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Abstract: The methods of tolerance relation estimation on the
basis of pairwise comparisons with random errors, in the case of
multiple comparisons for each pair, are proposed in the paper. Each
comparison expresses the number of common features of both el-
ements or the number of their missing features. The assumptions
made about distributions of comparison errors are very weak, in
particular they may be unknown. Two approaches are discussed:
the first one, based on averaging of comparisons for each pair and
the second, based on the median from comparisons. The estimated
form of the relation is determined (in both cases) on the basis of
the appropriate discrete programming task. The properties of esti-
mators are based on some probabilistic inequalities. An example of
application of the estimators proposed is presented.
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1. Introduction

The tolerance relation is a relaxed form of the equivalence relation, i.e. without
transitivity property. It divides a set of elements into a family of subsets with
at least one non-empty intersection. The relation is a model of many real-life
phenomena, e.g. analysis of marketing data (purchasing patterns of customers,
when comparisons are applied to some number of independent purchases of each
customer and the number of patterns is unknown); another example - analysis
of empirical function shapes - is presented in Klukowski (2006).

The methods of tolerance relation estimation, presented in the paper, are
extensions of the approach introduced in Klukowski (2002), section 4, for the
case of N >1 independent comparisons. The methods exploit the idea of nearest
adjoining order introduced by Slater (1961) for the preference relation (see also
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David, 1988). Two approaches are examined in the paper: the first one - based
on averaged comparisons for each pair and the second - based on the median
from comparisons. In both cases two forms of comparisons are examined. The
first one determines the number of subsets of an intersection, which comprises
both elements (in other words number of common features of both elements),
the second one - the number of subsets, which do not comprise both elements
(a number of missing features of both elements). The estimated form of the
relation is obtained on the basis of optimal solution of some discrete optimization
problems. They result from the fact that the expected values of some random
variables (statistics based on pairwise comparisons, defined in Sections 3 and 4
of the paper) corresponding to actual relation, are lower than the expected
values corresponding to any other relation. The properties of the estimators
proposed are based on well known probabilistic inequalities: Hoeffding (see
Hoeffding, 1963), Chebyshev (for expected value) and properties of the order
statistics (see David, 1970). They express the probability of the event that the
random variables, corresponding to actual relation, assume values lower than
those corresponding to any other relation. In case of the first estimator - based
on the averaging approach - the probability converges exponentially to one,
for N → ∞. A useful feature of the median approach is the simple form of
the optimization task. Empirical experience and some asymptotic properties
of the sample median indicate that efficiency of the median approach is also
satisfactory. For both approaches it is possible to obtain some approximations
of the probability in the case of unknown distributions of comparison errors.

The paper consists of six sections. The second section presents basic defini-
tions, assumptions and notations. In the third section the averaging approach is
examined. The fourth section presents the median approach and an algorithm
for determination of the probability function of the median. In the fifth section
an example of application of both approaches is discussed; the example is based
on stochastic simulations. Last section sums up the results presented.

2. Basic definitions, assumptions and notations

It is assumed that there exists an (unknown) tolerance relation (reflexive, sym-
metric) in a finite set X = {x1, . . . , xm} (m > 3); the relation divides the set X
into a family of subsets χ∗

1, . . . , χ
∗
n, 1 < n < m, with the following properties:

n⋃

q=1

χ∗
q = X, χ∗

q 6= {∅}, ∃ q, s (q 6= s) : χ∗
q ∩ χ∗

s 6= {∅}. (1)

Moreover, in order to avoid the “degenerate” form of the relation it is as-
sumed, additionally, that in each subset χ∗

q ⊂ X there exists an element xi,

which belongs to the subset χ∗
q only, i.e.: xi∈ χ∗

q and xi /∈ χ
∗
s for s 6= q.

The basis for further considerations is constituted by two functions, T1(·) and
T2(·), defined as follows T1 : X × X → D, T2 : X × X → D, D = {0, 1, . . . , n},
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where:

T1(xi, xj) = #(Ω∗
i ∩ Ω∗

j ), (2)

T2(xi, xj) = #(Ψ∗
i ∩ Ψ∗

j ), (3)

where:
Ω∗

i – the set of the form Ω∗
i = {s

∣∣xi ∈ χ∗
s},

Ψ∗
i – the set of the form Ψ∗

i = {1, . . . , n} − Ω∗
i ,

#(Ξ) – the number of elements of the set Ξ.

Under the assumption of the “non-degeneracy” of the relation, each of the
functions T1(·) and T2(·), characterizes the form of the relation.

If an element xi is included in some subset χ∗
q , this fact can be interpreted

so that it possesses some feature; if it is included in a conjunction
⋂

q∈R

χ∗
q , then

the element possesses some set of features. Thus, the function T1(·) expresses
the number of common features of elements xi and xj , while the function T2(·)
expresses the number of lacking features of both elements, from the set of all
features existing in the set X.

It is assumed that the basis for estimation of the relation is constituted
by the results of comparisons g

(1)
k (xi, xj) or/and g

(2)
k (xi, xj) (1 6 k 6 N ;

(xi, xi) ∈ X × X; j 6= i), corresponding to the form of the functions T1(·)

and T2(·), respectively. The comparisons g
(f)
k (xi, xj), observed instead of the

(unknown) values Tf(xi, xj), are disturbed by random errors; they can be ob-
tained as a result of application of statistical tests, expert opinions or other
decision functions.

The comparisons are defined in the following way:

g
(1)
k (xi, xj) = d

(1)
ijk, d

(1)
ijk ∈ D, (4)

g
(2)
k (xi, xj) = d

(2)
ijk, d

(2)
ijk ∈ D, (5)

where: d
(f)
ijk (f = 1, 2) is the assessment the value of Tf (xi, xi), obtained in the

k-th comparison.
The probabilities of random errors of each comparison are determined with

the use of the probability function:

P (Tf(xi, xj)−g
(f)
k (xi, xj) = l)) = α

(f)
ijk(l)

((xi, xi) ∈ X × X; f = 1, 2;−n 6 l 6 n). (6)

It is assumed that comparisons g
(f)
κ (xi, xj) and g

(f)
ι (xq, xs) (κ 6= ι) are indepen-

dent, i.e.:

P ((g(f)
κ (xi, xj) = d

(f)
ijκ) ∩ (g(f)

ι (xq, xs) = d(f)
qsι)) =

= P (g(f)
κ (xi, xj) = d

(f)
ijκ)P (g(f)

ι (xq, xs) = d(f)
qsι) (7)
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and the probabilities α
(f)
ijk(l) satisfy the conditions:

∑

l60

α
(f)
ijk(l) >

1

2
,

∑

l>0

α
(f)
ijk(l) >

1

2
, (8)

α
(f)
ijk(l) > α

(f)
ijk(l + 1), l > 0,

α
(f)
ijk(l) > α

(f)
ijk(l − 1), l 6 0.



 (9)

The conditions (8)-(9) guarantee that: zero is the median of each distribu-
tion (on the basis of median’s definition), each probability function is unimodal
and assumes maximum in zero. The expected value of the comparison error

E(Tf (·) − g
(f)
k (·)) can differ from zero; it is typical for Tf(·) = 0 or Tf (·) = n.

Both types of comparisons, g
(1)
k (xi, xj) and g

(2)
k (xi, xj), can be used as a

basis of estimation of the relation form - separately or simultaneously. In

the second case it is assumed that comparisons g
(1)
k (xi, xj) and g

(2)
k (xr, xs)

((xi, xj), (xr , xs) ∈ X×X) are not correlated, i.e. Cov(g
(1)
k (xi, xj), g

(2)
k (xr , xs)) =

0. Correlation of comparisons V g
(1)
k (xi, xj), g

(2)
k (xi, xj) means that their content

is similar.
It should be emphasized that comparisons of different pairs g

(f)
k (xi, xj) and

g
(f)
k (xr, xs) (< i, j > 6=< r, s >, k, f - fixed) are not assumed independent (in

stochastic sense).
For simplification of further considerations it is assumed that the distrib-

utions of comparisons g
(f)
k (xi, xj) are the same for each k (1 6 k 6 N); an

extension for the case of different distributions for individual k is not difficult.
Let us define for any tolerance relation χ1, . . . , χr in the set X, the following

sets of indices I(χ1, . . . , χr) and J(χ1, . . . , χr):

I(χ1, . . . , χr) ={< i, j >
∣∣ ∃ q, s (q = s not excluded )

such that xi, xj ∈ χq ∩ χs; j > i}, (10)

J(χ1, . . . , χr) ={< i, j >
∣∣ there do not exist q, s

such that xi, xj ∈ χq ∩ χs; j > i}. (11)

The set I(χ1, . . . , χr) includes such pairs of indexes < i, j > that there exists
an intersection χq ∩χs of some subsets comprising both elements (xi, xj); when
q = s, both elements belong to the same subset. The set J(χ1, . . . , χr) includes
such pairs (xi, xj), that both elements belong to different subsets χq, χs and
both elements do not belong to the intersection χq ∩ χs.

It is obvious, that:

I(χ1, . . . , χr) ∩ J(χ1, . . . , χr) = {∅}

and

I(χ1, . . . , χr) ∪ J(χ1, . . . , χr) = {< i, j >
∣∣ 1 6 i, j 6 m; j > i }. (12)
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For any relation χ1, . . . , χr in the set X the functions t1(xi, xj) and t2(xi, xj),
characterizing this relation, are defined (Tf (·) relates to the “true” relation
χ∗

1, . . . , χ
∗
n):

t1(xi, xj) = #(Ωi ∩ Ωj), (13)

t2(xi, xj) = #(Ψi ∩ Ψj), (14)

where:

Ωi = {s
∣∣xi ∈ χs} and Ψi = {1, . . . , r} − Ωi. (15)

The properties of the estimators proposed below are based on the properties of

random variables U
(k)
fij (χ1, . . . , χr) and W

(k)
f (χ1, . . . , χr) defined as follows:

U
(k)
fij (χ1, . . . , χr) = |tf (xi, xj)−g

(f)
k (xi, xj)|, (16)

W
(k)
f (χ1, . . . , χr) =

∑

<i,j>∈I(χ1,...,χr)∪J(χ1,...,χr)

U
(k)
fij (χ1, . . . , χr). (17)

For simplification of the notation, the symbols corresponding to the rela-

tion χ∗
1, . . . , χ

∗
n will be denoted with asterisks (i.e. U

(k)∗
fij , I∗ , J∗, etc.) while

corresponding to any other relation χ̃1, . . . , χ̃r - with tildas, e.g.:

U
(k)∗
fij = |Tf(xi, xj) − g

(f)
k (xi, xj)|, (18)

Ũ
(k)
fij = |t̃f (xi, xj) − g

(f)
k (xi, xj)|. (19)

It follows from (6), (16) and the identify of distributions g
(f)
k (xi, xj)(k = 1, ..., N)

that the distribution function of each comparison error satisfies the conditions

(index k is omitted in symbols α
(f)
ijk(l):

P (U
(k)∗
fij = l) = α

(f)
ij (−l) + α

(f)
ij (l) (l > 0). (20)

3. The averaging approach

In the case of the averaging approach, the basis for the problem of estimation

of the relation are the averages of the random variables U
(k)
fij (χ1, . . . χr), U

(k)∗
fij ,

Ũ
(k)
fij , W

(k)
f (χ1, . . . , χr), W

(k)∗
f and W̃

(k)
f , i.e.: the variables:

Ufij(χ1, . . . χr) =
1

N

N∑

k=1

| tf(xi, xj) − g
(f)
k (xi, xj) |, (21)

U
∗

fij =
1

N

N∑

k=1

|Tf (xi, xj) − g
(f)
k (xi, xj) |, (22)

Ũ
(k)
fij =

1

N

N∑

k=1

| t̃f (xi, xj) − g
(f)
k (xi, xj) |, (23)
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W
∗

f =
∑

<i,j>∈I∗∪J∗

U
∗

fij , (24)

W̃ f =
∑

<i,j>∈eI∪ eJ

Ũfij . (25)

The probabilistic properties of the difference: W
∗

f − W̃ f – the basis for
the properties of estimation the results – are determined on the basis of the
Hoeffding inequality (see Hoeffding, 1963):

P (

N∑

k=1

Yi −
N∑

k=1

E(Yi) > Nt) 6 exp{−2Nt2/(b − a)
2}, (26)

where:
Yi (i = 1, . . . , N) – independent random variables satisfying the conditions: P (a 6

Yi 6 b) = 1,
a, b, t – constants satisfying the conditions: t > 0, b > a.

They are determined in the following

Theorem 1 The random variables W
∗

f and W̃ f , defined in (24) and (25) re-
spectively, satisfy the conditions:

E(W
∗

f − W̃ f ) < 0, (27)

P (W
∗

f − W̃ f < 0) >

> 1 − exp




−

N(
∑

Tf (·) 6=etf (·)

E( |Tf (·) − g
(f)
1 (·)| − | t̃f (·) − g

(f)
1 (·)| ) )2

2ϑ2(m − 1)2





, (28)

where:
Tf (·) 6= t̃f (·) – denotes the set {< i, j >

∣∣ Tf(xi, xj) 6= t̃f (xi, xj); (xi, xj) ∈
X× X; j > i},

ϑ the number of elements of the set {< i, j >
∣∣ Tf(xi, xj) 6= t̃f (xi, xj); (xi, xj) ∈

X× X; j > i}.

Proof.

The proof of the inequality (27) for f = 1, under the assumption that the distri-
butions of comparison errors (see (6)) are the same for each k (k = 1, . . . , N).

The difference: U
(k)∗
1ij − Ũ

(k)
1ij can be expressed in the following way:

U
(k)∗
1ij − Ũ

(k)
1ij = |T1(xi, xj) − g

(1)
k (xi, xj) | − | t̃1(xi, xj) − g

(1)
k (xi, xj) |. (29)
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The inequality T1(·) 6= t̃1(·) indicates that: T1(·) > t̃1(·) or T1(·) < t̃1(·). In the

case when T1(·) > t̃1(·) each random variable g
(1)
k (·) can assume values, which

satisfy the conditions:

(i) g
(1)
k (·) > T1(·);

(ii) t̃1(·) < g
(1)
k (·) < T1(·);

(iii) g
(1)
k (·) 6 t̃1(·).

For the values g
(1)
k (·) > T1(·) (case (i)) the difference U

(k)∗
1ij − Ũ

(k)
1ij equals:

−T1(·) + t̃1(·); the last value is negative, its probability satisfies the inequality

(see (8)):
∑
l60

P (T1(·) − g
(1)
k (·) = l) > 1

2 . In case (iii) the difference (29) is equal

to: T1(·)−t̃1(·) > 0 with probability (see (8) and (9))
∑

l>T1(·)−et1(·)

P (T1(·) − g
(1)
k (·)

= l) < 1
2 . The inequality (ii) indicates T1(·) − t̃1(·) > 2 and the difference (29)

is equal to: T1(·) + t̃1(·) − 2g
(1)
k (·). Moreover, the values T1(·) + t̃1(·) − 2g

(1)
k (·)

(t̃1(·) < g
(1)
k (·) < T1(·)) satisfy the condition:

−T1(·) + t̃1(·) < T1(·) + t̃1(·) − 2g
(1)
k (·) < T1(·) − t̃1(·) (30)

and assume the values from the set {−T1(·)+ t̃1(·)+2, . . . , T1(·)− t̃1(·)−2} with

probabilities P (T1(·) + t̃1(·) − 2g
(1)
k = ι) = P (g

(1)
k = (T1(·) + t̃1(·) − ι)/2). The

expression T1(·) + t̃1(·)− 2g
(1)
k (·) (t̃1(·) < g

(1)
k (·) < T1(·)) assumes values placed

symmetrically around zero; their probabilities satisfy the conditions:

P (T1(·) + t̃1(·) − 2g
(1)
k = −ι) > P (T1(·) + t̃1(·) − 2g

(1)
k = ι) (ι > 0);

the last inequality results from the fact that in the case of T1(·) + t̃1(·)−2g
(1)
k (·)

= −ι the value of the difference T1(·) − g
(1)
k (·) is smaller (closer to zero), than

in the case of T1(·)+ t̃1(·)−2g
(1)
k (·) = ι. By assembling the facts concerning the

case of T1(·) > t̃1(·), i.e.:
∑

l60

P (T1(·) − g
(1)
k = l) > 1

2 (31)

∑

l>T1(·)−et1(·)

P (T1(·) − g
(1)
k = l) < 1

2 (32)

P (T1(·) + t̃1(·) − 2g
(1)
k = −ι) > P (T1(·) + t̃1(·) − 2g

(1)
k = ι) (ι > 0), (33)

one can obtain:

E(U
(k)∗
1ij − Ũ

(k)
1ij |T1(·) > t̃1(·)) < 0. (34)

The inequality:

E(U
(k)∗
1ij − Ũ

(k)
1ij |T1(·) < t̃1(·)) < 0 (35)
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corresponding to the case T1(·) < t̃1(·) is proved in a similar way.
The inequalities (34) and (35) imply – for each k (k = 1, . . . , N) – the

inequality:

E(U
(k)∗
1ij − Ũ

(k)
1ij ) < 0; (36)

which is sufficient for (27).

Proof of the inequality (28).

The inequality (28) is proved on the basis of Hoeffding inequality (26). The

difference: W
∗

f − W̃ f can be expressed in the following way:

W
∗

1 − W̃ 1 =
1

N

N∑

k=1

∑

T1(xi,xj) 6=et1(xi,xj)

( |T1(xi, xj) − g
(1)
k (xi, xj) |−

−| t̃1(xi, xj) − g
(1)
k (xi, xj) | ). (37)

The probability P (W
∗

1 − W̃ 1 < 0) can be expressed in the form:

P (W
∗

1 − W̃ 1 < 0) = 1 − P (W
∗

1 − W̃ 1 > 0). (38)

The probability P (W
∗

1 − W̃ 1 > 0) can be evaluated in the following way. It
follows from (29), that:

P (W
∗

1−W̃ 1 > 0) = P (
1

N

N∑

k=1

∑

T1(xi,xj) 6=et1(xi,xj)

|T1(xi, xj) − g
(1)
k (xi, xj) |−

−| t̃1(xi, xj) − g
(1)
k (xi, xj) | > 0). (39)

Introducing the notations:

D
(1)
k (xi, xj) = |T1(xi, xj) − g

(1)
k (xi, xj) | − | t̃1(xi, xj) − g

(1)
k (xi, xj) | (40)

one can express the probability (39) in the form:

P (W
∗

1 − W̃ 1 > 0) = P (
1

N

N∑

k=1

∑

T1(·) 6=et1(·)

D
(1)
k (·) > 0) =

= P (
1

N

N∑

k=1

∑

T1(·) 6=et1(·)

D
(1)
k (·) −

1

N

N∑

k=1

∑

T1(·) 6=et1(·)

E(D
(1)
k (·)) >

> −
1

N

N∑

k=1

∑

T1(·) 6=et1(·)

E(D
(1)
k (·))) =
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= P (

N∑

k=1

∑

T1(·) 6=et1(·)

D
(1)
k (·) − N

∑

T1(·) 6=et1(·)

E(D
(1)
1 (·)) >

> N(−
∑

T1(·) 6=et1(·)

E(D
(1)
1 (·)))). (41)

The probability (41) can be evaluated on the basis of the inequality (26), in the
following way:

P (
N∑

k=1

∑

T1(·) 6=et1(·)

D
(1)
k (·) − N

∑

T1(·) 6=et1(·)

E(D
(1)
1 (·)) >

> N(−
∑

T1(·) 6=et1(·)

E(D
(1)
1 (·)))) 6 exp




−

2N(
∑

T1(·) 6=et1(·)

E(D
(1)
1 (·)))2

(2ϑ(m − 1))
2





. (42)

The expression in the exponent results from the fact that: • each value

D
(1)
1 (xi, xj) satisfies the condition −(m − 1) 6 D

(1)
1 (xi, xj) 6 m − 1 (because

n < m and therefore the number of subsets generating any conjunction in
the tolerance relation cannot exceed m − 1), • the number of components of

the sum equals ϑ, • all expected values E(D
(1)
k (xi, xj)) are the same for 1 6

k 6 N and • their values are equal to E(D
(1)
1 (xi, xj)). Moreover, the sum∑

T1(·) 6=et1(·)

E(D
(1)
1 (xi, xj)) is negative and therefore the term:

−
∑

T1(·) 6=et1(·)

E(D
(1)
1 (xi, xj))

is positive. The inequality (42) is equivalent to the proved inequality (28). The
proof for f = 2 is similar.

The inequality (27) shows that the expected value of the random variable

W
∗

f is lower than the expected value of any other variable W̃ f . Moreover,

the probability P (W
∗

f < W̃ f ) exceeds or is equal to the right hand side of
the inequality (28). Thus, it is rational to estimate the relation χ∗

1, . . . , χ
∗
n

with the relation χ̂1, . . . , χ̂n̂, which minimizes the value of the random variable

W f (χ1, . . . , χr), for comparisons g
(1)
k (xi, xj) (k = 1, . . . , N ; (xi, xj) ∈ X × X).

It is meaningful that the evaluation of the lower bound of the probability

P (W
∗

f < W̃ f ) converges exponentially to zero, for N → ∞. In the case of
non-identical distributions of comparisons errors (for different k) the expected

value E(D
(1)
1 (xi, xj)) have to be replaced with min

k
{E(D

(1)
k (xi, xj))}. The prob-
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ability P (W
∗

1−W̃ 1 < 0) can be also evaluated with the use of other probabilistic
inequalities.

The estimated form χ̂1, . . . , χ̂n̂ of the relation χ∗
1, . . . , χ

∗
n can be obtained on

the basis of the solution of optimization tasks:

min
Fx

[
N∑

k=1

∑

X×X

| t
(ι)
1 (xi, xj) − g

(f)
k (xi, xj) |

]
, (f = 1 or 2) (43)

or

min
Fx

[
N∑

k=1

∑

X×X

( |t
(ι)
1 (xi, xj) − g

(1)
k (xi, xj) | + | t

(ι)
2 (xi, xj) − g

(2)
k (xi, xj) | )

]
, (44)

where:
Fx – the feasible set of the problem (the set including all tolerance relations

satisfying the conditions (1) and the “non-degeneracy” condition);

t
(ι)
f (·) – the function characterizing the relation χ

(ι)
1 , . . . , χ

(ι)

r(ι) from the set FX .

The feasible set of each of the problems (43) and (44) is finite and the
optimal solution always exists; however, the number of solutions of each task
may exceed one. In the case of multiple solutions we obtain a family of solutions

χ̂
(1)
1 , ..., χ̂

(1)
n̂(1), ..., χ̂

(υ)
1 , ..., χ̂

(υ)
n̂(υ) (υ ≥ 2); the inequality {W

∗
< W̃} does not hold,

but the event {W
∗
≤ W̃} is not excluded and P (W < W̃ ) ≤ P (W

∗
≤ W̃ ). In

such a case we have the alternative (χ̂
(1)
1 , ..., χ̂

(1)
n̂(1) ≡ χ∗

1, ..., χ
∗
n)∪(χ̂

(υ)
1 , ..., χ̂

(υ)
n̂(υ) ≡

χ∗
1, ..., χ

∗
n) and the evaluation (28) relates to the alternative. The unique solution

can be determined randomly or with the use of additional criterion, e.g. minimal
value of the function (43) or (44) on the set I(χ̂1, . . . , χ̂n̂).

The evaluation of the probability (28) can be determined in the case of
known probability distributions of the comparison errors. In the opposite case,
it is possible to determine some approximations of the evaluation. As the basis
of the approximation one can use:

• the estimated form of the relation χ̂1, . . . , χ̂n̂ (allowing to determine the
estimates T̂f (·) and n̂), the formulas (31)–(33) together with the conditions
(8)–(9), or

• the estimated form of the probability functions α
(f)
ij (l) obtained on the

basis of comparisons g
(f)
1 (·), . . . , g

(f)
N (·).

The first approach can be used for any value of N . The second approach
requires – for purpose of realistic estimates – an appropriate number of com-
parisons N (N >> n).

Let us notice that the right-hand side of the inequality (28) is based on the

constraint −(m − 1) 6 D
(1)
1 (xi, xj) 6 (m − 1). Typically, the value ±(m − 1)

is excessive (significantly greater than n); especially in the case of m − 1 >



Estimation of tolerance relation on the basis of multiple pairwise comparisons 453

max
X×X

{T1(xi, xj)} the constraint ±(m − 1) negatively influences (decreases) the

evaluation (28). Therefore, it is rational to replace the value m − 1 with the
estimate n̂ or max

X×X

{T̂1(xi, xj)}.

4. The median approach

In the case of median approach the basis for estimation is provided by the me-
dian from comparisons of each pair and it is assumed that N = 2τ + 1 (τ =

1, . . . ,). More precisely, each set of comparisons g
(f)
1 (xi, xj), . . . , g

(f)
N (xi, xj)

((xi, xj) ∈ X × X) is replaced with their median g
(f)
me,N(xi, xj) and the vari-

ables U
(k)
fij (χ1, . . . , χr), U

(k)∗
fij , Ũ

(k)
fij , Wf (χ1, . . . , χr), W ∗

f , W̃f (f = 1, 2) are
replaced – respectively – with the variables:

U
(me,N)
fij (χ1, . . . , χr) = | tf (xi, xj) − g

(f)
me,N (xi, xj) |, (45)

U
(me,N)∗
fij = |Tf(xi, xj) − g

(f)
me,N (xi, xj) |, (46)

Ũ
(me,N)
fij = | t̃f (xi, xj) − g

(f)
me,N (xi, xj) |, (47)

W
(me,N)∗
f =

∑

<i,j>∈I∗∪J∗

U
(me,N)∗
fij , (48)

W̃
(me,N)
f =

∑

<i,j>∈eI∪ eJ

Ũ
(me,N)
fij , (49)

where: g
(f)
me,N(xi, xj) – the median from comparisons g

(f)
1 (xi, xj), . . . , g

(f)
N (xi, xj),

i.e. the N+1
2 -th order statistics g

(f)
((N+1)/2)(xi, xj) (g

(f)
(1) (xi, xj), . . . , g

(f)
(N)(xi, xj) –

non-decreasingly ordered results of comparisons).

4.1. The form of the estimator and its properties

The problem considered in this point is similar to the single comparison case.

However, the probability function of the median g
(f)
me,N (xi, xj) of comparisons

g
(f)
1 (xi, xj), . . ., g

(f)
N (xi, xj) ((xi, xj) ∈ X×X) is not the same, as the probability

function of individual comparison g
(f)
k (xi, xj) (1 6 k 6 N); therefore the prop-

erties of the tolerance relation estimated on the basis of the medians are also
not the same, as in the single comparison case. The properties of the estimator
based on medians are presented in the following

Theorem 2 The random variables W
(me,N)∗
f and W̃

(me,N)
f defined in (48) and
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(49) satisfy the conditions:

E(W
(me,N)∗
f − W̃

(me,N)
f ) < 0, (50)

P (W
(me,N)∗
f < W̃

(me,N)
f ) >

>
1

ϑ(m − 1)
E(

∑

T1(·) 6=et1(·)

|T1(xi, xj) − g
(1)
me,N (xi, xj) |−

−| t̃1(xi, xj) − g
(1)
me,N(xi, xj) | ), (51)

where:
ϑ – the number of elements of the set {< i, j > |T1(xi, xj) 6= t̃1(xi, xj); (xi, xj) ∈

X× X; j > i}.

Proof.

Proof of the inequality (50) for f = 1, assuming the same distributions g
(1)
k (xi, xj)

for each k (k = 1, . . . , N).

The inequality (50) is true for N = 1 (it results from Theorem 1, for N = 1).
For N = 2τ + 1 (τ = 1, . . . ,) it can be shown that the probability function

P (T1(xi, xj) − g
(1)
me,N (xi, xj)) = l) (N = 2τ + 1; τ = 0, 1, . . . ,) satisfies for each

pair (xi, xj) ∈ X × X the inequalities:

P (T1(xi, xj)−g
(1)
me,N+2(xi, xj) = 0) > P (T1(xi, xj) − g

(1)
me,N(xi, xj) = 0); (52a)

P (T1(xi, xj) − g
(1)
me,N+2(xi, xj) = l) < P (T1(xi, xj) − g

(1)
me,N (xi, xj) = l)

(l 6= 0). (52b)

The inequalities (52a) and (52b) result from the following facts. The prob-

abilities: P (T1(xi, xj) − g
(1)
me,N (xi, xj) = l) can be expressed in the form (see

David, 1970, Section 2.4):

P (T1(xi, xj) − g
(1)
me,N (xi, xj) = 0) =

= P (T1(xi, xj)−g
(1)
me,N(xi, xj) 6 0)−P (T1(xi, xj)−g

(1)
me,N(xi, xj) 6−1) =

=
N !

(((N − 1)/2)!)2

G(0)∫

G(−1)

t(N−1)/2(1 − t)(N−1)/2dt, (53a)

P (T1(xi, xj) − g
(1)
me,N (xi, xj) = l) =

= P (T1(xi, xj)−g
(1)
me,N(xi, xj) 6 l)−P (T1(xi, xj)−g

(1)
me,N(xi, xj) 6 l−1) =

=
N !

(((N − 1)/2)!)2

G(l)∫

G(l−1)

t(N−1)/2(1 − t)(N−1)/2dt, (53b)
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where:

G(l) = P (T1(xi, xj) − g
(1)
k (xi, xj) 6 l).

The expressions (53a) and (53b) are determined on the basis of the beta
distribution B(p, q), with parameters p = q = (N + 1)/2. The expected
value and variance of the distribution assume the form – respectively: 1

2 and
((N + 1)/2)2/((N + 1)2(N + 2)) = (N + 2)/4. The variance of the distri-
bution converges to zero for N → ∞ and the integrand in integrals (53a),
(53b) is symmetric around 1

2 . These facts guarantee, that: the distributions

of the random variables: T1(xi, xj) − g
(1)
me,N(xi, xj) ((xi, xj) ∈ X × X) are for

each N unimodal, their probability functions assume maximum in zero (i.e. for

T1(xi, xj) − g
(1)
me,N (xi, xj) = 0) and satisfy the inequalities (52a), (52b). Last

two conditions are sufficient (see assumptions (8), (9) and inequality (27) from
Theorem 1) for the inequality (50).

Proof of the inequality (51).

Let us introduce the notations similar to those in Theorem 1:

D(1)
me(xi, xj) = |T1(xi, xj)−g

(1)
me,N (xi, xj) |−| t̃1(xi, xj)−g

(1)
me,N (xi, xj) |. (54)

Thus, the difference (54) can be expressed in the form:

P (W
(me,N)∗
1 < W̃

(me,N)
1 ) = 1 − P (W

(me,N)∗
1 − W̃

(me,N)
1 > 0)

and the probability P (W
(me,N)∗
1 − W̃

(me,N)
1 > 0) can be evaluated on the basis

of Chebyshev inequality for expected value, in the following way:

P (W
(me,N)∗
1 − W̃

(me,N)
1 > 0) = P (

∑

T1(·) 6=et1(·)

D(1)
me(·) > 0) =

= P (
∑

T1(·) 6=et1(·)

(D(1)
me(·) + m − 1) >ϑ(m − 1)) (55)

(ϑ – the number of components of the sum
∑

Tf (·) 6=etf (·)

D
(1)
me(·)) . The probability

(55) can be evaluated with the use of Chebyshev inequality as follows:

P (
∑

T1(·) 6=et1(·)

(D(1)
me(·) + m − 1) >

> ϑ(m − 1)) 6
1

ϑ(m − 1)
E(

∑

T1(·) 6=et1(·)

(D(1)
me(·) + (m − 1))) =

= 1 +
1

ϑ(m − 1)
E(

∑

T1(·) 6=et1(·)

D(1)
me(·)). (56)
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The last expression in (56) is equal to the right-hand side of the inequality (51).
The proof for f = 2 is similar.

The expression 1
ϑ(m−1)E(

∑
T1(·) 6=et1(·)

D
(1)
me,N (·)) (in the right-hand side of the

equality (51)) is not positive, more precisely – it is included in the interval
(−1, 0). Its numerical value can be determined in the case of known distri-

butions of comparison errors P (T1(·) − g
(1)
me,N (·)). In the opposite case they

can be approximated in some way. The approximation procedure based on the
relationships (53a), (53b) (see David, 1970, section 2.4) and some additional
assumptions (quasi-uniform distribution with equal values of the negative and
positive tail) is proposed in Section 4.2 below.

Some asymptotic properties of the estimator based on the medians can be de-
termined, too. They result from the properties of beta distribution for N → ∞

(see relationships (53a), (53b)). They indicate that the median g
(1)
me,N(·) con-

verges in stochastic sense to T1(·), i.e. for any ε > 0 there is: lim
N→∞

P ( | g
(1)
me,N(·)−

T1(·) | > ε) = 0 and the difference E(W
(me,N)∗
1 )−E(W̃

(me,N)
1 ) converges to some

negative value. The speed of convergence of the difference is the problem for
future investigations.

The right-hand side of the inequality (51) is based on the fact that −(m −

1) 6 D
(1)
me(xi, xj) 6 m − 1. Such constraint is typically (i.e. for m − 1 >

max
X×X

{T1(xi, xj)}) excessive. Therefore, it is rational to replace the value m−1 (in

the right-hand side of inequality (51)) with the estimate n̂ or max
X×X

{T1(xi, xj)}.

The optimization problems for the median approach are similar to those
formulated for the case of single comparison of each pair (see Klukowski, 2002),

with difference that individual comparisons g
(f)
k (xi, xj) ((xi, xj) ∈ X × X) are

replaced with the medians g
(f)
me,N (xi, xj) from N comparisons:

min
FX

[
∑

X×X

| t
(ι)
f (xi, xj) − g

(f)
me,N (xi, xj) |

]
, (f = 1 or 2) (57)

or

min
FX

[
∑

X×X

(| t
(ι)
1 (xi, xj) − g

(1)
me,N (xi, xj) | + | t

(ι)
2 (xi, xj) − g

(2)
me,N (xi, xj) |)

]
; (58)

FX – the feasible set of the problem,

t
(ι)
f (·) (f = 1 or 2) – the function characterizing the relation χ

(ι)
1 , . . . , χ

(ι)

r(ι) from
the set FX .

The problems (57) and (58) are simpler to solve in comparison with the
problems (43) and (44); the number of solutions may exceed one.



Estimation of tolerance relation on the basis of multiple pairwise comparisons 457

4.2. The procedure for approximation of the distribution function

P (T1(xi, xj) − g
(1)
me,N (xi, xj) = l)

The approximation procedure proposed in this point is especially useful for
moderate N , namely N = 5, 7, 9, 11; for N > 10 the Gaussian approximation
can also be used (see David, 1970, point 2.5).

The procedure is based on: some of “upper bound” distribution, the for-
mulas (53a, b) and the estimated form of the relation. The “upper bound”
distribution (a kind of evaluation) is obtained on the basis of: the condi-
tions (8)-(9), some quasi-uniform (discrete) distribution and the assumption
that the values of positive and negative tail of the distribution are equal, i.e.

P (Tf (·) − g
(f)
k (·) < 0) = P (Tf (·) − g

(f)
k (·) > 0) – with exception of the extreme

values of Tf (·) (minimum and maximum). The estimated form of the relation,

i.e. χ̂1, . . . , χ̂n̂, allows to determine the values T̂f(xi, xj) ((xi, xj) ∈ X × X)
and n̂. The estimates can be also used for determination of the extreme value
max{T̂f(xi, xj)

∣∣ (xi, xj) ∈ X × X} and the set of admissible values (range) of

each comparison g
(f)
k (xi, xj) ((xi, xj) ∈ X×X). It is suggested to determine the

range of each comparison in the following way: to assume the minimum equal to
zero and the maximum equal to n̂. The minimum is natural – because no result
of comparison can be negative. The maximum can be assumed in many ways,
e.g.: max{T̂f(xi, xj)

∣∣ (xi, xj) ∈ X×X} or n̂ or m−1. The “compromise” value

is the estimate n̂, because max{T̂f(xi, xj)
∣∣ (xi, xj) ∈ X×X} 6 n̂ 6 m−1. The

assumptions about equal values of positive and negative tail and quasi–uniform
distribution of each tail allow to determine the distributions completely. The
relationships (53a, b) allow to determine the distribution functions of medians
of comparison errors for N > 1.

The quasi-uniform distribution is constructed for f = 1 in the following way.
The estimates T̂1(·) and n̂ are used instead of the actual values T1(·) and n
(i.e. they are assumed to be constant, not realizations of the random variables).

The probabilities P (Tf (·)− g
(f)
k (·) < 0) and P (Tf (·)− g

(f)
k (·) > 0) are assumed

equal (for T̂f(·) 6= 0 and T̂f (·) 6= n̂); the probabilities P (Tf (·)−g
(f)
k (·) = −l) are

assumed equal for each (integer) l > 0 and the probabilities P (Tf(·)−g
(f)
k (·) = l)

are assumed equal for each (integer) l > 0 (quasi-uniform distribution). For the
case: T̂1(·) 6= 0, T̂1(·) 6= n̂, n̂ > 2, n̂ – odd and T̂1(·) < n̂/2 the “upper bound”
distribution function Pb(·) of comparison errors is obtained for each pair (xi, xi)
from the system of equations:

Pb(T̂1(·) − g
(1)
k (·) = T̂1(·) − n̂) = . . . = Pb(T̂1(·) − g

(1)
k (·) = −1), (59)

Pb(T̂1(·) − g
(1)
k (·) = 1) = . . . = Pb(T̂1(·) − g

(1)
k (·) = T̂1(·)), (60)

Pb(T̂1(·) − g
(1)
k (·) < 0) = Pb(T̂1(·) − g

(1)
k (·) > 0), ) (61)
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Pb(T̂1(·) − g
(1)
k (·) = 0) = Pb(T̂1(·) − g

(1)
k (·) = 1), (62)

T̂1(·)∑

l=T̂1(·)−n̂

Pb(T̂1(·) − g
(1)
k (·) = l) = 1. (63)

In the case of T̂1(·) > n̂/2, equation (62) is replaced with the equation:

Pb(T̂1(·) − g
(1)
k (·) = 0) = Pb(T̂1(·) − g

(1)
k (·) = −1) (64)

(the probability Pb(T̂1(·) − g
(1)
k (·) = 0) is equal to max{Pb(T̂1(·) − g

(1)
k (·) = 1),

Pb(T̂1(·) − g
(1)
k (·) = −1)}).

In the case of T̂1(·) = 0 the system assumes the simple form:

Pb(T̂1(·) − g
(1)
k (·) = 0) = 1

2 + ε,

Pb(T̂1(·) − g
(1)
k (·) = −l) = (1

2 − ε)/n̂ (l = 1, . . . , n̂),

}
(65a)

while in the case of T̂1(·) = n̂, the second relationship in (65a) is replaced with:

Pb(T̂1(·) − g
(1)
k (·) = l) = (1

2 − ε)/n̂ (l = 1, . . . , n̂), (65b)

where: ε – constant from the interval (0, 1
2 ) (e.g. ε = 1

2(n̂+1) ).

In the case of even n̂ (n̂ > 2) it is necessary to take into account the equality
T̂1(·) = n̂/2. In this case the distribution of comparison errors is assumed in
the form of:

Pb(T̂1(·) − g
(1)
k (·) = 0) = 1

n̂+1 + ε,

Pb(T̂1(·) − g
(1)
k (·) = ±l) = 1

n̂+1 − ǫ
n̂ (l = 1, . . . , n̂/2),

}
(66)

where: ε – constant from the interval (0, 1 − 1
n̂+1 ).

In the case of n̂ = 2, the system assumes the simplest form:

Pb(T̂1(·) − g
(1)
k (·) = 0) = 1

2 + ε1;

Pb(T̂1(·) − g
(1)
k (·) = 1) = Pb(T̂1(·) − g

(1)
k (·) = 2) = (1

2 − ε1)/2;

for T̂1(·) = 2,

Pb(T̂1(·) − g
(1)
k (·) = 0) = 1

3 + ε2;

Pb(T̂1(·) − g
(1)
k (·) = ±1) = (2

3 − ε2)/2; for T̂1(·) = 1,

Pb(T̂1(·) − g
(1)
k (·) = 0) = 1

2 + ε1;

Pb(T̂1(·) − g
(1)
k (·) = −1) = Pb(T̂1(·) − g

(1)
k (·) = −2) = (1

2 − ε1)/2;

for T̂1(·) = 0





(67)

where: ε1 – constant from the interval (0, 1
2 ), ε2 – constant from the interval

(0, 2
3 ).
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The probability functions of comparison errors generated by the above sys-
tems of equations can be considered as a kind of a “conservative approximation”
of the actual distribution function, because any other distribution (based on the
estimated relation form χ̂1, . . . , χ̂n̂ and distribution functions with symmetric
values of tails) is more concentrated (its variance is smaller). If there exists
some knowledge about asymmetry of tails (e.g. the value of asymmetry coeffi-
cient), then the equation systems (59)-(67) ought to be modified, especially the

equality Pb(T̂1(·) − g
(1)
k (·) < 0) = Pb(T̂1(·) − g

(1)
k (·) > 0) have to be replaced

with the equality Pb(T̂1(·)− g
(1)
k (·) < 0) = γPb(T̂1(·)− g

(1)
k (·) > 0), where γ – a

constant, which guarantees satisfying the conditions (8)-(9).

The distribution function obtained on the basis of the equation systems
(59)-(67) allows for the use of the relationships (53a, b) for determination the of

“upper bound” approximation of the probability function P
(me,N)
b (T1(xi, xj) −

g
(1)
me,N (xi, xj) = l) (l = −n̂, . . . , n̂) of the median in the following way:

P
(me,N)
b (T1(xi, xj) − g

(1)
me,N (xi, xj) = l) =

= P
(me,N)
b (T1(xi, xj) − g

(1)
me,N(xi, xj) 6 l)−

−P
(me,N)
b (T1(xi, xj) − g

(1)
me,N (xi, xj) 6 l − 1) =

=
N !

(((N − 1)/2)!)2

Gb(l)∫

Gb(l−1)

t(N−1)/2(1 − t)(N−1)/2dt, (68)

where: Gb(l) = Pb(T̂1(xi, xj) − g
(1)
k (xi, xj) 6 l), Gb(l − 1) = Pb(T̂1(xi, xj) −

g
(1)
k (xi, xj) 6 l − 1).

The approach presented above allows to determine some approximation of
the right-hand side of the inequality (51).

In the case of N >> n̂ the upper bound distribution functions can be re-
placed with estimated distribution functions; especially nonparametric estima-
tors can be used for this purpose.

5. Example of application of the algorithms proposed

A simple (simulated) example of an application of the estimators proposed is
considered below. The relation under examination assumes the form χ∗

1 =
{x1, x2, x3, x4}, χ∗

2 = {x3, x4, x5}, χ∗
3 = {x4, x6}, χ∗

4 = {x7}. Each pair (xi, xj)
is compared five times (comparisons of the same pair are independent); the
results of comparisons (stochastic simulation) are presented in Table 1, while
the distribution functions of the comparisons are presented in Table 2. The
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function T1(·) assumes the following values:

T1(x1, x5) = T1(x1, x6) = T1(x1, x7) = T1(x2, x5) = T1(x2, x6) =

= T1(x2, x7) = T1(x5, x6) = T1(x5, x7) = T1(x6, x7) = 0;

T1(x1, x2) = T1(x1, x3) = T1(x1, x4) = T1(x2, x3) = T1(x2, x4) =

= T1(x3, x5) = T1(x4, x5) = T1(x4, x6) = 1; T1(x3, x4) = 2.

Table 1. The results of comparisons (simulation)

Pair < i, j > g
(1)
(1)(·) g

(1)
(2)(·) g

(1)
(3)(·) g

(1)
(4)(·) g

(1)
(5)(·) g

(1)
me(·) 1

5

5∑
k=1

g
(1)
k (·)

< 1, 2 > 1 1 1 1 1 1 1
< 1, 3 > 1 1 2 2 3 2 1.8
< 1, 4 > 1 1 1 2 2 1 1.4
< 1, 5 > 0 0 0 0 0 0 0
< 1, 6 > 0 0 0 1 1 0 0.4
< 1, 7 > 0 0 0 0 0 0 0
< 2, 3 > 1 1 1 1 1 1 1
< 2, 4 > 0 1 1 1 2 1 1
< 2, 5 > 0 0 0 0 0 0 0
< 2, 6 > 0 0 0 0 0 0 0
< 2, 7 > 0 0 0 0 1 0 0.2
< 3, 4 > 2 2 2 2 2 2 2
< 3, 5 > 1 1 1 1 2 1 1.2
< 3, 6 > 0 0 0 1 1 0 0.4
< 3, 7 > 0 0 0 0 0 0 0
< 4, 5 > 0 1 1 1 2 1 1
< 4, 6 > 0 1 2 2 2 2 1.4
< 4, 7 > 0 0 0 0 1 0 0.2
< 5, 6 > 0 0 0 0 0 0 0
< 5, 7 > 0 0 0 0 0 0 0
< 6, 7 > 0 0 0 1 1 0 0.4

5.1. The algorithm based on the averaging approach

The estimated form of the relation χ∗
1, . . . , χ

∗
4 is obtained on the basis of the

optimisation task (43), for f = 1. It assumes the form χ̂1 = {x1, x2, x3, x4},
χ̂2 = {x3, x4, x5}, χ̂3 = {x4, x6}, χ̂4 = {x7}, i.e. is the same, as the rela-
tion χ∗

1, . . . , χ
∗
4; therefore n̂ = n = 4. The minimal value of the function

(43) equals 23, the solution is not multiple. The evaluation of the probability
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Table 2. The probability distribution functions P (g
(1)
k (xi, xj) = l) – the basis

for simulations

Pair P (g
(1)
k (xi, xj) = l)

< i, j > l = 0 l = 1 l = 2 l = 3 l = 4
< 1, 2 > 0.2 0.6 0.1 0.1 0.0
< 1, 3 > 0.2 0.5 0.2 0.1 0.0
< 1, 4 > 0.1 0.6 0.3 0.0 0.0
< 1, 5 > 0.7 0.2 0.1 0.0 0.0
< 1, 6 > 0.8 0.2 0.0 0.0 0.0
< 1, 7 > 0.9 0.1 0.0 0.0 0.0
< 2, 3 > 0.1 0.8 0.05 0.05 0.0
< 2, 4 > 0.2 0.75 0.05 0.0 0.0
< 2, 5 > 0.75 0.25 0.0 0.0 0.0
< 2, 6 > 0.65 0.35 0.0 0.0 0.0
< 2, 7 > 0.9 0.05 0.05 0.0 0.0
< 3, 4 > 0.0 0.1 0.7 0.1 0.1
< 3, 5 > 0.0 0.7 0.2 0.1 0.0
< 3, 6 > 0.8 0.2 0.0 0.0 0.0
< 3, 7 > 0.9 0.1 0.0 0.0 0.0
< 4, 5 > 0.3 0.6 0.1 0.0 0.0
< 4, 6 > 0.3 0.4 0.3 0.0 0.0
< 4, 7 > 0.9 0.1 0.0 0.0 0.0
< 5, 6 > 0.85 0.1 0.05 0.0 0.0
< 5, 7 > 0.95 0.05 0.0 0.0 0.0
< 6, 7 > 0.6 0.3 0.1 0.0 0.0

(28) is determined for the relation χ̃1 = {x1, x2, x3, x4}, χ̃2 = {x1, x3, x4, x5},
χ̃3 = {x1, x4, x6}, χ̃4 = {x7} – similar to the relation χ∗

1, . . . , χ
∗
4. The differ-

ence between the relations χ∗
1, . . . , χ

∗
4 and χ̃1, . . . , χ̃4 concerns the element x1;

in the relation χ∗
1, . . . , χ

∗
4 it belongs (exclusively) to the set χ∗

1, while in the

relation χ̃1, . . . , χ̃4 it belongs to the intersection
3⋂

r=1
χ̃r. The value of the func-

tion (43) corresponding to the relation χ̃1, . . . , χ̃4 equals 41. The inequalities
T1(·) 6= t̃1(·) appear for the pairs: (x1, x3), (x1, x4), (x1, x5), (x1, x6); the values
t̃1(·) for these pairs are equal: t̃1(x1, x3) = 2, t̃1(x1, x4) = 3, t̃1(x1, x5) = 1,
t̃1(x1, x6) = 1.

The evaluation (28) requires the probability functions of comparison errors
and the values T1(xi, xj), < i, j >∈ {T (xi, xj) 6= t1(xi, xj)}. In the case of
unknown distributions and N = 5 it is rational the use the approximation of

probability functions Pb(T̂1(·) − g
(1)
k (·) = l), described in section 4.2 (see (59)-
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(67)). For the pair (x1, x3) the system of equations assumes the following form

(the distribution functions Pb(g
(1)
k (·) = ι) for all pairs satisfying the inequality

T1(·) 6= t̃1(·) are presented in Table 3):

Pb(T̂1(x1, x3) − g
(1)
k (x1, x3) = 1 − 4) =

= Pb(T̂1(x1, x3) − g
(1)
k (x1, x3) = 1 − 3) =

= Pb(T̂1(x1, x3) − g
(1)
k (x1, x3) = 1 − 2),

3∑
l=1

Pb(T̂1(x1, x3)−g
(1)
k (x1, x3)=−l)=Pb(T̂1(x1, x3)−g

(1)
k (x1, x3) = 1),

Pb(T̂1(x1, x3)−g
(1)
k (x1, x3)=0)=Pb(T̂1(x1, x3)−g

(1)
k (x1, x3)=1),

1∑
l=−3

Pb(T̂1(x1, x3) − g
(1)
k (x1, x3) = l) = 1.





(69a)

The solution of the above system assumes the form:

Pb(T̂1(x1, x3)−g
(1)
k (x1, x3)=−3)=

= Pb(T̂1(x1, x3)−g
(1)
k (x1, x3)=−2)=

= Pb(T̂1(x1, x3) − g
(1)
k (x1, x3) = −1) = 1

9 ,

Pb(T̂1(x1, x3)−g
(1)
k (x1, x3)=0)=

= Pb(T̂1(x1, x3)−g
(1)
k (x1, x3)=1)= 1

3 .





(69b)

The expected value E(D
(1)
k,b(x1, x3)) corresponding to the above “upper bound”

distribution assumes the form (after simple algebraic rearrangement):

E(D
(1)
k,b(x1, x3)) = Eb(| T̂1(x1, x3) − g

(1)
k (x1, x3) | )

−Eb( |t̃1(x1, x3) − g
(1)
k (x1, x3) | ) =

1
3 (|1 − 0| + |1 − 1|) + 1

9 (|1 − 2| + |1 − 3| + |1 − 4|) − 1
3 (|2 − 0| + |2 − 1|)−

− 1
9 (|2 − 2| + |2 − 3| + |2 − 4|) = − 1

3 ,

Eb - the expected value in the “upper bound” distribution.
The expected values of the remaining pairs are determined in a similar way;

the distribution functions for the pairs (x1, x5), (x1, x6) are determined on the
basis of the system (65a), with ε = 1/10 and their sum is equal:

∑

T1(·) 6=et1(·)

E(D
(1)
k,b(x1, x3)) = −1.5727.

Thus, the evaluation of the right-hand side of inequality (28) equals:

exp




−

2N(
∑

T1(·) 6=et1(·)

E(D
(1)
k,b(·)))

2

(2ϑ(n̂ − 1))2





= exp{−0.0405} = 0.9603
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and the evaluation of the probability corresponding to n̂−1 (denoted P
(av)
b,n̂−1(W

∗

1−

W̃ 1 < 0)) assumes the form:

P
(av)
b,n̂−1(W

∗

1 − W̃ 1 < 0) > 1 − 0.9603 = 0.0397 (70)

(the value n̂−1 is used instead of n̂, because the subset χ̃4 includes one element
only).

The evaluations obtained on the basis of the actual probability functions
(see Table 2) assumes the form:

P
(av)
b,n̂−1(W

∗

f − W̃ f < 0) > 1 − exp{−0.5444} = 0.4198. (71)

The evaluation (70) assumes a low value (close to zero), but the relations
χ∗

1, . . . , χ
∗
4 and χ̃1, . . . , χ̃4 are similar and differences between the “upper bound”

and actual distributions are not negligible (see Tables 2 and 3). The evalua-
tion (71), based on actual probability functions, is much better than the “con-
servative” one.

Table 3. The “upper bound” distributions functions Pb(g
(1)
k (·) = ι)

Pair < i, j > Pb(g
(1)
k (·) = ι)

ι = 0 ι = 1 ι = 2 ι = 3 ι = 4
< 1, 3 >, < 1, 4 > 1/3 1/3 1/9 1/9 1/9
< 1, 5 >, < 1, 6 > 6/10 1/10 1/10 1/10 1/10

5.2. The algorithm based on the median approach

The medians of the comparisons g
(1)
(1)(xi, xj), . . . , g

(1)
(5)(xi, xj) ((xi, xj) ∈ X× X)

are presented in Table 1. The optimal solution of the task (57), for f = 1, is the
same as the relation χ∗

1, . . . , χ
∗
n and those based on the averaging approach. The

minimal value of the function (57) equals 2, the solution is not multiple. The
approximation of the right-hand side of the inequality (51) is determined with
the use of the algorithm described in Section 4.2 (see (59)-(67) and (68)) and
for actual distributions. The first step of the median approach – determination

of the probabilities Pb(T̂1(·) − g
(1)
k (·) = l) – is described in Section 5.1. The

second step - determination the values of the formula (68) – is performed as
follows. The expression for the distribution of the median (for the “conservative
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distributions”) of comparison errors assumes the form (see (53a, b)):

P
(me,5)
b (T1(xi, xj) − g

(1)
me,5(xi, xj) = l) =

=
5!

(((5 − 1)/2)!)2

Gb(l)∫

Gb(l−1)

t(5−1)/2(1 − t)(5−1)/2dt =

= 30

Gb(l)∫

Gb(l−1)

t2(1 − t)2dt = 30t3 (1
3 − t/2 + t2/5)

∣∣∣∣
Gb(l)

Gb(l−1)

. (72)

For the pair (x1, x3) the distribution of the median of comparison errors ob-
tained on the basis of: the probability function resulting from the relationships
(69a), the estimate T̂1(x1, x3), and the expression (72), assumes the following
form:

P
(me,5)
b (T̂1(x1, x3) − g

(1)
me,5(x1, x3) = −3) = 0.0112,

P
(me,5)
b (T̂1(x1, x3) − g

(1)
me,5(x1, x3) = −2) = 0.0632,

P
(me,5)
b (T̂1(x1, x3) − g

(1)
me,5(x1, x3) = −1) = 0.1305,

P
(me,5)
b (T̂1(x1, x3) − g

(1)
me,5(x1, x3) = 0) = 0.5901,

P
(me,5)
b (T̂1(x1, x3) − g

(1)
me,5(x1, x3) = 1) = 0.2050.

Thus, the expected value

Eb( |T̂1(x1, x3) − g
(1)
me,5(x1, x3) | − | t̃1(x1, x3) − g

(1)
me,5(x1, x3) | )

assumes the form:

Eb( | T̂1(x1, x3)g
(1)
me,5(x1, x3) | − | t̃1(x1, x3) − g

(1)
me,5(x1, x3) | ) =

= 0.0112(|1− 4| − |2 − 4|) + 0.0632(|1− 3| − |2 − 3|)+

+0.1305(|1− 2| − |2 − 2|) + 0.5901(|1− 1| − |2 − 1|)+

+0.2050(|1− 0| − |2 − 0|) = −0.5901.

The remaining components of the sum E(
∑

T1(·) 6=et1(·)

D
(1)
me,b(·)) are determined

in a similar way and:

E(
∑

T1(·) 6=et1(·)

D
(1)
me,b(·)) = −1.9104.
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The evaluation of the probability, corresponding to the value n̂ − 1 (denoted

P
(me)
b,n̂−1(W

(me,5)∗
1 − W̃

(me,5)
1 < 0)) assumes the form:

P
(me,5)
b,n̂−1 (W

(me,5)∗
1 < W̃

(me,5)
1 ) > −

1

ν(n̂ − 1)
Eb(

∑

T1(·) 6=et1(·)

D
(1)
me,b(·)) =

−(1/(4 ∗ 3)) ∗ (−1.9104) = 0.1592. (73)

The evaluation based on actual distributions assumes the form:

P
(me,5)
n̂−1 (W

(me,5)∗
1 < W̃

(me,5)
1 ) > −

1

ν(n̂ − 1)
E(

∑

T1(·) 6=et1(·)

D(1)
me(·)) =

= −(1/4 ∗ 3) ∗ (−2.9168) = 0.2421. (74)

Both evaluations, (73) and (74), are rather poor, but they are based on rough
probabilistic inequality (51). However, in the example under consideration,
both approaches (averaging and median) indicate the same estimation result
and therefore the evaluation of the probability (71) obtained for the averaging
approach is valid also in the median case.

6. Summary and conclusions

The methods of the tolerance relation estimation presented in the paper are
often essential for practice, but seldom discussed in the literature of the subject.
The idea of the methods proposed is the same as in the earlier author’s papers
in this area (Klukowski, 1990, 1994, 2000, 2002, 2006). The results obtained are
especially meaningful in the case of averaging approach, when N → ∞; they
indicate that the probability (28) converges exponentially to one. The estimator
based on the median of comparisons also possesses some asymptotic stochastic
properties and is simpler from the computational point of view. The range of
statistical properties of both estimators can be extended.

The important features of the estimators proposed are weak assumptions
about stochastic properties of the comparisons. Especially, the distributions
function of comparison errors may be unknown, the comparisons of different
pairs may be not independent in stochastic sense, and the specification of the
number of the subsets in the relation is not required. Such features of com-
parisons are typical, when they are obtained with the use of statistical tests or
other decision functions, which may involve generated random errors.

The estimated form of the relation is obtained on the basis of the optimal
solution of appropriate discrete programming tasks. Therefore, the number of
solutions may exceed one; each of them can be regarded as the estimated form
of the relation. It is not a negative feature of the methods proposed; the unique
estimate can be selected randomly or with the use of additional criteria.

Empirical experience confirms usefulness of both estimators proposed. How-
ever, some properties of the estimators are difficult to determine in analytic way,
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e.g. the probability that the estimate χ̂1 . . . , χ̂n̂ is equivalent to χ∗
1, . . . , χ

∗
n for

all relations χ̃1, . . . , χ̃r from the feasible set FX . They can be examined with
the use of simulation approach.

References

David, H.A. (1970) Order Statistics. J. Wiley, New York.
David, H.A. (1988) The Method of Paired Comparisons, 2nd ed. Ch. Griffin,

London.
Hoeffding, W. (1963) Probability inequalities for sums of bounded random

variables. J. Amer. Statist. Assoc. 58, 13–30.
Klukowski, L. (1990) Algorithm for classification of samples in the case of

unknown number variables generating them (in Polish). Przegla̧d Statysty-
czny XXXVII, 167–177.

Klukowski, L. (1994) Some probabilistic properties of the nearest adjoining
order method and its extensions. Annals of Operational Research 51,
241–261.

Klukowski, L. (2000) The nearest adjoining order method for pairwise com-
parisons in the form of difference of ranks. Annals of Operational Research
97, 357–378.

Klukowski, L. (2002) Estimation of the tolerance relation on the basis of
pairwise comparisons with random errors (in Polish). In.: Z. Bubnicki, O.
Hryniewicz, R. Kulikowski eds. Methods and Techniques of Data Analysis
and Decision Support. Academic Publishing House EXIT, Warsaw, V-21
– V-35.

Klukowski, L. (2006) Tests for relation type - equivalence or tolerance - in
finite set of elements. Control and Cybernetics 35, 369–384.

Slater, P. (1961) Inconsistencies in a schedule of paired comparisons. Bio-
metrika 48, 303–312.


