Here, A, = ., + p,, where p, is the least squares estimator of p = A — m in
2.1).

We will now investigate the asymptotic properties of 72, and A,. We start
with the subcritical case. It is well known that under the assumption that
m < 1and E(log™® I,) < », the process {X,,} has a unique stationary distribu-
tion. If the distribution of X, is the stationary distribution, then {X,} is
stationary and ergodic. By the coupling property of irreducible, aperiodic,
positive recurrent Markov chains, we can assume that {X,} is stationary and
ergodic, regardless of the distribution of X, [cf. Wei and Winnicki (1989),
Remark 2.9].

THEOREM 2.1. Assume that m < 1. Then i, and X, are strongly consis-
tent and

n 1/2 n 1/2 '
(23) ((Z (Xi_1+ 1)) (ﬁln_m)’(igl(Xi—l'i'l)—l) (;\n—)t))

i=1

=, N(0,V-I'WV'-1),

where _
EX 1 ]V
v | [BX+ DI [EXH
E[X/(X+1)] [E 1 ]1/2
[E(X +1)]"* X+1
i 5 9 o?X + b?
o E(c’X +b") E——7

02X + b? EUZX + b2
X+1 (X+1)*

and X is a random variable with the stationary distribution of the process {X,,}.
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Proor. The proof of strong consistency of i, and ;\n is accomplished
using the ergodic theorem, which implies that

— Y X, > EX~= a.s.,
n;_
12 1 1
24) = E 5.
(24) ni§1xi_1+1* X+1 %
12": X, EmX+/\ A E
— - =m+ (A - 5.
n =X+ 1 x71 A -mExee as

To prove the joint asymptotic normality, observe that

n 1/2 n 1/2 ,
(Z(XHH) (mn—m),(mxi_lﬂ)‘l) (1, - A)
(2.5) \\i5 o1
=VZ,,
where
[ (1 Y209 n 1a 1 TV
Y (X, +1 i ol ¢ -
v (nlgl( o )) (nzgl l_l) (nz§1Xi—1+1)
i 12 2018 X, 1 1\
— X,_,+1 — = —
(ni§1( 1t L) (ni§1Xi—1+1 (nz§1Xi—1+1)
and
1 n
— E
L | wES
no 1 = £

ﬁigl X +1

As in (2.4), V, —» V a.s. Since by Jensen’s inequality and nondegeneracy of X,

det(V) = {E(X+ 1)E[3{—}ﬁ]}_1/2{E[X—1—1—]E(X+ 1) - 1} >0,

V1! exists. In order to show (2.3), it is now sufficient to prove that
Z,—, N(O,W).
By the Cramér-Wold theorem, we only have to show that for ¢ = (c,, cz)’ € R?
such that ¢ # 0,
(2.6) ¢Z, -, N(0,c'We).

Since X 7_{c&; + ¢p¢;/(X;_; + 1)} is a martingale with stationary increments,
(2.6) follows from the martingale central limit theorem [cf. Hall and Heyde
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(1980), page 58] and the fact that

E CoE; 2
4 — - 'MI N
C1€; Xi_l 1] C C

THEOREM 2.2. Assume that m > 1. Then ., > m a.s., while A,

weakly consistent. Furthermore,

n 1/2
(2.7) (L Ea D) G m) =g NOL0%).
i=1
Proor. It is well known that under the assumption that m > 1,
(2.8) m~"X, » Las.,, where(0 <L <,
So
(2.9) Yoo '
. © a.s.,
i=1 l 1 + 1
X,
(2.10) nt ,Zl X 71 - m as.
and
(2.11) mmY X, - (m- 1) 'mL as.,
i=1

which easily yields 7, —» m as.
Inconsistency of A, is a simple corollary of Proposition 3.3.
Let us show (2.7). We have

n 12 i g

(2.12) (El(Xi_l + 1)) (#, —m) = ﬁj—f
where

A = &

"X+ D]V
i g; n 1 L

B, - [nzﬁ]/{iﬁ[z(x L+ 1)] }

and

1 -1
il e g g |

Note that C, — 0 a.s. by (2.9) and (2.11).

is not
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Since ¢,/(X,_; + 1) is a martingale difference with respect to &, and
o g2 > g2X,_; + b2
) E( 1

s _y as.
o1 (X +1)?

Fi-1

— <
i-1 (X, +1)

the martingale convergence theorem [cf. Hall and Heyde (1980), Theorem 2.17]
implies that ©7_,¢,/(X;_; + 1) converges almost surely. Hence, using (2.11),
we have that B, — 0 a.s. It remains to show that A, =, N(0, ¢?). But this
follows from Theorem 3.5 of Wei and Winnicki (1989). O

ReEMARk 2.3. Using (2.12) it is not difficult to show that if m > 1, then

n X,
m, - 2—=1;f—_1 = 0(n?/Liy( X+ 1)) as.
Thus, 7, is asymptotically equivalent to the estimator X7_, X,/Y7_, X;_;,
which is known to be the nonparametric maximum likelihood estimator for m
in the nonimmigration branching process [Feigin (1977) and Keiding and
Lauritzen (1978)].
In order to investigate the critical case we need the following lemma:

LemMma 2.4. Assume that m = 1. Then

n 1
2.13 —_— ..
( ) iZ=:1Xi—1+1_)°° 2
Furthermore, if 2\ > o2 and EIYn’iI2+a < o for some & > 0, then
= 1
(2.14) Yy a.s.

_— <w
= (Xi_l + 1)1+a
for any a > 0 and '

n

(215) (logn)_l Z ‘m

i=1“"

—p(A - 02/2)_1-
The proof of Lemma 2.4 is in Wei and Winnicki [(1989), Theorem 2.12,

Lemma 2.13 and Theorem 2.16}.

THEOREM 2.5. Assume that m = 1. Then i, »p m, A, —>p A and

n 1/2
(2.16) (Z (X + D (A, —m) =4 (Y(D) - A)/(folY(t) dt) ;
i=1

where the process Y(t) is defined after (1.3). Furthermore, under the addi-
tional assumptions that 2\ > o2, EIY,M-I2+“5 < and E|I|**® < © for some
8§ > 0, we have that

1/2

n 1/2
(2.17) ( Y (X, + 1)‘1) (A, —A) =>4 N(0,07).
i=1
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Proor. First, we claim that
n £; n 1
(2.18) Y ——— = o( Y —————) a.s.
i1 X1t 1 i1 X1 +1
We know that X 7_,¢,/(X;_; + 1) is a martingale. Notice also that

- El| —— i _
i=2(j=1Xj_1+1) (Xi_1+1) !

w izl 1 _20'2X + b2
i=2\j=1 1+ (X 1+1)
co i (e[ ]
< (o - _— < a.s.,
“\ X+ Z X+ 1

where convergence follows from (2.13). Hence, (2.18) follows by an application
of the strong law for martingales [Hall and Heyde (1980), Theorem 2.18].
Now we write

2.19 T .
(' ) n _1_—C,n’

where C, is defined after (2.12),

L X4 " 1 e €;
D, =|=— Yot | oy
| ZP (X + D) ([ T1 X+ 1 ic1Xigt1

and
[ X 1 -1 n
E = —_— X, _,+1 .
n _iglx 1+1:||:Z( i—1 )Z 1+1] izz:lgl
By (2.18) and the fact that 7_, X;_,/L7 1(X 1+ 1) <1,
(2.20) D, -0 as.

By Corollary 2.3 (cf. Remark 2.4) of Wei and Winnicki (1989) we know that

(2.21) (n_an,n'z Y (X + 1) —»d(Y(l),le(t) dt).
i=1 0

Since
1
(2.22) / Y(¢)dt >0 as.,
0
(2.13) and (2.21) imply
(2.23) C,—p0
Further,
1 1



BRANCHING PROCESS WITH IMMIGRATION 1765

By (2.21), (2.13), (2.24) and the fact that X7_, X, _,/(X,_, + 1) <n,
(2.25) E, -, 0.

Now (2.20), (2.25) and (2.23) give A, —p A. To prove (2.16) we will use (2.12).
By (2.21) and (2.24),

1/2
(2.26) A, =, (Y(1) - A)/(/lY(t) dt) .
0
In view of (2.18), (2.21) and (2.22),
(2.27) B, —p 0.

Consequently, (2.16) follows from (2.25), (2.27) and (2.23). Note that (2.16)
implies that 7, —p m. Finally, let us show (2.17). By (2.19) and (2.23), it
suffices to prove that

n 1 1/2
(2.28) (Z  —— -, N(0,02)
i1 Xioit1 ¢
and
n 1 1/2
2.29 _— E 0
( ) (i§1 X, +1 nF

Relation (2.29) follows easily from (2.15), (2.24), (2.21) and (2.22). For (2.28),
observe that (2.21) and (2.22) imply that

?= lXi -1
Li(X;o1+1)
Thus, by (2.15) it is sufficient to show that

—p 1.

1/2 n £, o? !
2. 1 - _— 2N - — .
(2.30) (log n) E X 11 ¢ N(O,(r (/\ 5 )

We will apply the martingale central limit theorem [Hall and Heyde (1980),
Corollary 3.1]. For the conditional variance, by (2.14) and (2.15),

(logn)‘liE[ 8" 9*]

S| (X +D?
n g2X, ; + b2
= -t
(231) (ogn) LZI (X 1+ 1)
- 2 2 1
= (logn) { Z 1+1+(b —o)lzl(X 1+1)}
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For the conditional Lyapunov’s condition, by Lemma 2.1 of Lai and Wei
(1983), there is a constant C; such that
)

(log n) "17%2 Z E{[X le, | J
> (E{effz_11>“”}

i=1 1+1
NS (X + )

(2.32) < (logn)~"%%C

1+5/2

n (02X o+ bz)
= (log n) " 17%%C i1
(log n) F) LZ::I (X,_, + 1)2+a ]
where convergence follows from (2.14).
Relations (2.31) and (2.32) show that the conditions of the martingale
central limit theorem are satisfied and the proof of Theorem 2.5 is complete. O

} -0 a.s,

REMARK 2.6. The condition 2A > o?, required to establish asymptotic nor-
mality of A, in Theorem 2.5, implies that the process {X,} is transient. The
remaining case 2\ < o? is the case when {X,} is null-recurrent. This di-
chotomy for the critical branching process with immigration was discovered by
Pakes (1971). It is not known what is the limiting distribution of A, when
m =1and 2\ < o2

3. Nonexistence of consistent estimators in the supercritical case.
In this section we will show that except for the offspring distribution’s mean
and variance, no parameters of the supercritical branching process with immi-
gration have consistent estimators.

We will first establish a necessary condition for existence of consistent
estimators. Let {X,, X,,...} be a time-homogeneous, denumerable Markov
chain whose probability measure P is determined by an initial distribution p
and a transition function p. We will identify P = (p, p). Suppose that P € &,
where & is a family of probability measures of time-homogeneous, denumer-
able Markov chains.

For any P and @ = (8, ¢) in & define the likelihood ratio

8( X325 (X111 X,)
p( X )T Zop( X1 11X,)
A parameter is a function §: & — 0, where 0 is a metric space with metric
. d.Let &, =o(X,,..., X,). A sequence {6} of &,-measurable, ©-valued func-
tions is said to be a cons1stent estimator for 8 if d@,, B(P)) —p 0 for all
Pe .

Clearly, if there exists a consistent estimator for 6, then for any P, @ such
that 6(P) = 8(Q), P L Q. It follows by the properties of the likelihood ratio [cf.
Chow, Robbins and Siegmund (1972), pages 12 and 19] that

(3.1) A,(P,Q) >0 as.-P.

a.s.-P.

A (P,Q) =
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Relation (8.1) provides a criterion for proving nonexistence of a consistent
estimator.

We will be concerned with the case when the parameter § depends only on
the transition function p, i.e., for any initial distributions p and §,

(3.2) 8(p,p) = 0(5,p) = 6(p).

Suppose that there exists an estimator én which is consistent for any initial
distribution. Then (3.1) implies

mot g( Xy 441X,)
k=n, p(Xk+1|Xk)

for any integer n, > 0 and p, g such that 8(p) # 6(q).

Criterion (3.3) can be applied if we know the asymptotic behavior of the
transition functions p and q. We will now develop a relevant asymptotic result
for the case when {X,} is the branching process with immigration.

Recall that the span of the distribution of an Nj-valued random variable X
is the largest positive integer 2 such that for some u €{0,...,A -1}, X=1u
(mod h) a.s. Then u is called the offset of the distribution of X. We also
denote the support of X, {k: P(X = k) > 0}, by supp(X). Subscripts suppp,
ete., will denote the corresponding quantities under the measure P.

Given nonnegative numbers m and o2, let € = €(m, o?) denote the class
of all transition functions of branching processes with immigration such that
the offspring distribution has mean m, variance o2 and a finite third moment
E(Y,})) and the immigration distribution has a finite mean E(I,). For simplic-
ity, we will also assume that the offspring distribution has offset 0 and span 1.
Notice that a transition function of a branching process with immigration can
be identified with a pair of offspring and immigration distributions.

For arbitrary initial distributions p and &, let P = (p, p) and @ = (5, q),
where p,q € €.

(33) how 0 a.s.-(p,p)

LEmMA 3.1. Assume thatm > 1, 0% < «, If

(3.4) suppp( X,,) C suppe(X,)
for all sufficiently large n, then
q(Xn+1,Xn)
(3.5) 1 (X,,, ~ mX,)? n
= 73 €Xp| — [1 + O( Y )] a.s.-P.

(2mo?X,)

2(0'\/)7,1)2

Proor. For any &, ] € N,,

q(klIl) =Q(Zl: Yl,j +1; =k) = f (Zl Yl,j =k _i)Q(I1 =1i).
j=1 i 1

i—0 j=



1768 C. Z. WEI AND J. WINNICKI

By the local limit theorem [Petrov (1975)],

! . 1 1
Q(ngYl,j = ‘) = ;ﬁﬁo(xi) + 0(7),

where o(x) = (1/ V27 )e~*"/2, x; = (i — ml)/aVl,10Q/1)| < ¢,/1 and ¢, does
not depend on [ and i. Hence,
k

1 1
a(kl) = ¥ — (%)@ = i) + 0(7).

i=0
By the mean value theorem

kE —ml .
=0,...,k,

‘P(xk—i)_¢( oVl S C—7F ‘/— i

where ¢, = sup_w<x<w|go’(x)l < . Since Eg(I)) = Ay < , it follows that

kml
Z

- ¢(xk l _¢ lQ(I

(3.6)
5 ot =iy = of &
ﬁEO‘Q““ o7
Also, X7_,,, QU = 1) = o(1/k), so

- {57 ol o)

Hence, using (3.4)
Xn+1 - an 1 1
+ o0 +0 E— a.s.-P.

1
q(Xn+1|Xn) = a_‘/z ‘P( 0\/Yk—

But by (2.8), X,,,,; = O(X,) a.s.-P, so

1 (Xn+1 - an)
X, 11X,) = ————exp| -
q(X,,,1X,) 270 2X, [ ( 2

n

20‘/X—n)

(3.7)
1
* O(x—

n

) a.s.-P.

Finally, by an analogue of the law of the iterated logarithm for {X,} [Heyde
and Leslie (1971)]

(X,,, — mX,)*

2(0‘/2)2

Applying (3.8) and (2.8) to (8.7) we obtain (3.5). O

(3.8) exp[ J = 0(e¢") = 0(n) a.s.-P.
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CoroLLARY 3.2. Under the assumptions of Lemma 3.1, there exists an
integer-valued random variable N such that

N+

n q(Xk+1|Xk)

39 ].lm _— > O a~3-'P-
(3.9) lim T1 S %, 0%

Proor. Note that Lemma 3.1 holds also if @ = P. This implies that
N =inf{n: p(X,.,1X;)q(X,.,1X;) > 0for all £ > n}

is finite a.s.-P.
Now consider the product

Nin g( Xy, 11X,)
k=N p(Xk+1|Xk).

By Lemma 3.1 it is enough to show that

N+n 1 — OQ(nm"‘/2)

(3.10) lim [

>0 as.-P.
n—ow p_N 1- OP(nm_n/z) a.s

[Notice that the limit in (3.9) may be infinity.] But (3.10) clearly holds since

1 - Og(nm~"7%)

= — 1| <o as.-P. O
i—n|1— Op(nm="/2)

Criterion (3.2) together with Corollary 3.2 yield the following proposition.

ProrosiTION 3.3. Let 8 be a parameter defined on a class & of transition
functions of the branching process with immigration. If for some m > 1,
0? <o, 0 takes at least two values on PN €(m,o?), then there is no
consistent estimator of 6.

ExampLE 3.4. Consider the class of branching processes with immigration
whose offspring distribution is Poisson with parameter m and the immigra-
tion distribution is Poisson with parameter A. By Proposition 3.3, if m > 1,
then there is no consistent estimator of A. Notice that in this example all
parameters are identifiable. Hence, as opposed to the classical situation of i.i.d.
observations, nonexistence of consistent estimators is not due to nonidentifia-
bility. The essential problem is that for certain ranges of parameters the
probability measures of the process are not mutually singular for distinct
parameter values.

ReEmARK 3.5. Consider the nonparametric situation assuming that & is
the class of all transition functions of supercritical branching process with
immigration whose offspring and immigration distributions have finite second
moments. It is well known that the parameters m and o2 admit consistent
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estimators [Heyde (1974)]. Since the parametric class of Example 3.4 is con-
tained in &2, we conclude that A does not have a consistent estimator in &.

ReEMARK 3.6. In this section we investigated the problem of nonexistence of
consistent estimators by examining the asymptotic behavior of the likelihood
ratio. Lockhart (1982) established nonexistence of consistent estimators for
parameters of the nonimmigration branching process. His method used the
total variation distance between the probability measures of the process to
prove that they are not mutually singular. Our results can be viewed as a
generalization of his, since they remain valid when the immigration distribu-
tion is concentrated at zero, provided that the “a.s.” statements are under-
stood to hold “on the set {X, — «}.” Conversely, using Lemma 3.1 we could
use Lockhart’s approach to prove our results. An advantage of the approach of
the present paper is that it allows a generalization to the critical case [Winnicki
(1990)1.

4, Concluding remarks.

4.1. The limiting distributions of the estimators for m and A discussed in
this paper depend on the parameters o2 and b2 Hence, to use these results in
practice would require estimating the variances. A unified estimation theory
for the variances, analogous to the one for the means presented in this paper,
has been developed by Winnicki (1990) and we refer the reader to his paper for
detailed results.

4.2. Of particular interest, also considering the historical development of
the subject, would be statistically testing the m <1, m =1, m > 1 tri-
chotomy. In principle, we can construct such tests using our asymptotic
distribution results for the estimators of m. However, the calculation of the
critical points is complicated. Since the limiting distributions depend on the
unknown parameters they would have to be estimated. The variance of the
limiting distribution of %, in the subcritical case can be written as

. o[(E(X + 1)E[1/(X + 1)])? - E(X+ DE[1/(X + 1)]]
T [E(X+ D)E[1/(X +1)] - 1]°
(b2 - o) E(X + 1) E(1/(X + 1)%)
[E(X+ 1)E[1/(X+1)] - 1]

(4.1)

—(b% - o2 B(X + 1)(E[1/(X + 1)’
[E(X +1E[1/(X+ 1] - 1]*

(cf. Theorem 2.1). Suppose that o2 and b2 are known or have been estimated
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(cf. Section 4.1). Since m < 1, the ergodic properties of {X,} imply that
_ T (X + DI [1/(X_ + 1)])2
[Z?=1(Xi—1 + 1Zr[1/(X,_; + 1)] - n2]2

A2
m,n

L "L (K + DI [1/(Xiy + 1))
[L7 (X + DI [1/(X,_, + D] - n?]”
N (b2 - o)n?L?_ (X, + DI [1/(X;_1 + 1)]
[Eru(Xioy + DIR[1/(X,y + D] - 2]

— (82 = eHnEI (X, + D(EL[/(X, + D))
[Z?=1(Xi—1 + DI [1/(X;_, + 1)] - n2]2

is a (strongly) consistent estimator for ¢2. It also follows from (2.9) and (2.11)
that 62 , — o2 a.s. if m > 1. Hence, if we are testing the hypothesis m = 1
versus the alternative m # 1, then under the alternative the error probabili-
ties can be estimated. However, under the hypothesis m = 1, the limiting
distribution (Y(1) — A)/[}Y(¢) d¢)*/? is a complicated functional of the diffu-
sion process {Y(¢)} and the only approach we can suggest is numerical tabula-
tion. Notice that the distribution of the process {Y(¢)} depends only on the
parameters A and o2 which can be estimated. A possible clue to obtaining
analytical results is the fact that the joint Laplace transform of Y(1) and
/&Y (#) dt is known to be

E(exp( _sY(1) - szlY(t) dt))

2 o’z
=ls Esmh 5

where s > 0, z > 0 [Mellein (1983)].

2 -2 /0%
h gz
+ - ;
cos ( 2 ”

4.3. Notice that if m is far from 1, then it will be obvious from the
behavior of the process whether we are in the recurrent or the explosive case.
Thus, of greatest interest are the questions of inference when m = 1 or m is
close to 1. This, in particular, because of the nonnormal limit law when m = 1,
which suggests a nonnormal approximation in the near-critical case. A similar
problem has been studied by Chen and Wei (1987) for the first-order autore-
gressive time series, but analogous results for the branching process with
immigration have yet to be developed.

4.4. If m > 1, the asymptotic variance of 7, equals o2, which is smaller
than the asymptotic variance of 7, [cf. Theorem 2.2 and (1.4)]. If m < 1, it is
possible to compare the asymptotic variances of /7, and A, for m approach-
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ing 1. We will restrict attention to the ‘“continuously subcritical”’ class of
offspring distributions considered in Quine and Seneta (1969), with the immi-
gration distribution fixed. In addition, we will suppose that 2\ < o2, where o2
is the variance of the offspring distribution as m 1 1. Then, using (4.1) and the
theorem in Quine and Seneta (1969), it is not difficult to show that o2 — o2
as m11. On the other hand, if m <1, y=E(Y,,-m)®<® and d =
E(I, — A)? < », then

n 1/2
(Z (X1 + 1)) (F,—m) =4 N(0,3,.),
i=1

where
. -2
A Ay of Ao? 1
— 2 1 - 2 + 2 1 — 3
2, (1_m+1)[0(1_m+d)( m)(l-—m b)( m?)
Ao? . B
+1—m2+3ma-4(1—m2)(1_(_fm+b2 (1 —m?3) 1},

[cf. Wei and Winnicki (1987)]. A simple calculation shows that 3, — 202 + 2A
as m 1 1. Hence, also in the case m < 1, m — 1 the asymptotic variance of m,
is smaller than the asymptotic variance of 7 ,,.

4.5. Although our estimators 72, and A, perform better than 7, and ;\n,
nothing is known about their efficiency in general. For a possible approach to
this question using estimating equations, see Godambe and Heyde (1987) and
Heyde (1987). Another possible approach to the question of optimality is to use
the asymptotic efficiency concepts as outlined in Hall and Heyde [(1980),
Chapter 6]. It would also be of interest to compare our estimators with the
estimators obtained based on observing all immigration sizes and/or all
offspring sizes (e.g., maximum likelihood estimators). Related questions of loss
of information with an application to the nonimmigration branching process
are treated in Le Cam and Yang (1988).
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